| /* |
| * Copyright (C) 2017 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| "use strict"; |
| |
| let currentTime; |
| if (this.performance && performance.now) |
| currentTime = function() { return performance.now() }; |
| else if (this.preciseTime) |
| currentTime = function() { return preciseTime() * 1000; }; |
| else |
| currentTime = function() { return +new Date(); }; |
| |
| class MLBenchmark { |
| constructor() { } |
| |
| runIteration() |
| { |
| let Matrix = MLMatrix; |
| let ACTIVATION_FUNCTIONS = FeedforwardNeuralNetworksActivationFunctions; |
| |
| function run() { |
| |
| let it = (name, f) => { |
| f(); |
| }; |
| |
| function assert(b) { |
| if (!b) |
| throw new Error("Bad"); |
| } |
| |
| var functions = Object.keys(ACTIVATION_FUNCTIONS); |
| |
| it('Training the neural network with XOR operator', function () { |
| var trainingSet = new Matrix([[0, 0], [0, 1], [1, 0], [1, 1]]); |
| var predictions = [false, true, true, false]; |
| |
| for (var i = 0; i < functions.length; ++i) { |
| var options = { |
| hiddenLayers: [4], |
| iterations: 40, |
| learningRate: 0.3, |
| activation: functions[i] |
| }; |
| var xorNN = new FeedforwardNeuralNetwork(options); |
| |
| xorNN.train(trainingSet, predictions); |
| var results = xorNN.predict(trainingSet); |
| } |
| }); |
| |
| it('Training the neural network with AND operator', function () { |
| var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]]; |
| var predictions = [[1, 0], [1, 0], [1, 0], [0, 1]]; |
| |
| for (var i = 0; i < functions.length; ++i) { |
| var options = { |
| hiddenLayers: [3], |
| iterations: 75, |
| learningRate: 0.3, |
| activation: functions[i] |
| }; |
| var andNN = new FeedforwardNeuralNetwork(options); |
| andNN.train(trainingSet, predictions); |
| |
| var results = andNN.predict(trainingSet); |
| } |
| }); |
| |
| it('Export and import', function () { |
| var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]]; |
| var predictions = [0, 1, 1, 1]; |
| |
| for (var i = 0; i < functions.length; ++i) { |
| var options = { |
| hiddenLayers: [4], |
| iterations: 40, |
| learningRate: 0.3, |
| activation: functions[i] |
| }; |
| var orNN = new FeedforwardNeuralNetwork(options); |
| orNN.train(trainingSet, predictions); |
| |
| var model = JSON.parse(JSON.stringify(orNN)); |
| var networkNN = FeedforwardNeuralNetwork.load(model); |
| |
| var results = networkNN.predict(trainingSet); |
| } |
| }); |
| |
| it('Multiclass clasification', function () { |
| var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]]; |
| var predictions = [2, 0, 1, 0]; |
| |
| for (var i = 0; i < functions.length; ++i) { |
| var options = { |
| hiddenLayers: [4], |
| iterations: 40, |
| learningRate: 0.5, |
| activation: functions[i] |
| }; |
| var nn = new FeedforwardNeuralNetwork(options); |
| nn.train(trainingSet, predictions); |
| |
| var result = nn.predict(trainingSet); |
| } |
| }); |
| |
| it('Big case', function () { |
| var trainingSet = [[1, 1], [1, 2], [2, 1], [2, 2], [3, 1], [1, 3], [1, 4], [4, 1], |
| [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [5, 5], [4, 5], [3, 5]]; |
| var predictions = [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], |
| [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]; |
| for (var i = 0; i < functions.length; ++i) { |
| var options = { |
| hiddenLayers: [20], |
| iterations: 60, |
| learningRate: 0.01, |
| activation: functions[i] |
| }; |
| var nn = new FeedforwardNeuralNetwork(options); |
| nn.train(trainingSet, predictions); |
| |
| var result = nn.predict([[5, 4]]); |
| |
| assert(result[0][0] < result[0][1]); |
| } |
| }); |
| } |
| |
| run(); |
| } |
| } |
| |
| function runBenchmark() |
| { |
| const numIterations = 60; |
| |
| let before = currentTime(); |
| |
| let benchmark = new MLBenchmark(); |
| |
| for (let iteration = 0; iteration < numIterations; ++iteration) |
| benchmark.runIteration(); |
| |
| let after = currentTime(); |
| return after - before; |
| } |