blob: 04249802943e8bd6b2b1fb7deada80a747fa6a21 [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2010, 2012, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CodeBlock.h"
#include "BytecodeGenerator.h"
#include "CallLinkStatus.h"
#include "DFGCapabilities.h"
#include "DFGCommon.h"
#include "DFGDriver.h"
#include "DFGNode.h"
#include "DFGRepatch.h"
#include "DFGWorklist.h"
#include "Debugger.h"
#include "Interpreter.h"
#include "JIT.h"
#include "JITStubs.h"
#include "JSActivation.h"
#include "JSCJSValue.h"
#include "JSFunction.h"
#include "JSNameScope.h"
#include "LowLevelInterpreter.h"
#include "Operations.h"
#include "PolymorphicPutByIdList.h"
#include "ReduceWhitespace.h"
#include "RepatchBuffer.h"
#include "SlotVisitorInlines.h"
#include <stdio.h>
#include <wtf/CommaPrinter.h>
#include <wtf/StringExtras.h>
#include <wtf/StringPrintStream.h>
#if ENABLE(DFG_JIT)
#include "DFGOperations.h"
#endif
#if ENABLE(FTL_JIT)
#include "FTLJITCode.h"
#endif
#define DUMP_CODE_BLOCK_STATISTICS 0
namespace JSC {
CString CodeBlock::inferredName() const
{
switch (codeType()) {
case GlobalCode:
return "<global>";
case EvalCode:
return "<eval>";
case FunctionCode:
return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().utf8();
default:
CRASH();
return CString("", 0);
}
}
bool CodeBlock::hasHash() const
{
return !!m_hash;
}
bool CodeBlock::isSafeToComputeHash() const
{
return !isCompilationThread();
}
CodeBlockHash CodeBlock::hash() const
{
if (!m_hash) {
RELEASE_ASSERT(isSafeToComputeHash());
m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind());
}
return m_hash;
}
CString CodeBlock::sourceCodeForTools() const
{
if (codeType() != FunctionCode)
return ownerExecutable()->source().toUTF8();
SourceProvider* provider = source();
FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable());
UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable();
unsigned unlinkedStartOffset = unlinked->startOffset();
unsigned linkedStartOffset = executable->source().startOffset();
int delta = linkedStartOffset - unlinkedStartOffset;
unsigned rangeStart = delta + unlinked->functionStartOffset();
unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength();
return toCString(
"function ",
provider->source().impl()->utf8ForRange(rangeStart, rangeEnd - rangeStart));
}
CString CodeBlock::sourceCodeOnOneLine() const
{
return reduceWhitespace(sourceCodeForTools());
}
void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const
{
if (hasHash() || isSafeToComputeHash())
out.print(inferredName(), "#", hash(), ":[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType());
else
out.print(inferredName(), "#<no-hash>:[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType());
if (codeType() == FunctionCode)
out.print(specializationKind());
if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined)
out.print(" (SABI)");
if (ownerExecutable()->neverInline())
out.print(" (NeverInline)");
out.print("]");
}
void CodeBlock::dump(PrintStream& out) const
{
dumpAssumingJITType(out, jitType());
}
static CString constantName(int k, JSValue value)
{
return toCString(value, "(@k", k - FirstConstantRegisterIndex, ")");
}
static CString idName(int id0, const Identifier& ident)
{
return toCString(ident.impl(), "(@id", id0, ")");
}
CString CodeBlock::registerName(int r) const
{
if (r == missingThisObjectMarker())
return "<null>";
if (isConstantRegisterIndex(r))
return constantName(r, getConstant(r));
return toCString("r", r);
}
static CString regexpToSourceString(RegExp* regExp)
{
char postfix[5] = { '/', 0, 0, 0, 0 };
int index = 1;
if (regExp->global())
postfix[index++] = 'g';
if (regExp->ignoreCase())
postfix[index++] = 'i';
if (regExp->multiline())
postfix[index] = 'm';
return toCString("/", regExp->pattern().impl(), postfix);
}
static CString regexpName(int re, RegExp* regexp)
{
return toCString(regexpToSourceString(regexp), "(@re", re, ")");
}
NEVER_INLINE static const char* debugHookName(int debugHookID)
{
switch (static_cast<DebugHookID>(debugHookID)) {
case DidEnterCallFrame:
return "didEnterCallFrame";
case WillLeaveCallFrame:
return "willLeaveCallFrame";
case WillExecuteStatement:
return "willExecuteStatement";
case WillExecuteProgram:
return "willExecuteProgram";
case DidExecuteProgram:
return "didExecuteProgram";
case DidReachBreakpoint:
return "didReachBreakpoint";
}
RELEASE_ASSERT_NOT_REACHED();
return "";
}
void CodeBlock::printUnaryOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] %s\t\t %s, %s", location, op, registerName(r0).data(), registerName(r1).data());
}
void CodeBlock::printBinaryOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] %s\t\t %s, %s, %s", location, op, registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
}
void CodeBlock::printConditionalJump(PrintStream& out, ExecState*, const Instruction*, const Instruction*& it, int location, const char* op)
{
int r0 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] %s\t\t %s, %d(->%d)", location, op, registerName(r0).data(), offset, location + offset);
}
void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it)
{
const char* op;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_get_by_id:
op = "get_by_id";
break;
case op_get_by_id_out_of_line:
op = "get_by_id_out_of_line";
break;
case op_get_by_id_self:
op = "get_by_id_self";
break;
case op_get_by_id_proto:
op = "get_by_id_proto";
break;
case op_get_by_id_chain:
op = "get_by_id_chain";
break;
case op_get_by_id_getter_self:
op = "get_by_id_getter_self";
break;
case op_get_by_id_getter_proto:
op = "get_by_id_getter_proto";
break;
case op_get_by_id_getter_chain:
op = "get_by_id_getter_chain";
break;
case op_get_by_id_custom_self:
op = "get_by_id_custom_self";
break;
case op_get_by_id_custom_proto:
op = "get_by_id_custom_proto";
break;
case op_get_by_id_custom_chain:
op = "get_by_id_custom_chain";
break;
case op_get_by_id_generic:
op = "get_by_id_generic";
break;
case op_get_array_length:
op = "array_length";
break;
case op_get_string_length:
op = "string_length";
break;
default:
RELEASE_ASSERT_NOT_REACHED();
op = 0;
}
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data());
it += 4; // Increment up to the value profiler.
}
#if ENABLE(JIT) || ENABLE(LLINT) // unused in some configurations
static void dumpStructure(PrintStream& out, const char* name, ExecState* exec, Structure* structure, const Identifier& ident)
{
if (!structure)
return;
out.printf("%s = %p", name, structure);
PropertyOffset offset = structure->getConcurrently(exec->vm(), ident.impl());
if (offset != invalidOffset)
out.printf(" (offset = %d)", offset);
}
#endif
#if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings
static void dumpChain(PrintStream& out, ExecState* exec, StructureChain* chain, const Identifier& ident)
{
out.printf("chain = %p: [", chain);
bool first = true;
for (WriteBarrier<Structure>* currentStructure = chain->head();
*currentStructure;
++currentStructure) {
if (first)
first = false;
else
out.printf(", ");
dumpStructure(out, "struct", exec, currentStructure->get(), ident);
}
out.printf("]");
}
#endif
void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location)
{
Instruction* instruction = instructions().begin() + location;
const Identifier& ident = identifier(instruction[3].u.operand);
UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations.
#if ENABLE(LLINT)
if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length)
out.printf(" llint(array_length)");
else if (Structure* structure = instruction[4].u.structure.get()) {
out.printf(" llint(");
dumpStructure(out, "struct", exec, structure, ident);
out.printf(")");
}
#endif
#if ENABLE(JIT)
if (numberOfStructureStubInfos()) {
StructureStubInfo& stubInfo = getStubInfo(location);
if (stubInfo.seen) {
out.printf(" jit(");
Structure* baseStructure = 0;
Structure* prototypeStructure = 0;
StructureChain* chain = 0;
PolymorphicAccessStructureList* structureList = 0;
int listSize = 0;
switch (stubInfo.accessType) {
case access_get_by_id_self:
out.printf("self");
baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get();
break;
case access_get_by_id_proto:
out.printf("proto");
baseStructure = stubInfo.u.getByIdProto.baseObjectStructure.get();
prototypeStructure = stubInfo.u.getByIdProto.prototypeStructure.get();
break;
case access_get_by_id_chain:
out.printf("chain");
baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get();
chain = stubInfo.u.getByIdChain.chain.get();
break;
case access_get_by_id_self_list:
out.printf("self_list");
structureList = stubInfo.u.getByIdSelfList.structureList;
listSize = stubInfo.u.getByIdSelfList.listSize;
break;
case access_get_by_id_proto_list:
out.printf("proto_list");
structureList = stubInfo.u.getByIdProtoList.structureList;
listSize = stubInfo.u.getByIdProtoList.listSize;
break;
case access_unset:
out.printf("unset");
break;
case access_get_by_id_generic:
out.printf("generic");
break;
case access_get_array_length:
out.printf("array_length");
break;
case access_get_string_length:
out.printf("string_length");
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
if (baseStructure) {
out.printf(", ");
dumpStructure(out, "struct", exec, baseStructure, ident);
}
if (prototypeStructure) {
out.printf(", ");
dumpStructure(out, "prototypeStruct", exec, baseStructure, ident);
}
if (chain) {
out.printf(", ");
dumpChain(out, exec, chain, ident);
}
if (structureList) {
out.printf(", list = %p: [", structureList);
for (int i = 0; i < listSize; ++i) {
if (i)
out.printf(", ");
out.printf("(");
dumpStructure(out, "base", exec, structureList->list[i].base.get(), ident);
if (structureList->list[i].isChain) {
if (structureList->list[i].u.chain.get()) {
out.printf(", ");
dumpChain(out, exec, structureList->list[i].u.chain.get(), ident);
}
} else {
if (structureList->list[i].u.proto.get()) {
out.printf(", ");
dumpStructure(out, "proto", exec, structureList->list[i].u.proto.get(), ident);
}
}
out.printf(")");
}
out.printf("]");
}
out.printf(")");
}
}
#endif
}
void CodeBlock::printCallOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling)
{
int dst = (++it)->u.operand;
int func = (++it)->u.operand;
int argCount = (++it)->u.operand;
int registerOffset = (++it)->u.operand;
out.printf("[%4d] %s %s, %s, %d, %d", location, op, registerName(dst).data(), registerName(func).data(), argCount, registerOffset);
if (cacheDumpMode == DumpCaches) {
#if ENABLE(LLINT)
LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo;
if (callLinkInfo->lastSeenCallee) {
out.printf(
" llint(%p, exec %p)",
callLinkInfo->lastSeenCallee.get(),
callLinkInfo->lastSeenCallee->executable());
}
#endif
#if ENABLE(JIT)
if (numberOfCallLinkInfos()) {
JSFunction* target = getCallLinkInfo(location).lastSeenCallee.get();
if (target)
out.printf(" jit(%p, exec %p)", target, target->executable());
}
#endif
out.print(" status(", CallLinkStatus::computeFor(this, location), ")");
}
++it;
dumpArrayProfiling(out, it, hasPrintedProfiling);
dumpValueProfiling(out, it, hasPrintedProfiling);
}
void CodeBlock::printPutByIdOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op)
{
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data());
it += 5;
}
void CodeBlock::dumpBytecode(PrintStream& out)
{
// We only use the ExecState* for things that don't actually lead to JS execution,
// like converting a JSString to a String. Hence the globalExec is appropriate.
ExecState* exec = m_globalObject->globalExec();
size_t instructionCount = 0;
for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)])
++instructionCount;
out.print(*this);
out.printf(
": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)",
static_cast<unsigned long>(instructions().size()),
static_cast<unsigned long>(instructions().size() * sizeof(Instruction)),
m_numParameters, m_numCalleeRegisters, m_numVars);
if (symbolTable() && symbolTable()->captureCount()) {
out.printf(
"; %d captured var(s) (from r%d to r%d, inclusive)",
symbolTable()->captureCount(), symbolTable()->captureStart(), symbolTable()->captureEnd() - 1);
}
if (usesArguments()) {
out.printf(
"; uses arguments, in r%d, r%d",
argumentsRegister(),
unmodifiedArgumentsRegister(argumentsRegister()));
}
if (needsFullScopeChain() && codeType() == FunctionCode)
out.printf("; activation in r%d", activationRegister());
const Instruction* begin = instructions().begin();
const Instruction* end = instructions().end();
for (const Instruction* it = begin; it != end; ++it)
dumpBytecode(out, exec, begin, it);
if (numberOfIdentifiers()) {
out.printf("\nIdentifiers:\n");
size_t i = 0;
do {
out.printf(" id%u = %s\n", static_cast<unsigned>(i), identifier(i).string().utf8().data());
++i;
} while (i != numberOfIdentifiers());
}
if (!m_constantRegisters.isEmpty()) {
out.printf("\nConstants:\n");
size_t i = 0;
do {
out.printf(" k%u = %s\n", static_cast<unsigned>(i), toCString(m_constantRegisters[i].get()).data());
++i;
} while (i < m_constantRegisters.size());
}
if (size_t count = m_unlinkedCode->numberOfRegExps()) {
out.printf("\nm_regexps:\n");
size_t i = 0;
do {
out.printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data());
++i;
} while (i < count);
}
#if ENABLE(JIT)
if (!m_structureStubInfos.isEmpty())
out.printf("\nStructures:\n");
#endif
if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) {
out.printf("\nException Handlers:\n");
unsigned i = 0;
do {
out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target, m_rareData->m_exceptionHandlers[i].scopeDepth);
++i;
} while (i < m_rareData->m_exceptionHandlers.size());
}
if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) {
out.printf("Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
int entry = 0;
Vector<int32_t>::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end();
for (Vector<int32_t>::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) {
if (!*iter)
continue;
out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter);
}
out.printf(" }\n");
++i;
} while (i < m_rareData->m_switchJumpTables.size());
}
if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) {
out.printf("\nString Switch Jump Tables:\n");
unsigned i = 0;
do {
out.printf(" %1d = {\n", i);
StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end();
for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter)
out.printf("\t\t\"%s\" => %04d\n", String(iter->key).utf8().data(), iter->value.branchOffset);
out.printf(" }\n");
++i;
} while (i < m_rareData->m_stringSwitchJumpTables.size());
}
out.printf("\n");
}
void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling)
{
if (hasPrintedProfiling) {
out.print("; ");
return;
}
out.print(" ");
hasPrintedProfiling = true;
}
void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
{
ConcurrentJITLocker locker(m_lock);
++it;
#if ENABLE(VALUE_PROFILER)
CString description = it->u.profile->briefDescription(locker);
if (!description.length())
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(description);
#else
UNUSED_PARAM(out);
UNUSED_PARAM(hasPrintedProfiling);
#endif
}
void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling)
{
ConcurrentJITLocker locker(m_lock);
++it;
#if ENABLE(VALUE_PROFILER)
if (!it->u.arrayProfile)
return;
CString description = it->u.arrayProfile->briefDescription(locker, this);
if (!description.length())
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(description);
#else
UNUSED_PARAM(out);
UNUSED_PARAM(hasPrintedProfiling);
#endif
}
#if ENABLE(VALUE_PROFILER)
void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling)
{
if (!profile || !profile->m_counter)
return;
beginDumpProfiling(out, hasPrintedProfiling);
out.print(name, profile->m_counter);
}
#endif
void CodeBlock::dumpBytecode(PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it)
{
int location = it - begin;
bool hasPrintedProfiling = false;
switch (exec->interpreter()->getOpcodeID(it->u.opcode)) {
case op_enter: {
out.printf("[%4d] enter", location);
break;
}
case op_create_activation: {
int r0 = (++it)->u.operand;
out.printf("[%4d] create_activation %s", location, registerName(r0).data());
break;
}
case op_create_arguments: {
int r0 = (++it)->u.operand;
out.printf("[%4d] create_arguments\t %s", location, registerName(r0).data());
break;
}
case op_init_lazy_reg: {
int r0 = (++it)->u.operand;
out.printf("[%4d] init_lazy_reg\t %s", location, registerName(r0).data());
break;
}
case op_get_callee: {
int r0 = (++it)->u.operand;
out.printf("[%4d] get_callee %s\n", location, registerName(r0).data());
++it;
break;
}
case op_create_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
unsigned inferredInlineCapacity = (++it)->u.operand;
out.printf("[%4d] create_this %s, %s, %u", location, registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity);
break;
}
case op_to_this: {
int r0 = (++it)->u.operand;
out.printf("[%4d] to_this\t %s", location, registerName(r0).data());
++it; // Skip value profile.
break;
}
case op_new_object: {
int r0 = (++it)->u.operand;
unsigned inferredInlineCapacity = (++it)->u.operand;
out.printf("[%4d] new_object\t %s, %u", location, registerName(r0).data(), inferredInlineCapacity);
++it; // Skip object allocation profile.
break;
}
case op_new_array: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
out.printf("[%4d] new_array\t %s, %s, %d", location, registerName(dst).data(), registerName(argv).data(), argc);
++it; // Skip array allocation profile.
break;
}
case op_new_array_with_size: {
int dst = (++it)->u.operand;
int length = (++it)->u.operand;
out.printf("[%4d] new_array_with_size\t %s, %s", location, registerName(dst).data(), registerName(length).data());
++it; // Skip array allocation profile.
break;
}
case op_new_array_buffer: {
int dst = (++it)->u.operand;
int argv = (++it)->u.operand;
int argc = (++it)->u.operand;
out.printf("[%4d] new_array_buffer\t %s, %d, %d", location, registerName(dst).data(), argv, argc);
++it; // Skip array allocation profile.
break;
}
case op_new_regexp: {
int r0 = (++it)->u.operand;
int re0 = (++it)->u.operand;
out.printf("[%4d] new_regexp\t %s, ", location, registerName(r0).data());
if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps())
out.printf("%s", regexpName(re0, regexp(re0)).data());
else
out.printf("bad_regexp(%d)", re0);
break;
}
case op_mov: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] mov\t\t %s, %s", location, registerName(r0).data(), registerName(r1).data());
break;
}
case op_not: {
printUnaryOp(out, exec, location, it, "not");
break;
}
case op_eq: {
printBinaryOp(out, exec, location, it, "eq");
break;
}
case op_eq_null: {
printUnaryOp(out, exec, location, it, "eq_null");
break;
}
case op_neq: {
printBinaryOp(out, exec, location, it, "neq");
break;
}
case op_neq_null: {
printUnaryOp(out, exec, location, it, "neq_null");
break;
}
case op_stricteq: {
printBinaryOp(out, exec, location, it, "stricteq");
break;
}
case op_nstricteq: {
printBinaryOp(out, exec, location, it, "nstricteq");
break;
}
case op_less: {
printBinaryOp(out, exec, location, it, "less");
break;
}
case op_lesseq: {
printBinaryOp(out, exec, location, it, "lesseq");
break;
}
case op_greater: {
printBinaryOp(out, exec, location, it, "greater");
break;
}
case op_greatereq: {
printBinaryOp(out, exec, location, it, "greatereq");
break;
}
case op_inc: {
int r0 = (++it)->u.operand;
out.printf("[%4d] pre_inc\t\t %s", location, registerName(r0).data());
break;
}
case op_dec: {
int r0 = (++it)->u.operand;
out.printf("[%4d] pre_dec\t\t %s", location, registerName(r0).data());
break;
}
case op_to_number: {
printUnaryOp(out, exec, location, it, "to_number");
break;
}
case op_negate: {
printUnaryOp(out, exec, location, it, "negate");
break;
}
case op_add: {
printBinaryOp(out, exec, location, it, "add");
++it;
break;
}
case op_mul: {
printBinaryOp(out, exec, location, it, "mul");
++it;
break;
}
case op_div: {
printBinaryOp(out, exec, location, it, "div");
++it;
break;
}
case op_mod: {
printBinaryOp(out, exec, location, it, "mod");
break;
}
case op_sub: {
printBinaryOp(out, exec, location, it, "sub");
++it;
break;
}
case op_lshift: {
printBinaryOp(out, exec, location, it, "lshift");
break;
}
case op_rshift: {
printBinaryOp(out, exec, location, it, "rshift");
break;
}
case op_urshift: {
printBinaryOp(out, exec, location, it, "urshift");
break;
}
case op_bitand: {
printBinaryOp(out, exec, location, it, "bitand");
++it;
break;
}
case op_bitxor: {
printBinaryOp(out, exec, location, it, "bitxor");
++it;
break;
}
case op_bitor: {
printBinaryOp(out, exec, location, it, "bitor");
++it;
break;
}
case op_check_has_instance: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] check_has_instance\t\t %s, %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), offset, location + offset);
break;
}
case op_instanceof: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] instanceof\t\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
break;
}
case op_typeof: {
printUnaryOp(out, exec, location, it, "typeof");
break;
}
case op_is_undefined: {
printUnaryOp(out, exec, location, it, "is_undefined");
break;
}
case op_is_boolean: {
printUnaryOp(out, exec, location, it, "is_boolean");
break;
}
case op_is_number: {
printUnaryOp(out, exec, location, it, "is_number");
break;
}
case op_is_string: {
printUnaryOp(out, exec, location, it, "is_string");
break;
}
case op_is_object: {
printUnaryOp(out, exec, location, it, "is_object");
break;
}
case op_is_function: {
printUnaryOp(out, exec, location, it, "is_function");
break;
}
case op_in: {
printBinaryOp(out, exec, location, it, "in");
break;
}
case op_init_global_const_nop: {
out.printf("[%4d] init_global_const_nop\t", location);
it++;
it++;
it++;
it++;
break;
}
case op_init_global_const: {
WriteBarrier<Unknown>* registerPointer = (++it)->u.registerPointer;
int r0 = (++it)->u.operand;
out.printf("[%4d] init_global_const\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(r0).data());
it++;
it++;
break;
}
case op_get_by_id:
case op_get_by_id_out_of_line:
case op_get_by_id_self:
case op_get_by_id_proto:
case op_get_by_id_chain:
case op_get_by_id_getter_self:
case op_get_by_id_getter_proto:
case op_get_by_id_getter_chain:
case op_get_by_id_custom_self:
case op_get_by_id_custom_proto:
case op_get_by_id_custom_chain:
case op_get_by_id_generic:
case op_get_array_length:
case op_get_string_length: {
printGetByIdOp(out, exec, location, it);
printGetByIdCacheStatus(out, exec, location);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_arguments_length: {
printUnaryOp(out, exec, location, it, "get_arguments_length");
it++;
break;
}
case op_put_by_id: {
printPutByIdOp(out, exec, location, it, "put_by_id");
break;
}
case op_put_by_id_out_of_line: {
printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line");
break;
}
case op_put_by_id_replace: {
printPutByIdOp(out, exec, location, it, "put_by_id_replace");
break;
}
case op_put_by_id_transition: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition");
break;
}
case op_put_by_id_transition_direct: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct");
break;
}
case op_put_by_id_transition_direct_out_of_line: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line");
break;
}
case op_put_by_id_transition_normal: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal");
break;
}
case op_put_by_id_transition_normal_out_of_line: {
printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line");
break;
}
case op_put_by_id_generic: {
printPutByIdOp(out, exec, location, it, "put_by_id_generic");
break;
}
case op_put_getter_setter: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] put_getter_setter\t %s, %s, %s, %s", location, registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), registerName(r2).data());
break;
}
case op_del_by_id: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
out.printf("[%4d] del_by_id\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data());
break;
}
case op_get_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] get_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_argument_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] get_argument_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
++it;
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_get_by_pname: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
int r3 = (++it)->u.operand;
int r4 = (++it)->u.operand;
int r5 = (++it)->u.operand;
out.printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data(), registerName(r4).data(), registerName(r5).data());
break;
}
case op_put_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] put_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
dumpArrayProfiling(out, it, hasPrintedProfiling);
break;
}
case op_del_by_val: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int r2 = (++it)->u.operand;
out.printf("[%4d] del_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data());
break;
}
case op_put_by_index: {
int r0 = (++it)->u.operand;
unsigned n0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] put_by_index\t %s, %u, %s", location, registerName(r0).data(), n0, registerName(r1).data());
break;
}
case op_jmp: {
int offset = (++it)->u.operand;
out.printf("[%4d] jmp\t\t %d(->%d)", location, offset, location + offset);
break;
}
case op_jtrue: {
printConditionalJump(out, exec, begin, it, location, "jtrue");
break;
}
case op_jfalse: {
printConditionalJump(out, exec, begin, it, location, "jfalse");
break;
}
case op_jeq_null: {
printConditionalJump(out, exec, begin, it, location, "jeq_null");
break;
}
case op_jneq_null: {
printConditionalJump(out, exec, begin, it, location, "jneq_null");
break;
}
case op_jneq_ptr: {
int r0 = (++it)->u.operand;
Special::Pointer pointer = (++it)->u.specialPointer;
int offset = (++it)->u.operand;
out.printf("[%4d] jneq_ptr\t\t %s, %d (%p), %d(->%d)", location, registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset);
break;
}
case op_jless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jless\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jgreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jgreater\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jgreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jgreatereq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jnless: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jnless\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jnlesseq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jngreater: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jngreater\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_jngreatereq: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int offset = (++it)->u.operand;
out.printf("[%4d] jngreatereq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset);
break;
}
case op_loop_hint: {
out.printf("[%4d] loop_hint", location);
break;
}
case op_switch_imm: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
out.printf("[%4d] switch_imm\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data());
break;
}
case op_switch_char: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
out.printf("[%4d] switch_char\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data());
break;
}
case op_switch_string: {
int tableIndex = (++it)->u.operand;
int defaultTarget = (++it)->u.operand;
int scrutineeRegister = (++it)->u.operand;
out.printf("[%4d] switch_string\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data());
break;
}
case op_new_func: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
int shouldCheck = (++it)->u.operand;
out.printf("[%4d] new_func\t\t %s, f%d, %s", location, registerName(r0).data(), f0, shouldCheck ? "<Checked>" : "<Unchecked>");
break;
}
case op_new_func_exp: {
int r0 = (++it)->u.operand;
int f0 = (++it)->u.operand;
out.printf("[%4d] new_func_exp\t %s, f%d", location, registerName(r0).data(), f0);
break;
}
case op_call: {
printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling);
break;
}
case op_call_eval: {
printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling);
break;
}
case op_call_varargs: {
int result = (++it)->u.operand;
int callee = (++it)->u.operand;
int thisValue = (++it)->u.operand;
int arguments = (++it)->u.operand;
int firstFreeRegister = (++it)->u.operand;
++it;
out.printf("[%4d] call_varargs\t %s, %s, %s, %s, %d", location, registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister);
dumpValueProfiling(out, it, hasPrintedProfiling);
break;
}
case op_tear_off_activation: {
int r0 = (++it)->u.operand;
out.printf("[%4d] tear_off_activation\t %s", location, registerName(r0).data());
break;
}
case op_tear_off_arguments: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] tear_off_arguments %s, %s", location, registerName(r0).data(), registerName(r1).data());
break;
}
case op_ret: {
int r0 = (++it)->u.operand;
out.printf("[%4d] ret\t\t %s", location, registerName(r0).data());
break;
}
case op_ret_object_or_this: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] constructor_ret\t\t %s %s", location, registerName(r0).data(), registerName(r1).data());
break;
}
case op_construct: {
printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling);
break;
}
case op_strcat: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int count = (++it)->u.operand;
out.printf("[%4d] strcat\t\t %s, %s, %d", location, registerName(r0).data(), registerName(r1).data(), count);
break;
}
case op_to_primitive: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
out.printf("[%4d] to_primitive\t %s, %s", location, registerName(r0).data(), registerName(r1).data());
break;
}
case op_get_pnames: {
int r0 = it[1].u.operand;
int r1 = it[2].u.operand;
int r2 = it[3].u.operand;
int r3 = it[4].u.operand;
int offset = it[5].u.operand;
out.printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data(), offset, location + offset);
it += OPCODE_LENGTH(op_get_pnames) - 1;
break;
}
case op_next_pname: {
int dest = it[1].u.operand;
int base = it[2].u.operand;
int i = it[3].u.operand;
int size = it[4].u.operand;
int iter = it[5].u.operand;
int offset = it[6].u.operand;
out.printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)", location, registerName(dest).data(), registerName(base).data(), registerName(i).data(), registerName(size).data(), registerName(iter).data(), offset, location + offset);
it += OPCODE_LENGTH(op_next_pname) - 1;
break;
}
case op_push_with_scope: {
int r0 = (++it)->u.operand;
out.printf("[%4d] push_with_scope\t %s", location, registerName(r0).data());
break;
}
case op_pop_scope: {
out.printf("[%4d] pop_scope", location);
break;
}
case op_push_name_scope: {
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
unsigned attributes = (++it)->u.operand;
out.printf("[%4d] push_name_scope \t%s, %s, %u", location, idName(id0, identifier(id0)).data(), registerName(r1).data(), attributes);
break;
}
case op_catch: {
int r0 = (++it)->u.operand;
out.printf("[%4d] catch\t\t %s", location, registerName(r0).data());
break;
}
case op_throw: {
int r0 = (++it)->u.operand;
out.printf("[%4d] throw\t\t %s", location, registerName(r0).data());
break;
}
case op_throw_static_error: {
int k0 = (++it)->u.operand;
int k1 = (++it)->u.operand;
out.printf("[%4d] throw_static_error\t %s, %s", location, constantName(k0, getConstant(k0)).data(), k1 ? "true" : "false");
break;
}
case op_debug: {
int debugHookID = (++it)->u.operand;
int firstLine = (++it)->u.operand;
int lastLine = (++it)->u.operand;
int column = (++it)->u.operand;
out.printf("[%4d] debug\t\t %s, %d, %d, %d", location, debugHookName(debugHookID), firstLine, lastLine, column);
break;
}
case op_profile_will_call: {
int function = (++it)->u.operand;
out.printf("[%4d] profile_will_call %s", location, registerName(function).data());
break;
}
case op_profile_did_call: {
int function = (++it)->u.operand;
out.printf("[%4d] profile_did_call\t %s", location, registerName(function).data());
break;
}
case op_end: {
int r0 = (++it)->u.operand;
out.printf("[%4d] end\t\t %s", location, registerName(r0).data());
break;
}
case op_resolve_scope: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int resolveModeAndType = (++it)->u.operand;
++it; // depth
out.printf("[%4d] resolve_scope\t %s, %s, %d", location, registerName(r0).data(), idName(id0, identifier(id0)).data(), resolveModeAndType);
break;
}
case op_get_from_scope: {
int r0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int resolveModeAndType = (++it)->u.operand;
++it; // Structure
++it; // Operand
++it; // Skip value profile.
out.printf("[%4d] get_from_scope\t %s, %s, %s, %d", location, registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data(), resolveModeAndType);
break;
}
case op_put_to_scope: {
int r0 = (++it)->u.operand;
int id0 = (++it)->u.operand;
int r1 = (++it)->u.operand;
int resolveModeAndType = (++it)->u.operand;
++it; // Structure
++it; // Operand
out.printf("[%4d] put_to_scope\t %s, %s, %s, %d", location, registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), resolveModeAndType);
break;
}
#if ENABLE(LLINT_C_LOOP)
default:
RELEASE_ASSERT_NOT_REACHED();
#endif
}
#if ENABLE(VALUE_PROFILER)
dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling);
#endif
#if ENABLE(DFG_JIT)
Vector<DFG::FrequentExitSite> exitSites = exitProfile().exitSitesFor(location);
if (!exitSites.isEmpty()) {
out.print(" !! frequent exits: ");
CommaPrinter comma;
for (unsigned i = 0; i < exitSites.size(); ++i)
out.print(comma, exitSites[i].kind());
}
#else // ENABLE(DFG_JIT)
UNUSED_PARAM(location);
#endif // ENABLE(DFG_JIT)
out.print("\n");
}
void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset)
{
ExecState* exec = m_globalObject->globalExec();
const Instruction* it = instructions().begin() + bytecodeOffset;
dumpBytecode(out, exec, instructions().begin(), it);
}
#if DUMP_CODE_BLOCK_STATISTICS
static HashSet<CodeBlock*> liveCodeBlockSet;
#endif
#define FOR_EACH_MEMBER_VECTOR(macro) \
macro(instructions) \
macro(structureStubInfos) \
macro(callLinkInfos) \
macro(linkedCallerList) \
macro(identifiers) \
macro(functionExpressions) \
macro(constantRegisters)
#define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \
macro(regexps) \
macro(functions) \
macro(exceptionHandlers) \
macro(switchJumpTables) \
macro(stringSwitchJumpTables) \
macro(evalCodeCache) \
macro(expressionInfo) \
macro(lineInfo) \
macro(callReturnIndexVector)
template<typename T>
static size_t sizeInBytes(const Vector<T>& vector)
{
return vector.capacity() * sizeof(T);
}
void CodeBlock::dumpStatistics()
{
#if DUMP_CODE_BLOCK_STATISTICS
#define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0;
FOR_EACH_MEMBER_VECTOR(DEFINE_VARS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS)
#undef DEFINE_VARS
// Non-vector data members
size_t evalCodeCacheIsNotEmpty = 0;
size_t symbolTableIsNotEmpty = 0;
size_t symbolTableTotalSize = 0;
size_t hasRareData = 0;
size_t isFunctionCode = 0;
size_t isGlobalCode = 0;
size_t isEvalCode = 0;
HashSet<CodeBlock*>::const_iterator end = liveCodeBlockSet.end();
for (HashSet<CodeBlock*>::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) {
CodeBlock* codeBlock = *it;
#define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); }
FOR_EACH_MEMBER_VECTOR(GET_STATS)
#undef GET_STATS
if (codeBlock->symbolTable() && !codeBlock->symbolTable()->isEmpty()) {
symbolTableIsNotEmpty++;
symbolTableTotalSize += (codeBlock->symbolTable()->capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType)));
}
if (codeBlock->m_rareData) {
hasRareData++;
#define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); }
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS)
#undef GET_STATS
if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty())
evalCodeCacheIsNotEmpty++;
}
switch (codeBlock->codeType()) {
case FunctionCode:
++isFunctionCode;
break;
case GlobalCode:
++isGlobalCode;
break;
case EvalCode:
++isEvalCode;
break;
}
}
size_t totalSize = 0;
#define GET_TOTAL_SIZE(name) totalSize += name##TotalSize;
FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE)
#undef GET_TOTAL_SIZE
totalSize += symbolTableTotalSize;
totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock));
dataLogF("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size());
dataLogF("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock));
dataLogF("Size of all CodeBlocks: %zu\n", totalSize);
dataLogF("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size());
dataLogF("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size());
dataLogF("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size());
dataLogF("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size());
dataLogF("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size());
#define PRINT_STATS(name) dataLogF("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); dataLogF("Size of all " #name ": %zu\n", name##TotalSize);
FOR_EACH_MEMBER_VECTOR(PRINT_STATS)
FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS)
#undef PRINT_STATS
dataLogF("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty);
dataLogF("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty);
dataLogF("Size of all symbolTables: %zu\n", symbolTableTotalSize);
#else
dataLogF("Dumping CodeBlock statistics is not enabled.\n");
#endif
}
CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other)
: m_globalObject(other.m_globalObject)
, m_heap(other.m_heap)
, m_numCalleeRegisters(other.m_numCalleeRegisters)
, m_numVars(other.m_numVars)
, m_isConstructor(other.m_isConstructor)
, m_shouldAlwaysBeInlined(true)
, m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get())
, m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get())
, m_vm(other.m_vm)
, m_instructions(other.m_instructions)
, m_thisRegister(other.m_thisRegister)
, m_argumentsRegister(other.m_argumentsRegister)
, m_activationRegister(other.m_activationRegister)
, m_isStrictMode(other.m_isStrictMode)
, m_needsActivation(other.m_needsActivation)
, m_source(other.m_source)
, m_sourceOffset(other.m_sourceOffset)
, m_firstLineColumnOffset(other.m_firstLineColumnOffset)
, m_codeType(other.m_codeType)
, m_additionalIdentifiers(other.m_additionalIdentifiers)
, m_constantRegisters(other.m_constantRegisters)
, m_functionDecls(other.m_functionDecls)
, m_functionExprs(other.m_functionExprs)
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
, m_hash(other.m_hash)
#if ENABLE(JIT)
, m_capabilityLevelState(DFG::CapabilityLevelNotSet)
#endif
{
setNumParameters(other.numParameters());
optimizeAfterWarmUp();
jitAfterWarmUp();
if (other.m_rareData) {
createRareDataIfNecessary();
m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers;
m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers;
m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables;
m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables;
}
}
CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset)
: m_globalObject(scope->globalObject()->vm(), ownerExecutable, scope->globalObject())
, m_heap(&m_globalObject->vm().heap)
, m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters)
, m_numVars(unlinkedCodeBlock->m_numVars)
, m_isConstructor(unlinkedCodeBlock->isConstructor())
, m_shouldAlwaysBeInlined(true)
, m_unlinkedCode(m_globalObject->vm(), ownerExecutable, unlinkedCodeBlock)
, m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable)
, m_vm(unlinkedCodeBlock->vm())
, m_thisRegister(unlinkedCodeBlock->thisRegister())
, m_argumentsRegister(unlinkedCodeBlock->argumentsRegister())
, m_activationRegister(unlinkedCodeBlock->activationRegister())
, m_isStrictMode(unlinkedCodeBlock->isStrictMode())
, m_needsActivation(unlinkedCodeBlock->needsFullScopeChain() && unlinkedCodeBlock->codeType() == FunctionCode)
, m_source(sourceProvider)
, m_sourceOffset(sourceOffset)
, m_firstLineColumnOffset(firstLineColumnOffset)
, m_codeType(unlinkedCodeBlock->codeType())
, m_osrExitCounter(0)
, m_optimizationDelayCounter(0)
, m_reoptimizationRetryCounter(0)
#if ENABLE(JIT)
, m_capabilityLevelState(DFG::CapabilityLevelNotSet)
#endif
{
m_vm->startedCompiling(this);
ASSERT(m_source);
setNumParameters(unlinkedCodeBlock->numParameters());
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.add(this);
#endif
setConstantRegisters(unlinkedCodeBlock->constantRegisters());
if (unlinkedCodeBlock->usesGlobalObject())
m_constantRegisters[unlinkedCodeBlock->globalObjectRegister()].set(*m_vm, ownerExecutable, m_globalObject.get());
m_functionDecls.grow(unlinkedCodeBlock->numberOfFunctionDecls());
for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) {
UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i);
unsigned lineCount = unlinkedExecutable->lineCount();
unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset();
unsigned startColumn = unlinkedExecutable->functionStartColumn();
startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn());
unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset();
unsigned sourceLength = unlinkedExecutable->sourceLength();
SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn);
FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn);
m_functionDecls[i].set(*m_vm, ownerExecutable, executable);
}
m_functionExprs.grow(unlinkedCodeBlock->numberOfFunctionExprs());
for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) {
UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i);
unsigned lineCount = unlinkedExecutable->lineCount();
unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset();
unsigned startColumn = unlinkedExecutable->functionStartColumn();
startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn());
unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset();
unsigned sourceLength = unlinkedExecutable->sourceLength();
SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn);
FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn);
m_functionExprs[i].set(*m_vm, ownerExecutable, executable);
}
if (unlinkedCodeBlock->hasRareData()) {
createRareDataIfNecessary();
if (size_t count = unlinkedCodeBlock->constantBufferCount()) {
m_rareData->m_constantBuffers.grow(count);
for (size_t i = 0; i < count; i++) {
const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i);
m_rareData->m_constantBuffers[i] = buffer;
}
}
if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) {
m_rareData->m_exceptionHandlers.grow(count);
size_t nonLocalScopeDepth = scope->depth();
for (size_t i = 0; i < count; i++) {
const UnlinkedHandlerInfo& handler = unlinkedCodeBlock->exceptionHandler(i);
m_rareData->m_exceptionHandlers[i].start = handler.start;
m_rareData->m_exceptionHandlers[i].end = handler.end;
m_rareData->m_exceptionHandlers[i].target = handler.target;
m_rareData->m_exceptionHandlers[i].scopeDepth = nonLocalScopeDepth + handler.scopeDepth;
#if ENABLE(JIT) && ENABLE(LLINT)
m_rareData->m_exceptionHandlers[i].nativeCode = CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(llint_op_catch)));
#endif
}
}
if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) {
m_rareData->m_stringSwitchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin();
UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end();
for (; ptr != end; ++ptr) {
OffsetLocation offset;
offset.branchOffset = ptr->value;
m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset);
}
}
}
if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) {
m_rareData->m_switchJumpTables.grow(count);
for (size_t i = 0; i < count; i++) {
UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i);
SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i];
destTable.branchOffsets = sourceTable.branchOffsets;
destTable.min = sourceTable.min;
}
}
}
// Allocate metadata buffers for the bytecode
#if ENABLE(LLINT)
if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos())
m_llintCallLinkInfos.grow(size);
#endif
#if ENABLE(DFG_JIT)
if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles())
m_arrayProfiles.grow(size);
if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles())
m_arrayAllocationProfiles.grow(size);
if (size_t size = unlinkedCodeBlock->numberOfValueProfiles())
m_valueProfiles.grow(size);
#endif
if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles())
m_objectAllocationProfiles.grow(size);
// Copy and translate the UnlinkedInstructions
size_t instructionCount = unlinkedCodeBlock->instructions().size();
UnlinkedInstruction* pc = unlinkedCodeBlock->instructions().data();
Vector<Instruction, 0, UnsafeVectorOverflow> instructions(instructionCount);
for (size_t i = 0; i < unlinkedCodeBlock->instructions().size(); ) {
unsigned opLength = opcodeLength(pc[i].u.opcode);
instructions[i] = vm()->interpreter->getOpcode(pc[i].u.opcode);
for (size_t j = 1; j < opLength; ++j) {
if (sizeof(int32_t) != sizeof(intptr_t))
instructions[i + j].u.pointer = 0;
instructions[i + j].u.operand = pc[i + j].u.operand;
}
switch (pc[i].u.opcode) {
#if ENABLE(DFG_JIT)
case op_get_by_val:
case op_get_argument_by_val: {
int arrayProfileIndex = pc[i + opLength - 2].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex];
// fallthrough
}
case op_to_this:
case op_get_by_id:
case op_call_varargs:
case op_get_callee: {
ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
break;
}
case op_put_by_val: {
int arrayProfileIndex = pc[i + opLength - 1].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex];
break;
}
case op_new_array:
case op_new_array_buffer:
case op_new_array_with_size: {
int arrayAllocationProfileIndex = pc[i + opLength - 1].u.operand;
instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex];
break;
}
#endif
case op_new_object: {
int objectAllocationProfileIndex = pc[i + opLength - 1].u.operand;
ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex];
int inferredInlineCapacity = pc[i + opLength - 2].u.operand;
instructions[i + opLength - 1] = objectAllocationProfile;
objectAllocationProfile->initialize(*vm(),
m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity);
break;
}
case op_call:
case op_call_eval: {
#if ENABLE(DFG_JIT)
ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
int arrayProfileIndex = pc[i + opLength - 2].u.operand;
m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i);
instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex];
#endif
#if ENABLE(LLINT)
instructions[i + 5] = &m_llintCallLinkInfos[pc[i + 5].u.operand];
#endif
break;
}
case op_construct: {
#if ENABLE(LLINT)
instructions[i + 5] = &m_llintCallLinkInfos[pc[i + 5].u.operand];
#endif
#if ENABLE(DFG_JIT)
ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
#endif
break;
}
case op_get_by_id_out_of_line:
case op_get_by_id_self:
case op_get_by_id_proto:
case op_get_by_id_chain:
case op_get_by_id_getter_self:
case op_get_by_id_getter_proto:
case op_get_by_id_getter_chain:
case op_get_by_id_custom_self:
case op_get_by_id_custom_proto:
case op_get_by_id_custom_chain:
case op_get_by_id_generic:
case op_get_array_length:
case op_get_string_length:
CRASH();
case op_init_global_const_nop: {
ASSERT(codeType() == GlobalCode);
Identifier ident = identifier(pc[i + 4].u.operand);
SymbolTableEntry entry = m_globalObject->symbolTable()->get(ident.impl());
if (entry.isNull())
break;
// It's likely that we'll write to this var, so notify now and avoid the overhead of doing so at runtime.
entry.notifyWrite();
instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const);
instructions[i + 1] = &m_globalObject->registerAt(entry.getIndex());
break;
}
case op_resolve_scope: {
const Identifier& ident = identifier(pc[i + 2].u.operand);
ResolveType type = static_cast<ResolveType>(pc[i + 3].u.operand);
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Get, type);
instructions[i + 3].u.operand = op.type;
instructions[i + 4].u.operand = op.depth;
break;
}
case op_get_from_scope: {
#if ENABLE(VALUE_PROFILER)
ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand];
ASSERT(profile->m_bytecodeOffset == -1);
profile->m_bytecodeOffset = i;
instructions[i + opLength - 1] = profile;
#endif
// get_from_scope dst, scope, id, ResolveModeAndType, Structure, Operand
const Identifier& ident = identifier(pc[i + 3].u.operand);
ResolveModeAndType modeAndType = ResolveModeAndType(pc[i + 4].u.operand);
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Get, modeAndType.type());
instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand();
if (op.structure)
instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure);
instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand);
break;
}
case op_put_to_scope: {
// put_to_scope scope, id, value, ResolveModeAndType, Structure, Operand
const Identifier& ident = identifier(pc[i + 2].u.operand);
ResolveModeAndType modeAndType = ResolveModeAndType(pc[i + 4].u.operand);
ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Put, modeAndType.type());
instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand();
if (op.structure)
instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure);
instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand);
break;
}
case op_debug: {
instructions[i + 4] = columnNumberForBytecodeOffset(i);
break;
}
default:
break;
}
i += opLength;
}
m_instructions = WTF::RefCountedArray<Instruction>(instructions);
// Set optimization thresholds only after m_instructions is initialized, since these
// rely on the instruction count (and are in theory permitted to also inspect the
// instruction stream to more accurate assess the cost of tier-up).
optimizeAfterWarmUp();
jitAfterWarmUp();
// If the concurrent thread will want the code block's hash, then compute it here
// synchronously.
if (Options::showDisassembly()
|| Options::showDFGDisassembly()
|| Options::dumpBytecodeAtDFGTime()
|| Options::verboseCompilation()
|| Options::logCompilationChanges()
|| Options::validateGraph()
|| Options::validateGraphAtEachPhase()
|| Options::verboseOSR()
|| Options::verboseCompilationQueue()
|| Options::reportCompileTimes()
|| Options::verboseCFA())
hash();
if (Options::dumpGeneratedBytecodes())
dumpBytecode();
m_vm->finishedCompiling(this);
}
CodeBlock::~CodeBlock()
{
if (m_vm->m_perBytecodeProfiler)
m_vm->m_perBytecodeProfiler->notifyDestruction(this);
#if ENABLE(DFG_JIT)
// Remove myself from the set of DFG code blocks. Note that I may not be in this set
// (because I'm not a DFG code block), in which case this is a no-op anyway.
m_vm->heap.m_dfgCodeBlocks.m_set.remove(this);
#endif
#if ENABLE(VERBOSE_VALUE_PROFILE)
dumpValueProfiles();
#endif
#if ENABLE(LLINT)
while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
m_incomingLLIntCalls.begin()->remove();
#endif // ENABLE(LLINT)
#if ENABLE(JIT)
// We may be destroyed before any CodeBlocks that refer to us are destroyed.
// Consider that two CodeBlocks become unreachable at the same time. There
// is no guarantee about the order in which the CodeBlocks are destroyed.
// So, if we don't remove incoming calls, and get destroyed before the
// CodeBlock(s) that have calls into us, then the CallLinkInfo vector's
// destructor will try to remove nodes from our (no longer valid) linked list.
while (m_incomingCalls.begin() != m_incomingCalls.end())
m_incomingCalls.begin()->remove();
// Note that our outgoing calls will be removed from other CodeBlocks'
// m_incomingCalls linked lists through the execution of the ~CallLinkInfo
// destructors.
for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i)
m_structureStubInfos[i].deref();
#endif // ENABLE(JIT)
#if DUMP_CODE_BLOCK_STATISTICS
liveCodeBlockSet.remove(this);
#endif
}
void CodeBlock::setNumParameters(int newValue)
{
m_numParameters = newValue;
#if ENABLE(VALUE_PROFILER)
m_argumentValueProfiles.resizeToFit(newValue);
#endif
}
void EvalCodeCache::visitAggregate(SlotVisitor& visitor)
{
EvalCacheMap::iterator end = m_cacheMap.end();
for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr)
visitor.append(&ptr->value);
}
void CodeBlock::visitAggregate(SlotVisitor& visitor)
{
#if ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT)
if (JITCode::isOptimizingJIT(jitType())) {
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
// I may be asked to scan myself more than once, and it may even happen concurrently.
// To this end, use a CAS loop to check if I've been called already. Only one thread
// may proceed past this point - whichever one wins the CAS race.
unsigned oldValue;
do {
oldValue = dfgCommon->visitAggregateHasBeenCalled;
if (oldValue) {
// Looks like someone else won! Return immediately to ensure that we don't
// trace the same CodeBlock concurrently. Doing so is hazardous since we will
// be mutating the state of ValueProfiles, which contain JSValues, which can
// have word-tearing on 32-bit, leading to awesome timing-dependent crashes
// that are nearly impossible to track down.
// Also note that it must be safe to return early as soon as we see the
// value true (well, (unsigned)1), since once a GC thread is in this method
// and has won the CAS race (i.e. was responsible for setting the value true)
// it will definitely complete the rest of this method before declaring
// termination.
return;
}
} while (!WTF::weakCompareAndSwap(&dfgCommon->visitAggregateHasBeenCalled, 0, 1));
}
#endif // ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT)
if (!!m_alternative)
m_alternative->visitAggregate(visitor);
visitor.append(&m_unlinkedCode);
// There are three things that may use unconditional finalizers: lazy bytecode freeing,
// inline cache clearing, and jettisoning. The probability of us wanting to do at
// least one of those things is probably quite close to 1. So we add one no matter what
// and when it runs, it figures out whether it has any work to do.
visitor.addUnconditionalFinalizer(this);
// There are two things that we use weak reference harvesters for: DFG fixpoint for
// jettisoning, and trying to find structures that would be live based on some
// inline cache. So it makes sense to register them regardless.
visitor.addWeakReferenceHarvester(this);
m_allTransitionsHaveBeenMarked = false;
if (shouldImmediatelyAssumeLivenessDuringScan()) {
// This code block is live, so scan all references strongly and return.
stronglyVisitStrongReferences(visitor);
stronglyVisitWeakReferences(visitor);
propagateTransitions(visitor);
return;
}
#if ENABLE(DFG_JIT)
// We get here if we're live in the sense that our owner executable is live,
// but we're not yet live for sure in another sense: we may yet decide that this
// code block should be jettisoned based on its outgoing weak references being
// stale. Set a flag to indicate that we're still assuming that we're dead, and
// perform one round of determining if we're live. The GC may determine, based on
// either us marking additional objects, or by other objects being marked for
// other reasons, that this iteration should run again; it will notify us of this
// decision by calling harvestWeakReferences().
m_jitCode->dfgCommon()->livenessHasBeenProved = false;
propagateTransitions(visitor);
determineLiveness(visitor);
#else // ENABLE(DFG_JIT)
RELEASE_ASSERT_NOT_REACHED();
#endif // ENABLE(DFG_JIT)
}
void CodeBlock::propagateTransitions(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
if (m_allTransitionsHaveBeenMarked)
return;
bool allAreMarkedSoFar = true;
#if ENABLE(LLINT)
Interpreter* interpreter = m_vm->interpreter;
if (jitType() == JITCode::InterpreterThunk) {
const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions();
for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) {
Instruction* instruction = &instructions()[propertyAccessInstructions[i]];
switch (interpreter->getOpcodeID(instruction[0].u.opcode)) {
case op_put_by_id_transition_direct:
case op_put_by_id_transition_normal:
case op_put_by_id_transition_direct_out_of_line:
case op_put_by_id_transition_normal_out_of_line: {
if (Heap::isMarked(instruction[4].u.structure.get()))
visitor.append(&instruction[6].u.structure);
else
allAreMarkedSoFar = false;
break;
}
default:
break;
}
}
}
#endif // ENABLE(LLINT)
#if ENABLE(JIT)
if (JITCode::isJIT(jitType())) {
for (unsigned i = 0; i < m_structureStubInfos.size(); ++i) {
StructureStubInfo& stubInfo = m_structureStubInfos[i];
switch (stubInfo.accessType) {
case access_put_by_id_transition_normal:
case access_put_by_id_transition_direct: {
JSCell* origin = stubInfo.codeOrigin.codeOriginOwner();
if ((!origin || Heap::isMarked(origin))
&& Heap::isMarked(stubInfo.u.putByIdTransition.previousStructure.get()))
visitor.append(&stubInfo.u.putByIdTransition.structure);
else
allAreMarkedSoFar = false;
break;
}
case access_put_by_id_list: {
PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list;
JSCell* origin = stubInfo.codeOrigin.codeOriginOwner();
if (origin && !Heap::isMarked(origin)) {
allAreMarkedSoFar = false;
break;
}
for (unsigned j = list->size(); j--;) {
PutByIdAccess& access = list->m_list[j];
if (!access.isTransition())
continue;
if (Heap::isMarked(access.oldStructure()))
visitor.append(&access.m_newStructure);
else
allAreMarkedSoFar = false;
}
break;
}
default:
break;
}
}
}
#endif // ENABLE(JIT)
#if ENABLE(DFG_JIT)
if (JITCode::isOptimizingJIT(jitType())) {
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) {
if ((!dfgCommon->transitions[i].m_codeOrigin
|| Heap::isMarked(dfgCommon->transitions[i].m_codeOrigin.get()))
&& Heap::isMarked(dfgCommon->transitions[i].m_from.get())) {
// If the following three things are live, then the target of the
// transition is also live:
// - This code block. We know it's live already because otherwise
// we wouldn't be scanning ourselves.
// - The code origin of the transition. Transitions may arise from
// code that was inlined. They are not relevant if the user's
// object that is required for the inlinee to run is no longer
// live.
// - The source of the transition. The transition checks if some
// heap location holds the source, and if so, stores the target.
// Hence the source must be live for the transition to be live.
visitor.append(&dfgCommon->transitions[i].m_to);
} else
allAreMarkedSoFar = false;
}
}
#endif // ENABLE(DFG_JIT)
if (allAreMarkedSoFar)
m_allTransitionsHaveBeenMarked = true;
}
void CodeBlock::determineLiveness(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
if (shouldImmediatelyAssumeLivenessDuringScan())
return;
#if ENABLE(DFG_JIT)
// Check if we have any remaining work to do.
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
if (dfgCommon->livenessHasBeenProved)
return;
// Now check all of our weak references. If all of them are live, then we
// have proved liveness and so we scan our strong references. If at end of
// GC we still have not proved liveness, then this code block is toast.
bool allAreLiveSoFar = true;
for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) {
if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) {
allAreLiveSoFar = false;
break;
}
}
// If some weak references are dead, then this fixpoint iteration was
// unsuccessful.
if (!allAreLiveSoFar)
return;
// All weak references are live. Record this information so we don't
// come back here again, and scan the strong references.
dfgCommon->livenessHasBeenProved = true;
stronglyVisitStrongReferences(visitor);
#endif // ENABLE(DFG_JIT)
}
void CodeBlock::visitWeakReferences(SlotVisitor& visitor)
{
propagateTransitions(visitor);
determineLiveness(visitor);
}
void CodeBlock::finalizeUnconditionally()
{
#if ENABLE(LLINT)
Interpreter* interpreter = m_vm->interpreter;
if (JITCode::couldBeInterpreted(jitType())) {
const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions();
for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) {
Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]];
switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) {
case op_get_by_id:
case op_get_by_id_out_of_line:
case op_put_by_id:
case op_put_by_id_out_of_line:
if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get()))
break;
if (Options::verboseOSR())
dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get());
curInstruction[4].u.structure.clear();
curInstruction[5].u.operand = 0;
break;
case op_put_by_id_transition_direct:
case op_put_by_id_transition_normal:
case op_put_by_id_transition_direct_out_of_line:
case op_put_by_id_transition_normal_out_of_line:
if (Heap::isMarked(curInstruction[4].u.structure.get())
&& Heap::isMarked(curInstruction[6].u.structure.get())
&& Heap::isMarked(curInstruction[7].u.structureChain.get()))
break;
if (Options::verboseOSR()) {
dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n",
curInstruction[4].u.structure.get(),
curInstruction[6].u.structure.get(),
curInstruction[7].u.structureChain.get());
}
curInstruction[4].u.structure.clear();
curInstruction[6].u.structure.clear();
curInstruction[7].u.structureChain.clear();
curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id);
break;
case op_get_array_length:
break;
case op_get_from_scope:
case op_put_to_scope: {
WriteBarrierBase<Structure>& structure = curInstruction[5].u.structure;
if (!structure || Heap::isMarked(structure.get()))
break;
if (Options::verboseOSR())
dataLogF("Clearing LLInt scope access with structure %p.\n", structure.get());
structure.clear();
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) {
if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) {
if (Options::verboseOSR())
dataLog("Clearing LLInt call from ", *this, "\n");
m_llintCallLinkInfos[i].unlink();
}
if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get()))
m_llintCallLinkInfos[i].lastSeenCallee.clear();
}
}
#endif // ENABLE(LLINT)
#if ENABLE(DFG_JIT)
// Check if we're not live. If we are, then jettison.
if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_jitCode->dfgCommon()->livenessHasBeenProved)) {
if (Options::verboseOSR())
dataLog(*this, " has dead weak references, jettisoning during GC.\n");
if (DFG::shouldShowDisassembly()) {
dataLog(*this, " will be jettisoned because of the following dead references:\n");
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) {
DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i];
JSCell* origin = transition.m_codeOrigin.get();
JSCell* from = transition.m_from.get();
JSCell* to = transition.m_to.get();
if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from))
continue;
dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n");
}
for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) {
JSCell* weak = dfgCommon->weakReferences[i].get();
if (Heap::isMarked(weak))
continue;
dataLog(" Weak reference ", RawPointer(weak), ".\n");
}
}
jettison();
return;
}
#endif // ENABLE(DFG_JIT)
#if ENABLE(JIT)
// Handle inline caches.
if (!!jitCode()) {
RepatchBuffer repatchBuffer(this);
for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) {
if (callLinkInfo(i).isLinked()) {
if (ClosureCallStubRoutine* stub = callLinkInfo(i).stub.get()) {
if (!Heap::isMarked(stub->structure())
|| !Heap::isMarked(stub->executable())) {
if (Options::verboseOSR()) {
dataLog(
"Clearing closure call from ", *this, " to ",
stub->executable()->hashFor(callLinkInfo(i).specializationKind()),
", stub routine ", RawPointer(stub), ".\n");
}
callLinkInfo(i).unlink(*m_vm, repatchBuffer);
}
} else if (!Heap::isMarked(callLinkInfo(i).callee.get())) {
if (Options::verboseOSR()) {
dataLog(
"Clearing call from ", *this, " to ",
RawPointer(callLinkInfo(i).callee.get()), " (",
callLinkInfo(i).callee.get()->executable()->hashFor(
callLinkInfo(i).specializationKind()),
").\n");
}
callLinkInfo(i).unlink(*m_vm, repatchBuffer);
}
}
if (!!callLinkInfo(i).lastSeenCallee
&& !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get()))
callLinkInfo(i).lastSeenCallee.clear();
}
for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) {
StructureStubInfo& stubInfo = m_structureStubInfos[i];
if (stubInfo.visitWeakReferences())
continue;
resetStubDuringGCInternal(repatchBuffer, stubInfo);
}
}
#endif
}
#if ENABLE(JIT)
void CodeBlock::resetStub(StructureStubInfo& stubInfo)
{
if (stubInfo.accessType == access_unset)
return;
RepatchBuffer repatchBuffer(this);
resetStubInternal(repatchBuffer, stubInfo);
}
void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo)
{
AccessType accessType = static_cast<AccessType>(stubInfo.accessType);
if (Options::verboseOSR()) {
// This can be called from GC destructor calls, so we don't try to do a full dump
// of the CodeBlock.
dataLog("Clearing structure cache (kind ", static_cast<int>(stubInfo.accessType), ") in ", RawPointer(this), ".\n");
}
switch (jitType()) {
case JITCode::BaselineJIT:
if (isGetByIdAccess(accessType))
JIT::resetPatchGetById(repatchBuffer, &stubInfo);
else {
RELEASE_ASSERT(isPutByIdAccess(accessType));
JIT::resetPatchPutById(repatchBuffer, &stubInfo);
}
break;
case JITCode::DFGJIT:
if (isGetByIdAccess(accessType))
DFG::dfgResetGetByID(repatchBuffer, stubInfo);
else if (isPutByIdAccess(accessType))
DFG::dfgResetPutByID(repatchBuffer, stubInfo);
else {
RELEASE_ASSERT(isInAccess(accessType));
DFG::dfgResetIn(repatchBuffer, stubInfo);
}
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
stubInfo.reset();
}
void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo)
{
resetStubInternal(repatchBuffer, stubInfo);
stubInfo.resetByGC = true;
}
#endif
void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor)
{
visitor.append(&m_globalObject);
visitor.append(&m_ownerExecutable);
visitor.append(&m_unlinkedCode);
if (m_rareData)
m_rareData->m_evalCodeCache.visitAggregate(visitor);
visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size());
for (size_t i = 0; i < m_functionExprs.size(); ++i)
visitor.append(&m_functionExprs[i]);
for (size_t i = 0; i < m_functionDecls.size(); ++i)
visitor.append(&m_functionDecls[i]);
for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i)
m_objectAllocationProfiles[i].visitAggregate(visitor);
updateAllPredictions(Collection);
}
void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor)
{
UNUSED_PARAM(visitor);
#if ENABLE(DFG_JIT)
if (!JITCode::isOptimizingJIT(jitType()))
return;
DFG::CommonData* dfgCommon = m_jitCode->dfgCommon();
for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) {
if (!!dfgCommon->transitions[i].m_codeOrigin)
visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though.
visitor.append(&dfgCommon->transitions[i].m_from);
visitor.append(&dfgCommon->transitions[i].m_to);
}
for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i)
visitor.append(&dfgCommon->weakReferences[i]);
#endif
}
CodeBlock* CodeBlock::baselineVersion()
{
#if ENABLE(JIT)
// When we're initializing the original baseline code block, we won't be able
// to get its replacement. But we'll know that it's the original baseline code
// block because it won't have JIT code yet and it won't have an alternative.
if (jitType() == JITCode::None && !alternative())
return this;
CodeBlock* result = replacement();
ASSERT(result);
while (result->alternative())
result = result->alternative();
ASSERT(result);
ASSERT(JITCode::isBaselineCode(result->jitType()));
return result;
#else
return this;
#endif
}
#if ENABLE(JIT)
bool CodeBlock::hasOptimizedReplacement()
{
ASSERT(JITCode::isBaselineCode(jitType()));
bool result = JITCode::isHigherTier(replacement()->jitType(), jitType());
if (result)
ASSERT(JITCode::isOptimizingJIT(replacement()->jitType()));
else {
ASSERT(JITCode::isBaselineCode(replacement()->jitType()));
ASSERT(replacement() == this);
}
return result;
}
#endif
HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset)
{
RELEASE_ASSERT(bytecodeOffset < instructions().size());
if (!m_rareData)
return 0;
Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers;
for (size_t i = 0; i < exceptionHandlers.size(); ++i) {
// Handlers are ordered innermost first, so the first handler we encounter
// that contains the source address is the correct handler to use.
if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end > bytecodeOffset)
return &exceptionHandlers[i];
}
return 0;
}
unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset)
{
RELEASE_ASSERT(bytecodeOffset < instructions().size());
return m_ownerExecutable->lineNo() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset);
}
unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset)
{
int divot;
int startOffset;
int endOffset;
unsigned line;
unsigned column;
expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
return column;
}
void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column)
{
m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
divot += m_sourceOffset;
column += line ? 1 : firstLineColumnOffset();
line += m_ownerExecutable->lineNo();
}
void CodeBlock::shrinkToFit(ShrinkMode shrinkMode)
{
#if ENABLE(LLINT)
m_llintCallLinkInfos.shrinkToFit();
#endif
#if ENABLE(JIT)
m_structureStubInfos.shrinkToFit();
m_callLinkInfos.shrinkToFit();
#endif
#if ENABLE(VALUE_PROFILER)
m_rareCaseProfiles.shrinkToFit();
m_specialFastCaseProfiles.shrinkToFit();
#endif
if (shrinkMode == EarlyShrink) {
m_additionalIdentifiers.shrinkToFit();
m_functionDecls.shrinkToFit();
m_functionExprs.shrinkToFit();
m_constantRegisters.shrinkToFit();
if (m_rareData) {
m_rareData->m_switchJumpTables.shrinkToFit();
m_rareData->m_stringSwitchJumpTables.shrinkToFit();
}
} // else don't shrink these, because we would have already pointed pointers into these tables.
if (m_rareData) {
m_rareData->m_exceptionHandlers.shrinkToFit();
#if ENABLE(JIT)
m_rareData->m_callReturnIndexVector.shrinkToFit();
#endif
#if ENABLE(DFG_JIT)
m_rareData->m_inlineCallFrames.shrinkToFit();
m_rareData->m_codeOrigins.shrinkToFit();
#endif
}
}
void CodeBlock::createActivation(CallFrame* callFrame)
{
ASSERT(codeType() == FunctionCode);
ASSERT(needsFullScopeChain());
ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue());
JSActivation* activation = JSActivation::create(callFrame->vm(), callFrame, this);
callFrame->uncheckedR(activationRegister()) = JSValue(activation);
callFrame->setScope(activation);
}
unsigned CodeBlock::addOrFindConstant(JSValue v)
{
unsigned result;
if (findConstant(v, result))
return result;
return addConstant(v);
}
bool CodeBlock::findConstant(JSValue v, unsigned& index)
{
unsigned numberOfConstants = numberOfConstantRegisters();
for (unsigned i = 0; i < numberOfConstants; ++i) {
if (getConstant(FirstConstantRegisterIndex + i) == v) {
index = i;
return true;
}
}
index = numberOfConstants;
return false;
}
#if ENABLE(JIT)
void CodeBlock::unlinkCalls()
{
if (!!m_alternative)
m_alternative->unlinkCalls();
#if ENABLE(LLINT)
for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) {
if (m_llintCallLinkInfos[i].isLinked())
m_llintCallLinkInfos[i].unlink();
}
#endif
if (!m_callLinkInfos.size())
return;
if (!m_vm->canUseJIT())
return;
RepatchBuffer repatchBuffer(this);
for (size_t i = 0; i < m_callLinkInfos.size(); i++) {
if (!m_callLinkInfos[i].isLinked())
continue;
m_callLinkInfos[i].unlink(*m_vm, repatchBuffer);
}
}
void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming)
{
noticeIncomingCall(callerFrame);
m_incomingCalls.push(incoming);
}
#endif // ENABLE(JIT)
void CodeBlock::unlinkIncomingCalls()
{
#if ENABLE(LLINT)
while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end())
m_incomingLLIntCalls.begin()->unlink();
#endif // ENABLE(LLINT)
#if ENABLE(JIT)
if (m_incomingCalls.isEmpty())
return;
RepatchBuffer repatchBuffer(this);
while (m_incomingCalls.begin() != m_incomingCalls.end())
m_incomingCalls.begin()->unlink(*m_vm, repatchBuffer);
#endif // ENABLE(JIT)
}
#if ENABLE(LLINT)
void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming)
{
noticeIncomingCall(callerFrame);
m_incomingLLIntCalls.push(incoming);
}
#endif // ENABLE(LLINT)
#if ENABLE(JIT)
ClosureCallStubRoutine* CodeBlock::findClosureCallForReturnPC(ReturnAddressPtr returnAddress)
{
for (unsigned i = m_callLinkInfos.size(); i--;) {
CallLinkInfo& info = m_callLinkInfos[i];
if (!info.stub)
continue;
if (!info.stub->code().executableMemory()->contains(returnAddress.value()))
continue;
RELEASE_ASSERT(info.stub->codeOrigin().bytecodeIndex != CodeOrigin::invalidBytecodeIndex);
return info.stub.get();
}
// The stub routine may have been jettisoned. This is rare, but we have to handle it.
const JITStubRoutineSet& set = m_vm->heap.jitStubRoutines();
for (unsigned i = set.size(); i--;) {
GCAwareJITStubRoutine* genericStub = set.at(i);
if (!genericStub->isClosureCall())
continue;
ClosureCallStubRoutine* stub = static_cast<ClosureCallStubRoutine*>(genericStub);
if (!stub->code().executableMemory()->contains(returnAddress.value()))
continue;
RELEASE_ASSERT(stub->codeOrigin().bytecodeIndex != CodeOrigin::invalidBytecodeIndex);
return stub;
}
return 0;
}
#endif
unsigned CodeBlock::bytecodeOffset(ExecState* exec, ReturnAddressPtr returnAddress)
{
UNUSED_PARAM(exec);
UNUSED_PARAM(returnAddress);
#if ENABLE(LLINT)
#if !ENABLE(LLINT_C_LOOP)
// When using the JIT, we could have addresses that are not bytecode
// addresses. We check if the return address is in the LLint glue and
// opcode handlers range here to ensure that we are looking at bytecode
// before attempting to convert the return address into a bytecode offset.
//
// In the case of the C Loop LLInt, the JIT is disabled, and the only
// valid return addresses should be bytecode PCs. So, we can and need to
// forego this check because when we do not ENABLE(COMPUTED_GOTO_OPCODES),
// then the bytecode "PC"s are actually the opcodeIDs and are not bounded
// by llint_begin and llint_end.
if (returnAddress.value() >= LLInt::getCodePtr(llint_begin)
&& returnAddress.value() <= LLInt::getCodePtr(llint_end))
#endif
{
RELEASE_ASSERT(exec->codeBlock());
RELEASE_ASSERT(exec->codeBlock() == this);
RELEASE_ASSERT(JITCode::isBaselineCode(jitType()));
Instruction* instruction = exec->currentVPC();
RELEASE_ASSERT(instruction);
return bytecodeOffset(instruction);
}
#endif // !ENABLE(LLINT)
#if ENABLE(JIT)
if (!m_rareData)
return 1;
Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callIndices = m_rareData->m_callReturnIndexVector;
if (!callIndices.size())
return 1;
if (jitCode()->contains(returnAddress.value())) {
unsigned callReturnOffset = jitCode()->offsetOf(returnAddress.value());
CallReturnOffsetToBytecodeOffset* result =
binarySearch<CallReturnOffsetToBytecodeOffset, unsigned>(
callIndices, callIndices.size(), callReturnOffset, getCallReturnOffset);
RELEASE_ASSERT(result->callReturnOffset == callReturnOffset);
RELEASE_ASSERT(result->bytecodeOffset < instructionCount());
return result->bytecodeOffset;
}
ClosureCallStubRoutine* closureInfo = findClosureCallForReturnPC(returnAddress);
CodeOrigin origin = closureInfo->codeOrigin();
while (InlineCallFrame* inlineCallFrame = origin.inlineCallFrame) {
if (inlineCallFrame->baselineCodeBlock() == this)
break;
origin = inlineCallFrame->caller;
RELEASE_ASSERT(origin.bytecodeIndex != CodeOrigin::invalidBytecodeIndex);
}
RELEASE_ASSERT(origin.bytecodeIndex != CodeOrigin::invalidBytecodeIndex);
unsigned bytecodeIndex = origin.bytecodeIndex;
RELEASE_ASSERT(bytecodeIndex < instructionCount());
return bytecodeIndex;
#endif // ENABLE(JIT)
#if !ENABLE(LLINT) && !ENABLE(JIT)
return 1;
#endif
}
void CodeBlock::clearEvalCache()
{
if (!!m_alternative)
m_alternative->clearEvalCache();
if (!m_rareData)
return;
m_rareData->m_evalCodeCache.clear();
}
template<typename T, size_t inlineCapacity, typename U, typename V>
inline void replaceExistingEntries(Vector<T, inlineCapacity, U>& target, Vector<T, inlineCapacity, V>& source)
{
ASSERT(target.size() <= source.size());
for (size_t i = 0; i < target.size(); ++i)
target[i] = source[i];
}
void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative)
{
if (!alternative)
return;
replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters);
replaceExistingEntries(m_functionDecls, alternative->m_functionDecls);
replaceExistingEntries(m_functionExprs, alternative->m_functionExprs);
if (!!m_rareData && !!alternative->m_rareData)
replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers);
}
void CodeBlock::copyPostParseDataFromAlternative()
{
copyPostParseDataFrom(m_alternative.get());
}
void CodeBlock::install()
{
ownerExecutable()->installCode(this);
}
PassRefPtr<CodeBlock> CodeBlock::newReplacement()
{
return ownerExecutable()->newReplacementCodeBlockFor(specializationKind());
}
#if ENABLE(JIT)
void CodeBlock::reoptimize()
{
ASSERT(replacement() != this);
ASSERT(replacement()->alternative() == this);
if (DFG::shouldShowDisassembly())
dataLog(*replacement(), " will be jettisoned due to reoptimization of ", *this, ".\n");
replacement()->jettison();
countReoptimization();
}
CodeBlock* ProgramCodeBlock::replacement()
{
return &static_cast<ProgramExecutable*>(ownerExecutable())->generatedBytecode();
}
CodeBlock* EvalCodeBlock::replacement()
{
return &static_cast<EvalExecutable*>(ownerExecutable())->generatedBytecode();
}
CodeBlock* FunctionCodeBlock::replacement()
{
return &static_cast<FunctionExecutable*>(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall);
}
DFG::CapabilityLevel ProgramCodeBlock::capabilityLevelInternal()
{
return DFG::programCapabilityLevel(this);
}
DFG::CapabilityLevel EvalCodeBlock::capabilityLevelInternal()
{
return DFG::evalCapabilityLevel(this);
}
DFG::CapabilityLevel FunctionCodeBlock::capabilityLevelInternal()
{
if (m_isConstructor)
return DFG::functionForConstructCapabilityLevel(this);
return DFG::functionForCallCapabilityLevel(this);
}
void CodeBlock::jettison()
{
ASSERT(JITCode::isOptimizingJIT(jitType()));
ASSERT(this == replacement());
alternative()->optimizeAfterWarmUp();
tallyFrequentExitSites();
if (DFG::shouldShowDisassembly())
dataLog("Jettisoning ", *this, ".\n");
jettisonImpl();
}
void ProgramCodeBlock::jettisonImpl()
{
static_cast<ProgramExecutable*>(ownerExecutable())->jettisonOptimizedCode(*vm());
}
void EvalCodeBlock::jettisonImpl()
{
static_cast<EvalExecutable*>(ownerExecutable())->jettisonOptimizedCode(*vm());
}
void FunctionCodeBlock::jettisonImpl()
{
static_cast<FunctionExecutable*>(ownerExecutable())->jettisonOptimizedCodeFor(*vm(), m_isConstructor ? CodeForConstruct : CodeForCall);
}
#endif
JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin)
{
if (!codeOrigin.inlineCallFrame)
return globalObject();
return jsCast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get())->generatedBytecode().globalObject();
}
void CodeBlock::noticeIncomingCall(ExecState* callerFrame)
{
CodeBlock* callerCodeBlock = callerFrame->codeBlock();
if (Options::verboseCallLink())
dataLog("Noticing call link from ", *callerCodeBlock, " to ", *this, "\n");
if (!m_shouldAlwaysBeInlined)
return;
#if ENABLE(DFG_JIT)
if (!hasBaselineJITProfiling())
return;
if (!DFG::mightInlineFunction(this))
return;
if (!canInline(m_capabilityLevelState))
return;
if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) {
// If the caller is still in the interpreter, then we can't expect inlining to
// happen anytime soon. Assume it's profitable to optimize it separately. This
// ensures that a function is SABI only if it is called no more frequently than
// any of its callers.
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Marking SABI because caller is in LLInt.\n");
return;
}
if (callerCodeBlock->codeType() != FunctionCode) {
// If the caller is either eval or global code, assume that that won't be
// optimized anytime soon. For eval code this is particularly true since we
// delay eval optimization by a *lot*.
m_shouldAlwaysBeInlined = false;
if (Options::verboseCallLink())
dataLog(" Marking SABI because caller is not a function.\n");
return;
}
ExecState* frame = callerFrame;
for (unsigned i = Options::maximumInliningDepth(); i--; frame = frame->callerFrame()) {
if (frame->hasHostCallFrameFlag())
break;
if (frame->codeBlock() == this) {
// Recursive calls won't be inlined.
if (Options::verboseCallLink())
dataLog(" Marking SABI because recursion was detected.\n");
m_shouldAlwaysBeInlined = false;
return;
}
}
RELEASE_ASSERT(callerCodeBlock->m_capabilityLevelState != DFG::CapabilityLevelNotSet);
if (canCompile(callerCodeBlock->m_capabilityLevelState))
return;
if (Options::verboseCallLink())
dataLog(" Marking SABI because the caller is not a DFG candidate.\n");
m_shouldAlwaysBeInlined = false;
#endif
}
#if ENABLE(JIT)
unsigned CodeBlock::reoptimizationRetryCounter() const
{
ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax());
return m_reoptimizationRetryCounter;
}
void CodeBlock::countReoptimization()
{
m_reoptimizationRetryCounter++;
if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax())
m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax();
}
unsigned CodeBlock::numberOfDFGCompiles()
{
ASSERT(JITCode::isBaselineCode(jitType()));
return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter;
}
int32_t CodeBlock::codeTypeThresholdMultiplier() const
{
if (codeType() == EvalCode)
return Options::evalThresholdMultiplier();
return 1;
}
double CodeBlock::optimizationThresholdScalingFactor()
{
// This expression arises from doing a least-squares fit of
//
// F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d
//
// against the data points:
//
// x F[x_]
// 10 0.9 (smallest reasonable code block)
// 200 1.0 (typical small-ish code block)
// 320 1.2 (something I saw in 3d-cube that I wanted to optimize)
// 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize)
// 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort)
// 10000 6.0 (similar to above)
//
// I achieve the minimization using the following Mathematica code:
//
// MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d
//
// samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}}
//
// solution =
// Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples),
// {a, b, c, d}][[2]]
//
// And the code below (to initialize a, b, c, d) is generated by:
//
// Print["const double " <> ToString[#[[1]]] <> " = " <>
// If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution
//
// We've long known the following to be true:
// - Small code blocks are cheap to optimize and so we should do it sooner rather
// than later.
// - Large code blocks are expensive to optimize and so we should postpone doing so,
// and sometimes have a large enough threshold that we never optimize them.
// - The difference in cost is not totally linear because (a) just invoking the
// DFG incurs some base cost and (b) for large code blocks there is enough slop
// in the correlation between instruction count and the actual compilation cost
// that for those large blocks, the instruction count should not have a strong
// influence on our threshold.
//
// I knew the goals but I didn't know how to achieve them; so I picked an interesting
// example where the heuristics were right (code block in 3d-cube with instruction
// count 320, which got compiled early as it should have been) and one where they were
// totally wrong (code block in 3d-cube with instruction count 1268, which was expensive
// to compile and didn't run often enough to warrant compilation in my opinion), and
// then threw in additional data points that represented my own guess of what our
// heuristics should do for some round-numbered examples.
//
// The expression to which I decided to fit the data arose because I started with an
// affine function, and then did two things: put the linear part in an Abs to ensure
// that the fit didn't end up choosing a negative value of c (which would result in
// the function turning over and going negative for large x) and I threw in a Sqrt
// term because Sqrt represents my intution that the function should be more sensitive
// to small changes in small values of x, but less sensitive when x gets large.
// Note that the current fit essentially eliminates the linear portion of the
// expression (c == 0.0).
const double a = 0.061504;
const double b = 1.02406;
const double c = 0.0;
const double d = 0.825914;
double instructionCount = this->instructionCount();
ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense.
double result = d + a * sqrt(instructionCount + b) + c * instructionCount;
if (Options::verboseOSR()) {
dataLog(
*this, ": instruction count is ", instructionCount,
", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(),
"\n");
}
return result * codeTypeThresholdMultiplier();
}
static int32_t clipThreshold(double threshold)
{
if (threshold < 1.0)
return 1;
if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max()))
return std::numeric_limits<int32_t>::max();
return static_cast<int32_t>(threshold);
}
int32_t CodeBlock::counterValueForOptimizeAfterWarmUp()
{
return clipThreshold(
Options::thresholdForOptimizeAfterWarmUp() *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
int32_t CodeBlock::counterValueForOptimizeAfterLongWarmUp()
{
return clipThreshold(
Options::thresholdForOptimizeAfterLongWarmUp() *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
int32_t CodeBlock::counterValueForOptimizeSoon()
{
return clipThreshold(
Options::thresholdForOptimizeSoon() *
optimizationThresholdScalingFactor() *
(1 << reoptimizationRetryCounter()));
}
bool CodeBlock::checkIfOptimizationThresholdReached()
{
#if ENABLE(DFG_JIT)
if (m_vm->worklist
&& m_vm->worklist->compilationState(this) == DFG::Worklist::Compiled) {
optimizeNextInvocation();
return true;
}
#endif
return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this);
}
void CodeBlock::optimizeNextInvocation()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing next invocation.\n");
m_jitExecuteCounter.setNewThreshold(0, this);
}
void CodeBlock::dontOptimizeAnytimeSoon()
{
if (Options::verboseOSR())
dataLog(*this, ": Not optimizing anytime soon.\n");
m_jitExecuteCounter.deferIndefinitely();
}
void CodeBlock::optimizeAfterWarmUp()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing after warm-up.\n");
#if ENABLE(DFG_JIT)
m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this);
#endif
}
void CodeBlock::optimizeAfterLongWarmUp()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing after long warm-up.\n");
#if ENABLE(DFG_JIT)
m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this);
#endif
}
void CodeBlock::optimizeSoon()
{
if (Options::verboseOSR())
dataLog(*this, ": Optimizing soon.\n");
#if ENABLE(DFG_JIT)
m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeSoon(), this);
#endif
}
void CodeBlock::forceOptimizationSlowPathConcurrently()
{
if (Options::verboseOSR())
dataLog(*this, ": Forcing slow path concurrently.\n");
m_jitExecuteCounter.forceSlowPathConcurrently();
}
#if ENABLE(DFG_JIT)
void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result)
{
RELEASE_ASSERT(jitType() == JITCode::BaselineJIT);
RELEASE_ASSERT((result == CompilationSuccessful) == (replacement() != this));
switch (result) {
case CompilationSuccessful:
RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType()));
optimizeNextInvocation();
break;
case CompilationFailed:
dontOptimizeAnytimeSoon();
break;
case CompilationDeferred:
// We'd like to do dontOptimizeAnytimeSoon() but we cannot because
// forceOptimizationSlowPathConcurrently() is inherently racy. It won't
// necessarily guarantee anything. So, we make sure that even if that
// function ends up being a no-op, we still eventually retry and realize
// that we have optimized code ready.
optimizeAfterWarmUp();
break;
case CompilationInvalidated:
// Retry with exponential backoff.
countReoptimization();
optimizeAfterWarmUp();
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
#endif
static bool structureStubInfoLessThan(const StructureStubInfo& a, const StructureStubInfo& b)
{
return a.callReturnLocation.executableAddress() < b.callReturnLocation.executableAddress();
}
void CodeBlock::sortStructureStubInfos()
{
std::sort(m_structureStubInfos.begin(), m_structureStubInfos.end(), structureStubInfoLessThan);
}
uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold)
{
ASSERT(JITCode::isOptimizingJIT(jitType()));
// Compute this the lame way so we don't saturate. This is called infrequently
// enough that this loop won't hurt us.
unsigned result = desiredThreshold;
for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) {
unsigned newResult = result << 1;
if (newResult < result)
return std::numeric_limits<uint32_t>::max();
result = newResult;
}
return result;
}
uint32_t CodeBlock::exitCountThresholdForReoptimization()
{
return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier());
}
uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop()
{
return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier());
}
bool CodeBlock::shouldReoptimizeNow()
{
return osrExitCounter() >= exitCountThresholdForReoptimization();
}
bool CodeBlock::shouldReoptimizeFromLoopNow()
{
return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop();
}
#endif
#if ENABLE(VALUE_PROFILER)
ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset)
{
for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) {
if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset)
return &m_arrayProfiles[i];
}
return 0;
}
ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset)
{
ArrayProfile* result = getArrayProfile(bytecodeOffset);
if (result)
return result;
return addArrayProfile(bytecodeOffset);
}
void CodeBlock::updateAllPredictionsAndCountLiveness(
OperationInProgress operation, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles)
{
ConcurrentJITLocker locker(m_lock);
numberOfLiveNonArgumentValueProfiles = 0;
numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full.
for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
ValueProfile* profile = getFromAllValueProfiles(i);
unsigned numSamples = profile->totalNumberOfSamples();
if (numSamples > ValueProfile::numberOfBuckets)
numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight.
numberOfSamplesInProfiles += numSamples;
if (profile->m_bytecodeOffset < 0) {
profile->computeUpdatedPrediction(locker, operation);
continue;
}
if (profile->numberOfSamples() || profile->m_prediction != SpecNone)
numberOfLiveNonArgumentValueProfiles++;
profile->computeUpdatedPrediction(locker, operation);
}
#if ENABLE(DFG_JIT)
m_lazyOperandValueProfiles.computeUpdatedPredictions(locker, operation);
#endif
}
void CodeBlock::updateAllValueProfilePredictions(OperationInProgress operation)
{
unsigned ignoredValue1, ignoredValue2;
updateAllPredictionsAndCountLiveness(operation, ignoredValue1, ignoredValue2);
}
void CodeBlock::updateAllArrayPredictions()
{
ConcurrentJITLocker locker(m_lock);
for (unsigned i = m_arrayProfiles.size(); i--;)
m_arrayProfiles[i].computeUpdatedPrediction(locker, this);
// Don't count these either, for similar reasons.
for (unsigned i = m_arrayAllocationProfiles.size(); i--;)
m_arrayAllocationProfiles[i].updateIndexingType();
}
void CodeBlock::updateAllPredictions(OperationInProgress operation)
{
updateAllValueProfilePredictions(operation);
updateAllArrayPredictions();
}
bool CodeBlock::shouldOptimizeNow()
{
if (Options::verboseOSR())
dataLog("Considering optimizing ", *this, "...\n");
#if ENABLE(VERBOSE_VALUE_PROFILE)
dumpValueProfiles();
#endif
if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay())
return true;
updateAllArrayPredictions();
unsigned numberOfLiveNonArgumentValueProfiles;
unsigned numberOfSamplesInProfiles;
updateAllPredictionsAndCountLiveness(NoOperation, numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles);
if (Options::verboseOSR()) {
dataLogF(
"Profile hotness: %lf (%u / %u), %lf (%u / %u)\n",
(double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(),
numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(),
(double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(),
numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles());
}
if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate())
&& (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate())
&& static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay())
return true;
ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max());
m_optimizationDelayCounter++;
optimizeAfterWarmUp();
return false;
}
#endif
#if ENABLE(DFG_JIT)
void CodeBlock::tallyFrequentExitSites()
{
ASSERT(JITCode::isOptimizingJIT(jitType()));
ASSERT(alternative()->jitType() == JITCode::BaselineJIT);
CodeBlock* profiledBlock = alternative();
switch (jitType()) {
case JITCode::DFGJIT: {
DFG::JITCode* jitCode = m_jitCode->dfg();
for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) {
DFG::OSRExit& exit = jitCode->osrExit[i];
if (!exit.considerAddingAsFrequentExitSite(profiledBlock))
continue;
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n");
#endif
}
break;
}
#if ENABLE(FTL_JIT)
case JITCode::FTLJIT: {
// There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit
// vector contains a totally different type, that just so happens to behave like
// DFG::JITCode::osrExit.
FTL::JITCode* jitCode = m_jitCode->ftl();
for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) {
FTL::OSRExit& exit = jitCode->osrExit[i];
if (!exit.considerAddingAsFrequentExitSite(profiledBlock))
continue;
#if DFG_ENABLE(DEBUG_VERBOSE)
dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n");
#endif
}
break;
}
#endif
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
#endif // ENABLE(DFG_JIT)
#if ENABLE(VERBOSE_VALUE_PROFILE)
void CodeBlock::dumpValueProfiles()
{
dataLog("ValueProfile for ", *this, ":\n");
for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) {
ValueProfile* profile = getFromAllValueProfiles(i);
if (profile->m_bytecodeOffset < 0) {
ASSERT(profile->m_bytecodeOffset == -1);
dataLogF(" arg = %u: ", i);
} else
dataLogF(" bc = %d: ", profile->m_bytecodeOffset);
if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) {
dataLogF("<empty>\n");
continue;
}
profile->dump(WTF::dataFile());
dataLogF("\n");
}
dataLog("RareCaseProfile for ", *this, ":\n");
for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) {
RareCaseProfile* profile = rareCaseProfile(i);
dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
}
dataLog("SpecialFastCaseProfile for ", *this, ":\n");
for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) {
RareCaseProfile* profile = specialFastCaseProfile(i);
dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter);
}
}
#endif // ENABLE(VERBOSE_VALUE_PROFILE)
size_t CodeBlock::predictedMachineCodeSize()
{
// This will be called from CodeBlock::CodeBlock before either m_vm or the
// instructions have been initialized. It's OK to return 0 because what will really
// matter is the recomputation of this value when the slow path is triggered.
if (!m_vm)
return 0;
if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT)
return 0; // It's as good of a prediction as we'll get.
// Be conservative: return a size that will be an overestimation 84% of the time.
double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() +
m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation();
// Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing
// here is OK, since this whole method is just a heuristic.
if (multiplier < 0 || multiplier > 1000)
return 0;
double doubleResult = multiplier * m_instructions.size();
// Be even more paranoid: silently reject values that won't fit into a size_t. If
// the function is so huge that we can't even fit it into virtual memory then we
// should probably have some other guards in place to prevent us from even getting
// to this point.
if (doubleResult > std::numeric_limits<size_t>::max())
return 0;
return static_cast<size_t>(doubleResult);
}
bool CodeBlock::usesOpcode(OpcodeID opcodeID)
{
Interpreter* interpreter = vm()->interpreter;
Instruction* instructionsBegin = instructions().begin();
unsigned instructionCount = instructions().size();
for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) {
switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) {
#define DEFINE_OP(curOpcode, length) \
case curOpcode: \
if (curOpcode == opcodeID) \
return true; \
bytecodeOffset += length; \
break;
FOR_EACH_OPCODE_ID(DEFINE_OP)
#undef DEFINE_OP
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
return false;
}
String CodeBlock::nameForRegister(int registerNumber)
{
ConcurrentJITLocker locker(symbolTable()->m_lock);
SymbolTable::Map::iterator end = symbolTable()->end(locker);
for (SymbolTable::Map::iterator ptr = symbolTable()->begin(locker); ptr != end; ++ptr) {
if (ptr->value.getIndex() == registerNumber) {
// FIXME: This won't work from the compilation thread.
// https://bugs.webkit.org/show_bug.cgi?id=115300
return String(ptr->key);
}
}
if (needsActivation() && registerNumber == activationRegister())
return ASCIILiteral("activation");
if (registerNumber == thisRegister())
return ASCIILiteral("this");
if (usesArguments()) {
if (registerNumber == argumentsRegister())
return ASCIILiteral("arguments");
if (unmodifiedArgumentsRegister(argumentsRegister()) == registerNumber)
return ASCIILiteral("real arguments");
}
if (registerNumber < 0) {
int argumentPosition = -registerNumber;
argumentPosition -= JSStack::CallFrameHeaderSize + 1;
return String::format("arguments[%3d]", argumentPosition - 1).impl();
}
return "";
}
} // namespace JSC