| /* |
| * Copyright (C) 2008, 2009, 2010, 2012, 2013 Apple Inc. All rights reserved. |
| * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CodeBlock.h" |
| |
| #include "BytecodeGenerator.h" |
| #include "CallLinkStatus.h" |
| #include "DFGCapabilities.h" |
| #include "DFGCommon.h" |
| #include "DFGDriver.h" |
| #include "DFGNode.h" |
| #include "DFGRepatch.h" |
| #include "DFGWorklist.h" |
| #include "Debugger.h" |
| #include "Interpreter.h" |
| #include "JIT.h" |
| #include "JITStubs.h" |
| #include "JSActivation.h" |
| #include "JSCJSValue.h" |
| #include "JSFunction.h" |
| #include "JSNameScope.h" |
| #include "LowLevelInterpreter.h" |
| #include "Operations.h" |
| #include "PolymorphicPutByIdList.h" |
| #include "ReduceWhitespace.h" |
| #include "RepatchBuffer.h" |
| #include "SlotVisitorInlines.h" |
| #include <stdio.h> |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/StringExtras.h> |
| #include <wtf/StringPrintStream.h> |
| |
| #if ENABLE(DFG_JIT) |
| #include "DFGOperations.h" |
| #endif |
| |
| #if ENABLE(FTL_JIT) |
| #include "FTLJITCode.h" |
| #endif |
| |
| #define DUMP_CODE_BLOCK_STATISTICS 0 |
| |
| namespace JSC { |
| |
| CString CodeBlock::inferredName() const |
| { |
| switch (codeType()) { |
| case GlobalCode: |
| return "<global>"; |
| case EvalCode: |
| return "<eval>"; |
| case FunctionCode: |
| return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().utf8(); |
| default: |
| CRASH(); |
| return CString("", 0); |
| } |
| } |
| |
| bool CodeBlock::hasHash() const |
| { |
| return !!m_hash; |
| } |
| |
| bool CodeBlock::isSafeToComputeHash() const |
| { |
| return !isCompilationThread(); |
| } |
| |
| CodeBlockHash CodeBlock::hash() const |
| { |
| if (!m_hash) { |
| RELEASE_ASSERT(isSafeToComputeHash()); |
| m_hash = CodeBlockHash(ownerExecutable()->source(), specializationKind()); |
| } |
| return m_hash; |
| } |
| |
| CString CodeBlock::sourceCodeForTools() const |
| { |
| if (codeType() != FunctionCode) |
| return ownerExecutable()->source().toUTF8(); |
| |
| SourceProvider* provider = source(); |
| FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable()); |
| UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); |
| unsigned unlinkedStartOffset = unlinked->startOffset(); |
| unsigned linkedStartOffset = executable->source().startOffset(); |
| int delta = linkedStartOffset - unlinkedStartOffset; |
| unsigned rangeStart = delta + unlinked->functionStartOffset(); |
| unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); |
| return toCString( |
| "function ", |
| provider->source().impl()->utf8ForRange(rangeStart, rangeEnd - rangeStart)); |
| } |
| |
| CString CodeBlock::sourceCodeOnOneLine() const |
| { |
| return reduceWhitespace(sourceCodeForTools()); |
| } |
| |
| void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const |
| { |
| if (hasHash() || isSafeToComputeHash()) |
| out.print(inferredName(), "#", hash(), ":[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType()); |
| else |
| out.print(inferredName(), "#<no-hash>:[", RawPointer(this), "->", RawPointer(ownerExecutable()), ", ", jitType, codeType()); |
| |
| if (codeType() == FunctionCode) |
| out.print(specializationKind()); |
| if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) |
| out.print(" (SABI)"); |
| if (ownerExecutable()->neverInline()) |
| out.print(" (NeverInline)"); |
| out.print("]"); |
| } |
| |
| void CodeBlock::dump(PrintStream& out) const |
| { |
| dumpAssumingJITType(out, jitType()); |
| } |
| |
| static CString constantName(int k, JSValue value) |
| { |
| return toCString(value, "(@k", k - FirstConstantRegisterIndex, ")"); |
| } |
| |
| static CString idName(int id0, const Identifier& ident) |
| { |
| return toCString(ident.impl(), "(@id", id0, ")"); |
| } |
| |
| CString CodeBlock::registerName(int r) const |
| { |
| if (r == missingThisObjectMarker()) |
| return "<null>"; |
| |
| if (isConstantRegisterIndex(r)) |
| return constantName(r, getConstant(r)); |
| |
| return toCString("r", r); |
| } |
| |
| static CString regexpToSourceString(RegExp* regExp) |
| { |
| char postfix[5] = { '/', 0, 0, 0, 0 }; |
| int index = 1; |
| if (regExp->global()) |
| postfix[index++] = 'g'; |
| if (regExp->ignoreCase()) |
| postfix[index++] = 'i'; |
| if (regExp->multiline()) |
| postfix[index] = 'm'; |
| |
| return toCString("/", regExp->pattern().impl(), postfix); |
| } |
| |
| static CString regexpName(int re, RegExp* regexp) |
| { |
| return toCString(regexpToSourceString(regexp), "(@re", re, ")"); |
| } |
| |
| NEVER_INLINE static const char* debugHookName(int debugHookID) |
| { |
| switch (static_cast<DebugHookID>(debugHookID)) { |
| case DidEnterCallFrame: |
| return "didEnterCallFrame"; |
| case WillLeaveCallFrame: |
| return "willLeaveCallFrame"; |
| case WillExecuteStatement: |
| return "willExecuteStatement"; |
| case WillExecuteProgram: |
| return "willExecuteProgram"; |
| case DidExecuteProgram: |
| return "didExecuteProgram"; |
| case DidReachBreakpoint: |
| return "didReachBreakpoint"; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return ""; |
| } |
| |
| void CodeBlock::printUnaryOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| |
| out.printf("[%4d] %s\t\t %s, %s", location, op, registerName(r0).data(), registerName(r1).data()); |
| } |
| |
| void CodeBlock::printBinaryOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] %s\t\t %s, %s, %s", location, op, registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| } |
| |
| void CodeBlock::printConditionalJump(PrintStream& out, ExecState*, const Instruction*, const Instruction*& it, int location, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] %s\t\t %s, %d(->%d)", location, op, registerName(r0).data(), offset, location + offset); |
| } |
| |
| void CodeBlock::printGetByIdOp(PrintStream& out, ExecState* exec, int location, const Instruction*& it) |
| { |
| const char* op; |
| switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { |
| case op_get_by_id: |
| op = "get_by_id"; |
| break; |
| case op_get_by_id_out_of_line: |
| op = "get_by_id_out_of_line"; |
| break; |
| case op_get_by_id_self: |
| op = "get_by_id_self"; |
| break; |
| case op_get_by_id_proto: |
| op = "get_by_id_proto"; |
| break; |
| case op_get_by_id_chain: |
| op = "get_by_id_chain"; |
| break; |
| case op_get_by_id_getter_self: |
| op = "get_by_id_getter_self"; |
| break; |
| case op_get_by_id_getter_proto: |
| op = "get_by_id_getter_proto"; |
| break; |
| case op_get_by_id_getter_chain: |
| op = "get_by_id_getter_chain"; |
| break; |
| case op_get_by_id_custom_self: |
| op = "get_by_id_custom_self"; |
| break; |
| case op_get_by_id_custom_proto: |
| op = "get_by_id_custom_proto"; |
| break; |
| case op_get_by_id_custom_chain: |
| op = "get_by_id_custom_chain"; |
| break; |
| case op_get_by_id_generic: |
| op = "get_by_id_generic"; |
| break; |
| case op_get_array_length: |
| op = "array_length"; |
| break; |
| case op_get_string_length: |
| op = "string_length"; |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| op = 0; |
| } |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); |
| it += 4; // Increment up to the value profiler. |
| } |
| |
| #if ENABLE(JIT) || ENABLE(LLINT) // unused in some configurations |
| static void dumpStructure(PrintStream& out, const char* name, ExecState* exec, Structure* structure, const Identifier& ident) |
| { |
| if (!structure) |
| return; |
| |
| out.printf("%s = %p", name, structure); |
| |
| PropertyOffset offset = structure->getConcurrently(exec->vm(), ident.impl()); |
| if (offset != invalidOffset) |
| out.printf(" (offset = %d)", offset); |
| } |
| #endif |
| |
| #if ENABLE(JIT) // unused when not ENABLE(JIT), leading to silly warnings |
| static void dumpChain(PrintStream& out, ExecState* exec, StructureChain* chain, const Identifier& ident) |
| { |
| out.printf("chain = %p: [", chain); |
| bool first = true; |
| for (WriteBarrier<Structure>* currentStructure = chain->head(); |
| *currentStructure; |
| ++currentStructure) { |
| if (first) |
| first = false; |
| else |
| out.printf(", "); |
| dumpStructure(out, "struct", exec, currentStructure->get(), ident); |
| } |
| out.printf("]"); |
| } |
| #endif |
| |
| void CodeBlock::printGetByIdCacheStatus(PrintStream& out, ExecState* exec, int location) |
| { |
| Instruction* instruction = instructions().begin() + location; |
| |
| const Identifier& ident = identifier(instruction[3].u.operand); |
| |
| UNUSED_PARAM(ident); // tell the compiler to shut up in certain platform configurations. |
| |
| #if ENABLE(LLINT) |
| if (exec->interpreter()->getOpcodeID(instruction[0].u.opcode) == op_get_array_length) |
| out.printf(" llint(array_length)"); |
| else if (Structure* structure = instruction[4].u.structure.get()) { |
| out.printf(" llint("); |
| dumpStructure(out, "struct", exec, structure, ident); |
| out.printf(")"); |
| } |
| #endif |
| |
| #if ENABLE(JIT) |
| if (numberOfStructureStubInfos()) { |
| StructureStubInfo& stubInfo = getStubInfo(location); |
| if (stubInfo.seen) { |
| out.printf(" jit("); |
| |
| Structure* baseStructure = 0; |
| Structure* prototypeStructure = 0; |
| StructureChain* chain = 0; |
| PolymorphicAccessStructureList* structureList = 0; |
| int listSize = 0; |
| |
| switch (stubInfo.accessType) { |
| case access_get_by_id_self: |
| out.printf("self"); |
| baseStructure = stubInfo.u.getByIdSelf.baseObjectStructure.get(); |
| break; |
| case access_get_by_id_proto: |
| out.printf("proto"); |
| baseStructure = stubInfo.u.getByIdProto.baseObjectStructure.get(); |
| prototypeStructure = stubInfo.u.getByIdProto.prototypeStructure.get(); |
| break; |
| case access_get_by_id_chain: |
| out.printf("chain"); |
| baseStructure = stubInfo.u.getByIdChain.baseObjectStructure.get(); |
| chain = stubInfo.u.getByIdChain.chain.get(); |
| break; |
| case access_get_by_id_self_list: |
| out.printf("self_list"); |
| structureList = stubInfo.u.getByIdSelfList.structureList; |
| listSize = stubInfo.u.getByIdSelfList.listSize; |
| break; |
| case access_get_by_id_proto_list: |
| out.printf("proto_list"); |
| structureList = stubInfo.u.getByIdProtoList.structureList; |
| listSize = stubInfo.u.getByIdProtoList.listSize; |
| break; |
| case access_unset: |
| out.printf("unset"); |
| break; |
| case access_get_by_id_generic: |
| out.printf("generic"); |
| break; |
| case access_get_array_length: |
| out.printf("array_length"); |
| break; |
| case access_get_string_length: |
| out.printf("string_length"); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| if (baseStructure) { |
| out.printf(", "); |
| dumpStructure(out, "struct", exec, baseStructure, ident); |
| } |
| |
| if (prototypeStructure) { |
| out.printf(", "); |
| dumpStructure(out, "prototypeStruct", exec, baseStructure, ident); |
| } |
| |
| if (chain) { |
| out.printf(", "); |
| dumpChain(out, exec, chain, ident); |
| } |
| |
| if (structureList) { |
| out.printf(", list = %p: [", structureList); |
| for (int i = 0; i < listSize; ++i) { |
| if (i) |
| out.printf(", "); |
| out.printf("("); |
| dumpStructure(out, "base", exec, structureList->list[i].base.get(), ident); |
| if (structureList->list[i].isChain) { |
| if (structureList->list[i].u.chain.get()) { |
| out.printf(", "); |
| dumpChain(out, exec, structureList->list[i].u.chain.get(), ident); |
| } |
| } else { |
| if (structureList->list[i].u.proto.get()) { |
| out.printf(", "); |
| dumpStructure(out, "proto", exec, structureList->list[i].u.proto.get(), ident); |
| } |
| } |
| out.printf(")"); |
| } |
| out.printf("]"); |
| } |
| out.printf(")"); |
| } |
| } |
| #endif |
| } |
| |
| void CodeBlock::printCallOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op, CacheDumpMode cacheDumpMode, bool& hasPrintedProfiling) |
| { |
| int dst = (++it)->u.operand; |
| int func = (++it)->u.operand; |
| int argCount = (++it)->u.operand; |
| int registerOffset = (++it)->u.operand; |
| out.printf("[%4d] %s %s, %s, %d, %d", location, op, registerName(dst).data(), registerName(func).data(), argCount, registerOffset); |
| if (cacheDumpMode == DumpCaches) { |
| #if ENABLE(LLINT) |
| LLIntCallLinkInfo* callLinkInfo = it[1].u.callLinkInfo; |
| if (callLinkInfo->lastSeenCallee) { |
| out.printf( |
| " llint(%p, exec %p)", |
| callLinkInfo->lastSeenCallee.get(), |
| callLinkInfo->lastSeenCallee->executable()); |
| } |
| #endif |
| #if ENABLE(JIT) |
| if (numberOfCallLinkInfos()) { |
| JSFunction* target = getCallLinkInfo(location).lastSeenCallee.get(); |
| if (target) |
| out.printf(" jit(%p, exec %p)", target, target->executable()); |
| } |
| #endif |
| out.print(" status(", CallLinkStatus::computeFor(this, location), ")"); |
| } |
| ++it; |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| } |
| |
| void CodeBlock::printPutByIdOp(PrintStream& out, ExecState*, int location, const Instruction*& it, const char* op) |
| { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| out.printf("[%4d] %s\t %s, %s, %s", location, op, registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data()); |
| it += 5; |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out) |
| { |
| // We only use the ExecState* for things that don't actually lead to JS execution, |
| // like converting a JSString to a String. Hence the globalExec is appropriate. |
| ExecState* exec = m_globalObject->globalExec(); |
| |
| size_t instructionCount = 0; |
| |
| for (size_t i = 0; i < instructions().size(); i += opcodeLengths[exec->interpreter()->getOpcodeID(instructions()[i].u.opcode)]) |
| ++instructionCount; |
| |
| out.print(*this); |
| out.printf( |
| ": %lu m_instructions; %lu bytes; %d parameter(s); %d callee register(s); %d variable(s)", |
| static_cast<unsigned long>(instructions().size()), |
| static_cast<unsigned long>(instructions().size() * sizeof(Instruction)), |
| m_numParameters, m_numCalleeRegisters, m_numVars); |
| if (symbolTable() && symbolTable()->captureCount()) { |
| out.printf( |
| "; %d captured var(s) (from r%d to r%d, inclusive)", |
| symbolTable()->captureCount(), symbolTable()->captureStart(), symbolTable()->captureEnd() - 1); |
| } |
| if (usesArguments()) { |
| out.printf( |
| "; uses arguments, in r%d, r%d", |
| argumentsRegister(), |
| unmodifiedArgumentsRegister(argumentsRegister())); |
| } |
| if (needsFullScopeChain() && codeType() == FunctionCode) |
| out.printf("; activation in r%d", activationRegister()); |
| |
| const Instruction* begin = instructions().begin(); |
| const Instruction* end = instructions().end(); |
| for (const Instruction* it = begin; it != end; ++it) |
| dumpBytecode(out, exec, begin, it); |
| |
| if (numberOfIdentifiers()) { |
| out.printf("\nIdentifiers:\n"); |
| size_t i = 0; |
| do { |
| out.printf(" id%u = %s\n", static_cast<unsigned>(i), identifier(i).string().utf8().data()); |
| ++i; |
| } while (i != numberOfIdentifiers()); |
| } |
| |
| if (!m_constantRegisters.isEmpty()) { |
| out.printf("\nConstants:\n"); |
| size_t i = 0; |
| do { |
| out.printf(" k%u = %s\n", static_cast<unsigned>(i), toCString(m_constantRegisters[i].get()).data()); |
| ++i; |
| } while (i < m_constantRegisters.size()); |
| } |
| |
| if (size_t count = m_unlinkedCode->numberOfRegExps()) { |
| out.printf("\nm_regexps:\n"); |
| size_t i = 0; |
| do { |
| out.printf(" re%u = %s\n", static_cast<unsigned>(i), regexpToSourceString(m_unlinkedCode->regexp(i)).data()); |
| ++i; |
| } while (i < count); |
| } |
| |
| #if ENABLE(JIT) |
| if (!m_structureStubInfos.isEmpty()) |
| out.printf("\nStructures:\n"); |
| #endif |
| |
| if (m_rareData && !m_rareData->m_exceptionHandlers.isEmpty()) { |
| out.printf("\nException Handlers:\n"); |
| unsigned i = 0; |
| do { |
| out.printf("\t %d: { start: [%4d] end: [%4d] target: [%4d] depth: [%4d] }\n", i + 1, m_rareData->m_exceptionHandlers[i].start, m_rareData->m_exceptionHandlers[i].end, m_rareData->m_exceptionHandlers[i].target, m_rareData->m_exceptionHandlers[i].scopeDepth); |
| ++i; |
| } while (i < m_rareData->m_exceptionHandlers.size()); |
| } |
| |
| if (m_rareData && !m_rareData->m_switchJumpTables.isEmpty()) { |
| out.printf("Switch Jump Tables:\n"); |
| unsigned i = 0; |
| do { |
| out.printf(" %1d = {\n", i); |
| int entry = 0; |
| Vector<int32_t>::const_iterator end = m_rareData->m_switchJumpTables[i].branchOffsets.end(); |
| for (Vector<int32_t>::const_iterator iter = m_rareData->m_switchJumpTables[i].branchOffsets.begin(); iter != end; ++iter, ++entry) { |
| if (!*iter) |
| continue; |
| out.printf("\t\t%4d => %04d\n", entry + m_rareData->m_switchJumpTables[i].min, *iter); |
| } |
| out.printf(" }\n"); |
| ++i; |
| } while (i < m_rareData->m_switchJumpTables.size()); |
| } |
| |
| if (m_rareData && !m_rareData->m_stringSwitchJumpTables.isEmpty()) { |
| out.printf("\nString Switch Jump Tables:\n"); |
| unsigned i = 0; |
| do { |
| out.printf(" %1d = {\n", i); |
| StringJumpTable::StringOffsetTable::const_iterator end = m_rareData->m_stringSwitchJumpTables[i].offsetTable.end(); |
| for (StringJumpTable::StringOffsetTable::const_iterator iter = m_rareData->m_stringSwitchJumpTables[i].offsetTable.begin(); iter != end; ++iter) |
| out.printf("\t\t\"%s\" => %04d\n", String(iter->key).utf8().data(), iter->value.branchOffset); |
| out.printf(" }\n"); |
| ++i; |
| } while (i < m_rareData->m_stringSwitchJumpTables.size()); |
| } |
| |
| out.printf("\n"); |
| } |
| |
| void CodeBlock::beginDumpProfiling(PrintStream& out, bool& hasPrintedProfiling) |
| { |
| if (hasPrintedProfiling) { |
| out.print("; "); |
| return; |
| } |
| |
| out.print(" "); |
| hasPrintedProfiling = true; |
| } |
| |
| void CodeBlock::dumpValueProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| ++it; |
| #if ENABLE(VALUE_PROFILER) |
| CString description = it->u.profile->briefDescription(locker); |
| if (!description.length()) |
| return; |
| beginDumpProfiling(out, hasPrintedProfiling); |
| out.print(description); |
| #else |
| UNUSED_PARAM(out); |
| UNUSED_PARAM(hasPrintedProfiling); |
| #endif |
| } |
| |
| void CodeBlock::dumpArrayProfiling(PrintStream& out, const Instruction*& it, bool& hasPrintedProfiling) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| ++it; |
| #if ENABLE(VALUE_PROFILER) |
| if (!it->u.arrayProfile) |
| return; |
| CString description = it->u.arrayProfile->briefDescription(locker, this); |
| if (!description.length()) |
| return; |
| beginDumpProfiling(out, hasPrintedProfiling); |
| out.print(description); |
| #else |
| UNUSED_PARAM(out); |
| UNUSED_PARAM(hasPrintedProfiling); |
| #endif |
| } |
| |
| #if ENABLE(VALUE_PROFILER) |
| void CodeBlock::dumpRareCaseProfile(PrintStream& out, const char* name, RareCaseProfile* profile, bool& hasPrintedProfiling) |
| { |
| if (!profile || !profile->m_counter) |
| return; |
| |
| beginDumpProfiling(out, hasPrintedProfiling); |
| out.print(name, profile->m_counter); |
| } |
| #endif |
| |
| void CodeBlock::dumpBytecode(PrintStream& out, ExecState* exec, const Instruction* begin, const Instruction*& it) |
| { |
| int location = it - begin; |
| bool hasPrintedProfiling = false; |
| switch (exec->interpreter()->getOpcodeID(it->u.opcode)) { |
| case op_enter: { |
| out.printf("[%4d] enter", location); |
| break; |
| } |
| case op_create_activation: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] create_activation %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_create_arguments: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] create_arguments\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_init_lazy_reg: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] init_lazy_reg\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_get_callee: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] get_callee %s\n", location, registerName(r0).data()); |
| ++it; |
| break; |
| } |
| case op_create_this: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| unsigned inferredInlineCapacity = (++it)->u.operand; |
| out.printf("[%4d] create_this %s, %s, %u", location, registerName(r0).data(), registerName(r1).data(), inferredInlineCapacity); |
| break; |
| } |
| case op_to_this: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] to_this\t %s", location, registerName(r0).data()); |
| ++it; // Skip value profile. |
| break; |
| } |
| case op_new_object: { |
| int r0 = (++it)->u.operand; |
| unsigned inferredInlineCapacity = (++it)->u.operand; |
| out.printf("[%4d] new_object\t %s, %u", location, registerName(r0).data(), inferredInlineCapacity); |
| ++it; // Skip object allocation profile. |
| break; |
| } |
| case op_new_array: { |
| int dst = (++it)->u.operand; |
| int argv = (++it)->u.operand; |
| int argc = (++it)->u.operand; |
| out.printf("[%4d] new_array\t %s, %s, %d", location, registerName(dst).data(), registerName(argv).data(), argc); |
| ++it; // Skip array allocation profile. |
| break; |
| } |
| case op_new_array_with_size: { |
| int dst = (++it)->u.operand; |
| int length = (++it)->u.operand; |
| out.printf("[%4d] new_array_with_size\t %s, %s", location, registerName(dst).data(), registerName(length).data()); |
| ++it; // Skip array allocation profile. |
| break; |
| } |
| case op_new_array_buffer: { |
| int dst = (++it)->u.operand; |
| int argv = (++it)->u.operand; |
| int argc = (++it)->u.operand; |
| out.printf("[%4d] new_array_buffer\t %s, %d, %d", location, registerName(dst).data(), argv, argc); |
| ++it; // Skip array allocation profile. |
| break; |
| } |
| case op_new_regexp: { |
| int r0 = (++it)->u.operand; |
| int re0 = (++it)->u.operand; |
| out.printf("[%4d] new_regexp\t %s, ", location, registerName(r0).data()); |
| if (r0 >=0 && r0 < (int)m_unlinkedCode->numberOfRegExps()) |
| out.printf("%s", regexpName(re0, regexp(re0)).data()); |
| else |
| out.printf("bad_regexp(%d)", re0); |
| break; |
| } |
| case op_mov: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| out.printf("[%4d] mov\t\t %s, %s", location, registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_not: { |
| printUnaryOp(out, exec, location, it, "not"); |
| break; |
| } |
| case op_eq: { |
| printBinaryOp(out, exec, location, it, "eq"); |
| break; |
| } |
| case op_eq_null: { |
| printUnaryOp(out, exec, location, it, "eq_null"); |
| break; |
| } |
| case op_neq: { |
| printBinaryOp(out, exec, location, it, "neq"); |
| break; |
| } |
| case op_neq_null: { |
| printUnaryOp(out, exec, location, it, "neq_null"); |
| break; |
| } |
| case op_stricteq: { |
| printBinaryOp(out, exec, location, it, "stricteq"); |
| break; |
| } |
| case op_nstricteq: { |
| printBinaryOp(out, exec, location, it, "nstricteq"); |
| break; |
| } |
| case op_less: { |
| printBinaryOp(out, exec, location, it, "less"); |
| break; |
| } |
| case op_lesseq: { |
| printBinaryOp(out, exec, location, it, "lesseq"); |
| break; |
| } |
| case op_greater: { |
| printBinaryOp(out, exec, location, it, "greater"); |
| break; |
| } |
| case op_greatereq: { |
| printBinaryOp(out, exec, location, it, "greatereq"); |
| break; |
| } |
| case op_inc: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] pre_inc\t\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_dec: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] pre_dec\t\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_to_number: { |
| printUnaryOp(out, exec, location, it, "to_number"); |
| break; |
| } |
| case op_negate: { |
| printUnaryOp(out, exec, location, it, "negate"); |
| break; |
| } |
| case op_add: { |
| printBinaryOp(out, exec, location, it, "add"); |
| ++it; |
| break; |
| } |
| case op_mul: { |
| printBinaryOp(out, exec, location, it, "mul"); |
| ++it; |
| break; |
| } |
| case op_div: { |
| printBinaryOp(out, exec, location, it, "div"); |
| ++it; |
| break; |
| } |
| case op_mod: { |
| printBinaryOp(out, exec, location, it, "mod"); |
| break; |
| } |
| case op_sub: { |
| printBinaryOp(out, exec, location, it, "sub"); |
| ++it; |
| break; |
| } |
| case op_lshift: { |
| printBinaryOp(out, exec, location, it, "lshift"); |
| break; |
| } |
| case op_rshift: { |
| printBinaryOp(out, exec, location, it, "rshift"); |
| break; |
| } |
| case op_urshift: { |
| printBinaryOp(out, exec, location, it, "urshift"); |
| break; |
| } |
| case op_bitand: { |
| printBinaryOp(out, exec, location, it, "bitand"); |
| ++it; |
| break; |
| } |
| case op_bitxor: { |
| printBinaryOp(out, exec, location, it, "bitxor"); |
| ++it; |
| break; |
| } |
| case op_bitor: { |
| printBinaryOp(out, exec, location, it, "bitor"); |
| ++it; |
| break; |
| } |
| case op_check_has_instance: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] check_has_instance\t\t %s, %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), offset, location + offset); |
| break; |
| } |
| case op_instanceof: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] instanceof\t\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| break; |
| } |
| case op_typeof: { |
| printUnaryOp(out, exec, location, it, "typeof"); |
| break; |
| } |
| case op_is_undefined: { |
| printUnaryOp(out, exec, location, it, "is_undefined"); |
| break; |
| } |
| case op_is_boolean: { |
| printUnaryOp(out, exec, location, it, "is_boolean"); |
| break; |
| } |
| case op_is_number: { |
| printUnaryOp(out, exec, location, it, "is_number"); |
| break; |
| } |
| case op_is_string: { |
| printUnaryOp(out, exec, location, it, "is_string"); |
| break; |
| } |
| case op_is_object: { |
| printUnaryOp(out, exec, location, it, "is_object"); |
| break; |
| } |
| case op_is_function: { |
| printUnaryOp(out, exec, location, it, "is_function"); |
| break; |
| } |
| case op_in: { |
| printBinaryOp(out, exec, location, it, "in"); |
| break; |
| } |
| case op_init_global_const_nop: { |
| out.printf("[%4d] init_global_const_nop\t", location); |
| it++; |
| it++; |
| it++; |
| it++; |
| break; |
| } |
| case op_init_global_const: { |
| WriteBarrier<Unknown>* registerPointer = (++it)->u.registerPointer; |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] init_global_const\t g%d(%p), %s", location, m_globalObject->findRegisterIndex(registerPointer), registerPointer, registerName(r0).data()); |
| it++; |
| it++; |
| break; |
| } |
| case op_get_by_id: |
| case op_get_by_id_out_of_line: |
| case op_get_by_id_self: |
| case op_get_by_id_proto: |
| case op_get_by_id_chain: |
| case op_get_by_id_getter_self: |
| case op_get_by_id_getter_proto: |
| case op_get_by_id_getter_chain: |
| case op_get_by_id_custom_self: |
| case op_get_by_id_custom_proto: |
| case op_get_by_id_custom_chain: |
| case op_get_by_id_generic: |
| case op_get_array_length: |
| case op_get_string_length: { |
| printGetByIdOp(out, exec, location, it); |
| printGetByIdCacheStatus(out, exec, location); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_get_arguments_length: { |
| printUnaryOp(out, exec, location, it, "get_arguments_length"); |
| it++; |
| break; |
| } |
| case op_put_by_id: { |
| printPutByIdOp(out, exec, location, it, "put_by_id"); |
| break; |
| } |
| case op_put_by_id_out_of_line: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_out_of_line"); |
| break; |
| } |
| case op_put_by_id_replace: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_replace"); |
| break; |
| } |
| case op_put_by_id_transition: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition"); |
| break; |
| } |
| case op_put_by_id_transition_direct: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct"); |
| break; |
| } |
| case op_put_by_id_transition_direct_out_of_line: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_direct_out_of_line"); |
| break; |
| } |
| case op_put_by_id_transition_normal: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal"); |
| break; |
| } |
| case op_put_by_id_transition_normal_out_of_line: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_transition_normal_out_of_line"); |
| break; |
| } |
| case op_put_by_id_generic: { |
| printPutByIdOp(out, exec, location, it, "put_by_id_generic"); |
| break; |
| } |
| case op_put_getter_setter: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] put_getter_setter\t %s, %s, %s, %s", location, registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), registerName(r2).data()); |
| break; |
| } |
| case op_del_by_id: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| out.printf("[%4d] del_by_id\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data()); |
| break; |
| } |
| case op_get_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] get_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_get_argument_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] get_argument_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| ++it; |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_get_by_pname: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| int r3 = (++it)->u.operand; |
| int r4 = (++it)->u.operand; |
| int r5 = (++it)->u.operand; |
| out.printf("[%4d] get_by_pname\t %s, %s, %s, %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data(), registerName(r4).data(), registerName(r5).data()); |
| break; |
| } |
| case op_put_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] put_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| dumpArrayProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_del_by_val: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int r2 = (++it)->u.operand; |
| out.printf("[%4d] del_by_val\t %s, %s, %s", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data()); |
| break; |
| } |
| case op_put_by_index: { |
| int r0 = (++it)->u.operand; |
| unsigned n0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| out.printf("[%4d] put_by_index\t %s, %u, %s", location, registerName(r0).data(), n0, registerName(r1).data()); |
| break; |
| } |
| case op_jmp: { |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jmp\t\t %d(->%d)", location, offset, location + offset); |
| break; |
| } |
| case op_jtrue: { |
| printConditionalJump(out, exec, begin, it, location, "jtrue"); |
| break; |
| } |
| case op_jfalse: { |
| printConditionalJump(out, exec, begin, it, location, "jfalse"); |
| break; |
| } |
| case op_jeq_null: { |
| printConditionalJump(out, exec, begin, it, location, "jeq_null"); |
| break; |
| } |
| case op_jneq_null: { |
| printConditionalJump(out, exec, begin, it, location, "jneq_null"); |
| break; |
| } |
| case op_jneq_ptr: { |
| int r0 = (++it)->u.operand; |
| Special::Pointer pointer = (++it)->u.specialPointer; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jneq_ptr\t\t %s, %d (%p), %d(->%d)", location, registerName(r0).data(), pointer, m_globalObject->actualPointerFor(pointer), offset, location + offset); |
| break; |
| } |
| case op_jless: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jless\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jlesseq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jlesseq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jgreater: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jgreater\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jgreatereq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jgreatereq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jnless: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jnless\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jnlesseq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jnlesseq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jngreater: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jngreater\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_jngreatereq: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int offset = (++it)->u.operand; |
| out.printf("[%4d] jngreatereq\t\t %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), offset, location + offset); |
| break; |
| } |
| case op_loop_hint: { |
| out.printf("[%4d] loop_hint", location); |
| break; |
| } |
| case op_switch_imm: { |
| int tableIndex = (++it)->u.operand; |
| int defaultTarget = (++it)->u.operand; |
| int scrutineeRegister = (++it)->u.operand; |
| out.printf("[%4d] switch_imm\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); |
| break; |
| } |
| case op_switch_char: { |
| int tableIndex = (++it)->u.operand; |
| int defaultTarget = (++it)->u.operand; |
| int scrutineeRegister = (++it)->u.operand; |
| out.printf("[%4d] switch_char\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); |
| break; |
| } |
| case op_switch_string: { |
| int tableIndex = (++it)->u.operand; |
| int defaultTarget = (++it)->u.operand; |
| int scrutineeRegister = (++it)->u.operand; |
| out.printf("[%4d] switch_string\t %d, %d(->%d), %s", location, tableIndex, defaultTarget, location + defaultTarget, registerName(scrutineeRegister).data()); |
| break; |
| } |
| case op_new_func: { |
| int r0 = (++it)->u.operand; |
| int f0 = (++it)->u.operand; |
| int shouldCheck = (++it)->u.operand; |
| out.printf("[%4d] new_func\t\t %s, f%d, %s", location, registerName(r0).data(), f0, shouldCheck ? "<Checked>" : "<Unchecked>"); |
| break; |
| } |
| case op_new_func_exp: { |
| int r0 = (++it)->u.operand; |
| int f0 = (++it)->u.operand; |
| out.printf("[%4d] new_func_exp\t %s, f%d", location, registerName(r0).data(), f0); |
| break; |
| } |
| case op_call: { |
| printCallOp(out, exec, location, it, "call", DumpCaches, hasPrintedProfiling); |
| break; |
| } |
| case op_call_eval: { |
| printCallOp(out, exec, location, it, "call_eval", DontDumpCaches, hasPrintedProfiling); |
| break; |
| } |
| case op_call_varargs: { |
| int result = (++it)->u.operand; |
| int callee = (++it)->u.operand; |
| int thisValue = (++it)->u.operand; |
| int arguments = (++it)->u.operand; |
| int firstFreeRegister = (++it)->u.operand; |
| ++it; |
| out.printf("[%4d] call_varargs\t %s, %s, %s, %s, %d", location, registerName(result).data(), registerName(callee).data(), registerName(thisValue).data(), registerName(arguments).data(), firstFreeRegister); |
| dumpValueProfiling(out, it, hasPrintedProfiling); |
| break; |
| } |
| case op_tear_off_activation: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] tear_off_activation\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_tear_off_arguments: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| out.printf("[%4d] tear_off_arguments %s, %s", location, registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_ret: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] ret\t\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_ret_object_or_this: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| out.printf("[%4d] constructor_ret\t\t %s %s", location, registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_construct: { |
| printCallOp(out, exec, location, it, "construct", DumpCaches, hasPrintedProfiling); |
| break; |
| } |
| case op_strcat: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int count = (++it)->u.operand; |
| out.printf("[%4d] strcat\t\t %s, %s, %d", location, registerName(r0).data(), registerName(r1).data(), count); |
| break; |
| } |
| case op_to_primitive: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| out.printf("[%4d] to_primitive\t %s, %s", location, registerName(r0).data(), registerName(r1).data()); |
| break; |
| } |
| case op_get_pnames: { |
| int r0 = it[1].u.operand; |
| int r1 = it[2].u.operand; |
| int r2 = it[3].u.operand; |
| int r3 = it[4].u.operand; |
| int offset = it[5].u.operand; |
| out.printf("[%4d] get_pnames\t %s, %s, %s, %s, %d(->%d)", location, registerName(r0).data(), registerName(r1).data(), registerName(r2).data(), registerName(r3).data(), offset, location + offset); |
| it += OPCODE_LENGTH(op_get_pnames) - 1; |
| break; |
| } |
| case op_next_pname: { |
| int dest = it[1].u.operand; |
| int base = it[2].u.operand; |
| int i = it[3].u.operand; |
| int size = it[4].u.operand; |
| int iter = it[5].u.operand; |
| int offset = it[6].u.operand; |
| out.printf("[%4d] next_pname\t %s, %s, %s, %s, %s, %d(->%d)", location, registerName(dest).data(), registerName(base).data(), registerName(i).data(), registerName(size).data(), registerName(iter).data(), offset, location + offset); |
| it += OPCODE_LENGTH(op_next_pname) - 1; |
| break; |
| } |
| case op_push_with_scope: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] push_with_scope\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_pop_scope: { |
| out.printf("[%4d] pop_scope", location); |
| break; |
| } |
| case op_push_name_scope: { |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| unsigned attributes = (++it)->u.operand; |
| out.printf("[%4d] push_name_scope \t%s, %s, %u", location, idName(id0, identifier(id0)).data(), registerName(r1).data(), attributes); |
| break; |
| } |
| case op_catch: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] catch\t\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_throw: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] throw\t\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_throw_static_error: { |
| int k0 = (++it)->u.operand; |
| int k1 = (++it)->u.operand; |
| out.printf("[%4d] throw_static_error\t %s, %s", location, constantName(k0, getConstant(k0)).data(), k1 ? "true" : "false"); |
| break; |
| } |
| case op_debug: { |
| int debugHookID = (++it)->u.operand; |
| int firstLine = (++it)->u.operand; |
| int lastLine = (++it)->u.operand; |
| int column = (++it)->u.operand; |
| out.printf("[%4d] debug\t\t %s, %d, %d, %d", location, debugHookName(debugHookID), firstLine, lastLine, column); |
| break; |
| } |
| case op_profile_will_call: { |
| int function = (++it)->u.operand; |
| out.printf("[%4d] profile_will_call %s", location, registerName(function).data()); |
| break; |
| } |
| case op_profile_did_call: { |
| int function = (++it)->u.operand; |
| out.printf("[%4d] profile_did_call\t %s", location, registerName(function).data()); |
| break; |
| } |
| case op_end: { |
| int r0 = (++it)->u.operand; |
| out.printf("[%4d] end\t\t %s", location, registerName(r0).data()); |
| break; |
| } |
| case op_resolve_scope: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int resolveModeAndType = (++it)->u.operand; |
| ++it; // depth |
| out.printf("[%4d] resolve_scope\t %s, %s, %d", location, registerName(r0).data(), idName(id0, identifier(id0)).data(), resolveModeAndType); |
| break; |
| } |
| case op_get_from_scope: { |
| int r0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int resolveModeAndType = (++it)->u.operand; |
| ++it; // Structure |
| ++it; // Operand |
| ++it; // Skip value profile. |
| out.printf("[%4d] get_from_scope\t %s, %s, %s, %d", location, registerName(r0).data(), registerName(r1).data(), idName(id0, identifier(id0)).data(), resolveModeAndType); |
| break; |
| } |
| case op_put_to_scope: { |
| int r0 = (++it)->u.operand; |
| int id0 = (++it)->u.operand; |
| int r1 = (++it)->u.operand; |
| int resolveModeAndType = (++it)->u.operand; |
| ++it; // Structure |
| ++it; // Operand |
| out.printf("[%4d] put_to_scope\t %s, %s, %s, %d", location, registerName(r0).data(), idName(id0, identifier(id0)).data(), registerName(r1).data(), resolveModeAndType); |
| break; |
| } |
| #if ENABLE(LLINT_C_LOOP) |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } |
| |
| #if ENABLE(VALUE_PROFILER) |
| dumpRareCaseProfile(out, "rare case: ", rareCaseProfileForBytecodeOffset(location), hasPrintedProfiling); |
| dumpRareCaseProfile(out, "special fast case: ", specialFastCaseProfileForBytecodeOffset(location), hasPrintedProfiling); |
| #endif |
| |
| #if ENABLE(DFG_JIT) |
| Vector<DFG::FrequentExitSite> exitSites = exitProfile().exitSitesFor(location); |
| if (!exitSites.isEmpty()) { |
| out.print(" !! frequent exits: "); |
| CommaPrinter comma; |
| for (unsigned i = 0; i < exitSites.size(); ++i) |
| out.print(comma, exitSites[i].kind()); |
| } |
| #else // ENABLE(DFG_JIT) |
| UNUSED_PARAM(location); |
| #endif // ENABLE(DFG_JIT) |
| out.print("\n"); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out, unsigned bytecodeOffset) |
| { |
| ExecState* exec = m_globalObject->globalExec(); |
| const Instruction* it = instructions().begin() + bytecodeOffset; |
| dumpBytecode(out, exec, instructions().begin(), it); |
| } |
| |
| #if DUMP_CODE_BLOCK_STATISTICS |
| static HashSet<CodeBlock*> liveCodeBlockSet; |
| #endif |
| |
| #define FOR_EACH_MEMBER_VECTOR(macro) \ |
| macro(instructions) \ |
| macro(structureStubInfos) \ |
| macro(callLinkInfos) \ |
| macro(linkedCallerList) \ |
| macro(identifiers) \ |
| macro(functionExpressions) \ |
| macro(constantRegisters) |
| |
| #define FOR_EACH_MEMBER_VECTOR_RARE_DATA(macro) \ |
| macro(regexps) \ |
| macro(functions) \ |
| macro(exceptionHandlers) \ |
| macro(switchJumpTables) \ |
| macro(stringSwitchJumpTables) \ |
| macro(evalCodeCache) \ |
| macro(expressionInfo) \ |
| macro(lineInfo) \ |
| macro(callReturnIndexVector) |
| |
| template<typename T> |
| static size_t sizeInBytes(const Vector<T>& vector) |
| { |
| return vector.capacity() * sizeof(T); |
| } |
| |
| void CodeBlock::dumpStatistics() |
| { |
| #if DUMP_CODE_BLOCK_STATISTICS |
| #define DEFINE_VARS(name) size_t name##IsNotEmpty = 0; size_t name##TotalSize = 0; |
| FOR_EACH_MEMBER_VECTOR(DEFINE_VARS) |
| FOR_EACH_MEMBER_VECTOR_RARE_DATA(DEFINE_VARS) |
| #undef DEFINE_VARS |
| |
| // Non-vector data members |
| size_t evalCodeCacheIsNotEmpty = 0; |
| |
| size_t symbolTableIsNotEmpty = 0; |
| size_t symbolTableTotalSize = 0; |
| |
| size_t hasRareData = 0; |
| |
| size_t isFunctionCode = 0; |
| size_t isGlobalCode = 0; |
| size_t isEvalCode = 0; |
| |
| HashSet<CodeBlock*>::const_iterator end = liveCodeBlockSet.end(); |
| for (HashSet<CodeBlock*>::const_iterator it = liveCodeBlockSet.begin(); it != end; ++it) { |
| CodeBlock* codeBlock = *it; |
| |
| #define GET_STATS(name) if (!codeBlock->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_##name); } |
| FOR_EACH_MEMBER_VECTOR(GET_STATS) |
| #undef GET_STATS |
| |
| if (codeBlock->symbolTable() && !codeBlock->symbolTable()->isEmpty()) { |
| symbolTableIsNotEmpty++; |
| symbolTableTotalSize += (codeBlock->symbolTable()->capacity() * (sizeof(SymbolTable::KeyType) + sizeof(SymbolTable::MappedType))); |
| } |
| |
| if (codeBlock->m_rareData) { |
| hasRareData++; |
| #define GET_STATS(name) if (!codeBlock->m_rareData->m_##name.isEmpty()) { name##IsNotEmpty++; name##TotalSize += sizeInBytes(codeBlock->m_rareData->m_##name); } |
| FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_STATS) |
| #undef GET_STATS |
| |
| if (!codeBlock->m_rareData->m_evalCodeCache.isEmpty()) |
| evalCodeCacheIsNotEmpty++; |
| } |
| |
| switch (codeBlock->codeType()) { |
| case FunctionCode: |
| ++isFunctionCode; |
| break; |
| case GlobalCode: |
| ++isGlobalCode; |
| break; |
| case EvalCode: |
| ++isEvalCode; |
| break; |
| } |
| } |
| |
| size_t totalSize = 0; |
| |
| #define GET_TOTAL_SIZE(name) totalSize += name##TotalSize; |
| FOR_EACH_MEMBER_VECTOR(GET_TOTAL_SIZE) |
| FOR_EACH_MEMBER_VECTOR_RARE_DATA(GET_TOTAL_SIZE) |
| #undef GET_TOTAL_SIZE |
| |
| totalSize += symbolTableTotalSize; |
| totalSize += (liveCodeBlockSet.size() * sizeof(CodeBlock)); |
| |
| dataLogF("Number of live CodeBlocks: %d\n", liveCodeBlockSet.size()); |
| dataLogF("Size of a single CodeBlock [sizeof(CodeBlock)]: %zu\n", sizeof(CodeBlock)); |
| dataLogF("Size of all CodeBlocks: %zu\n", totalSize); |
| dataLogF("Average size of a CodeBlock: %zu\n", totalSize / liveCodeBlockSet.size()); |
| |
| dataLogF("Number of FunctionCode CodeBlocks: %zu (%.3f%%)\n", isFunctionCode, static_cast<double>(isFunctionCode) * 100.0 / liveCodeBlockSet.size()); |
| dataLogF("Number of GlobalCode CodeBlocks: %zu (%.3f%%)\n", isGlobalCode, static_cast<double>(isGlobalCode) * 100.0 / liveCodeBlockSet.size()); |
| dataLogF("Number of EvalCode CodeBlocks: %zu (%.3f%%)\n", isEvalCode, static_cast<double>(isEvalCode) * 100.0 / liveCodeBlockSet.size()); |
| |
| dataLogF("Number of CodeBlocks with rare data: %zu (%.3f%%)\n", hasRareData, static_cast<double>(hasRareData) * 100.0 / liveCodeBlockSet.size()); |
| |
| #define PRINT_STATS(name) dataLogF("Number of CodeBlocks with " #name ": %zu\n", name##IsNotEmpty); dataLogF("Size of all " #name ": %zu\n", name##TotalSize); |
| FOR_EACH_MEMBER_VECTOR(PRINT_STATS) |
| FOR_EACH_MEMBER_VECTOR_RARE_DATA(PRINT_STATS) |
| #undef PRINT_STATS |
| |
| dataLogF("Number of CodeBlocks with evalCodeCache: %zu\n", evalCodeCacheIsNotEmpty); |
| dataLogF("Number of CodeBlocks with symbolTable: %zu\n", symbolTableIsNotEmpty); |
| |
| dataLogF("Size of all symbolTables: %zu\n", symbolTableTotalSize); |
| |
| #else |
| dataLogF("Dumping CodeBlock statistics is not enabled.\n"); |
| #endif |
| } |
| |
| CodeBlock::CodeBlock(CopyParsedBlockTag, CodeBlock& other) |
| : m_globalObject(other.m_globalObject) |
| , m_heap(other.m_heap) |
| , m_numCalleeRegisters(other.m_numCalleeRegisters) |
| , m_numVars(other.m_numVars) |
| , m_isConstructor(other.m_isConstructor) |
| , m_shouldAlwaysBeInlined(true) |
| , m_unlinkedCode(*other.m_vm, other.m_ownerExecutable.get(), other.m_unlinkedCode.get()) |
| , m_ownerExecutable(*other.m_vm, other.m_ownerExecutable.get(), other.m_ownerExecutable.get()) |
| , m_vm(other.m_vm) |
| , m_instructions(other.m_instructions) |
| , m_thisRegister(other.m_thisRegister) |
| , m_argumentsRegister(other.m_argumentsRegister) |
| , m_activationRegister(other.m_activationRegister) |
| , m_isStrictMode(other.m_isStrictMode) |
| , m_needsActivation(other.m_needsActivation) |
| , m_source(other.m_source) |
| , m_sourceOffset(other.m_sourceOffset) |
| , m_firstLineColumnOffset(other.m_firstLineColumnOffset) |
| , m_codeType(other.m_codeType) |
| , m_additionalIdentifiers(other.m_additionalIdentifiers) |
| , m_constantRegisters(other.m_constantRegisters) |
| , m_functionDecls(other.m_functionDecls) |
| , m_functionExprs(other.m_functionExprs) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| , m_hash(other.m_hash) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| { |
| setNumParameters(other.numParameters()); |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| if (other.m_rareData) { |
| createRareDataIfNecessary(); |
| |
| m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; |
| m_rareData->m_constantBuffers = other.m_rareData->m_constantBuffers; |
| m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; |
| m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; |
| } |
| } |
| |
| CodeBlock::CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSScope* scope, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) |
| : m_globalObject(scope->globalObject()->vm(), ownerExecutable, scope->globalObject()) |
| , m_heap(&m_globalObject->vm().heap) |
| , m_numCalleeRegisters(unlinkedCodeBlock->m_numCalleeRegisters) |
| , m_numVars(unlinkedCodeBlock->m_numVars) |
| , m_isConstructor(unlinkedCodeBlock->isConstructor()) |
| , m_shouldAlwaysBeInlined(true) |
| , m_unlinkedCode(m_globalObject->vm(), ownerExecutable, unlinkedCodeBlock) |
| , m_ownerExecutable(m_globalObject->vm(), ownerExecutable, ownerExecutable) |
| , m_vm(unlinkedCodeBlock->vm()) |
| , m_thisRegister(unlinkedCodeBlock->thisRegister()) |
| , m_argumentsRegister(unlinkedCodeBlock->argumentsRegister()) |
| , m_activationRegister(unlinkedCodeBlock->activationRegister()) |
| , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) |
| , m_needsActivation(unlinkedCodeBlock->needsFullScopeChain() && unlinkedCodeBlock->codeType() == FunctionCode) |
| , m_source(sourceProvider) |
| , m_sourceOffset(sourceOffset) |
| , m_firstLineColumnOffset(firstLineColumnOffset) |
| , m_codeType(unlinkedCodeBlock->codeType()) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| { |
| m_vm->startedCompiling(this); |
| |
| ASSERT(m_source); |
| setNumParameters(unlinkedCodeBlock->numParameters()); |
| |
| #if DUMP_CODE_BLOCK_STATISTICS |
| liveCodeBlockSet.add(this); |
| #endif |
| |
| setConstantRegisters(unlinkedCodeBlock->constantRegisters()); |
| if (unlinkedCodeBlock->usesGlobalObject()) |
| m_constantRegisters[unlinkedCodeBlock->globalObjectRegister()].set(*m_vm, ownerExecutable, m_globalObject.get()); |
| m_functionDecls.grow(unlinkedCodeBlock->numberOfFunctionDecls()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); |
| unsigned lineCount = unlinkedExecutable->lineCount(); |
| unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset(); |
| unsigned startColumn = unlinkedExecutable->functionStartColumn(); |
| startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn()); |
| unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset(); |
| unsigned sourceLength = unlinkedExecutable->sourceLength(); |
| SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn); |
| FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn); |
| m_functionDecls[i].set(*m_vm, ownerExecutable, executable); |
| } |
| |
| m_functionExprs.grow(unlinkedCodeBlock->numberOfFunctionExprs()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); |
| unsigned lineCount = unlinkedExecutable->lineCount(); |
| unsigned firstLine = ownerExecutable->lineNo() + unlinkedExecutable->firstLineOffset(); |
| unsigned startColumn = unlinkedExecutable->functionStartColumn(); |
| startColumn += (unlinkedExecutable->firstLineOffset() ? 1 : ownerExecutable->startColumn()); |
| unsigned startOffset = sourceOffset + unlinkedExecutable->startOffset(); |
| unsigned sourceLength = unlinkedExecutable->sourceLength(); |
| SourceCode code(m_source, startOffset, startOffset + sourceLength, firstLine, startColumn); |
| FunctionExecutable* executable = FunctionExecutable::create(*m_vm, code, unlinkedExecutable, firstLine, firstLine + lineCount, startColumn); |
| m_functionExprs[i].set(*m_vm, ownerExecutable, executable); |
| } |
| |
| if (unlinkedCodeBlock->hasRareData()) { |
| createRareDataIfNecessary(); |
| if (size_t count = unlinkedCodeBlock->constantBufferCount()) { |
| m_rareData->m_constantBuffers.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| const UnlinkedCodeBlock::ConstantBuffer& buffer = unlinkedCodeBlock->constantBuffer(i); |
| m_rareData->m_constantBuffers[i] = buffer; |
| } |
| } |
| if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { |
| m_rareData->m_exceptionHandlers.grow(count); |
| size_t nonLocalScopeDepth = scope->depth(); |
| for (size_t i = 0; i < count; i++) { |
| const UnlinkedHandlerInfo& handler = unlinkedCodeBlock->exceptionHandler(i); |
| m_rareData->m_exceptionHandlers[i].start = handler.start; |
| m_rareData->m_exceptionHandlers[i].end = handler.end; |
| m_rareData->m_exceptionHandlers[i].target = handler.target; |
| m_rareData->m_exceptionHandlers[i].scopeDepth = nonLocalScopeDepth + handler.scopeDepth; |
| #if ENABLE(JIT) && ENABLE(LLINT) |
| m_rareData->m_exceptionHandlers[i].nativeCode = CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(llint_op_catch))); |
| #endif |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { |
| m_rareData->m_stringSwitchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); |
| UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); |
| for (; ptr != end; ++ptr) { |
| OffsetLocation offset; |
| offset.branchOffset = ptr->value; |
| m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); |
| } |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { |
| m_rareData->m_switchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); |
| SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; |
| destTable.branchOffsets = sourceTable.branchOffsets; |
| destTable.min = sourceTable.min; |
| } |
| } |
| } |
| |
| // Allocate metadata buffers for the bytecode |
| #if ENABLE(LLINT) |
| if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) |
| m_llintCallLinkInfos.grow(size); |
| #endif |
| #if ENABLE(DFG_JIT) |
| if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) |
| m_arrayProfiles.grow(size); |
| if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) |
| m_arrayAllocationProfiles.grow(size); |
| if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) |
| m_valueProfiles.grow(size); |
| #endif |
| if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) |
| m_objectAllocationProfiles.grow(size); |
| |
| // Copy and translate the UnlinkedInstructions |
| size_t instructionCount = unlinkedCodeBlock->instructions().size(); |
| UnlinkedInstruction* pc = unlinkedCodeBlock->instructions().data(); |
| Vector<Instruction, 0, UnsafeVectorOverflow> instructions(instructionCount); |
| for (size_t i = 0; i < unlinkedCodeBlock->instructions().size(); ) { |
| unsigned opLength = opcodeLength(pc[i].u.opcode); |
| instructions[i] = vm()->interpreter->getOpcode(pc[i].u.opcode); |
| for (size_t j = 1; j < opLength; ++j) { |
| if (sizeof(int32_t) != sizeof(intptr_t)) |
| instructions[i + j].u.pointer = 0; |
| instructions[i + j].u.operand = pc[i + j].u.operand; |
| } |
| switch (pc[i].u.opcode) { |
| #if ENABLE(DFG_JIT) |
| case op_get_by_val: |
| case op_get_argument_by_val: { |
| int arrayProfileIndex = pc[i + opLength - 2].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| |
| instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; |
| // fallthrough |
| } |
| case op_to_this: |
| case op_get_by_id: |
| case op_call_varargs: |
| case op_get_callee: { |
| ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| break; |
| } |
| case op_put_by_val: { |
| int arrayProfileIndex = pc[i + opLength - 1].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; |
| break; |
| } |
| |
| case op_new_array: |
| case op_new_array_buffer: |
| case op_new_array_with_size: { |
| int arrayAllocationProfileIndex = pc[i + opLength - 1].u.operand; |
| instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; |
| break; |
| } |
| #endif |
| case op_new_object: { |
| int objectAllocationProfileIndex = pc[i + opLength - 1].u.operand; |
| ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; |
| int inferredInlineCapacity = pc[i + opLength - 2].u.operand; |
| |
| instructions[i + opLength - 1] = objectAllocationProfile; |
| objectAllocationProfile->initialize(*vm(), |
| m_ownerExecutable.get(), m_globalObject->objectPrototype(), inferredInlineCapacity); |
| break; |
| } |
| |
| case op_call: |
| case op_call_eval: { |
| #if ENABLE(DFG_JIT) |
| ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| int arrayProfileIndex = pc[i + opLength - 2].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; |
| #endif |
| #if ENABLE(LLINT) |
| instructions[i + 5] = &m_llintCallLinkInfos[pc[i + 5].u.operand]; |
| #endif |
| break; |
| } |
| case op_construct: { |
| #if ENABLE(LLINT) |
| instructions[i + 5] = &m_llintCallLinkInfos[pc[i + 5].u.operand]; |
| #endif |
| #if ENABLE(DFG_JIT) |
| ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| #endif |
| break; |
| } |
| case op_get_by_id_out_of_line: |
| case op_get_by_id_self: |
| case op_get_by_id_proto: |
| case op_get_by_id_chain: |
| case op_get_by_id_getter_self: |
| case op_get_by_id_getter_proto: |
| case op_get_by_id_getter_chain: |
| case op_get_by_id_custom_self: |
| case op_get_by_id_custom_proto: |
| case op_get_by_id_custom_chain: |
| case op_get_by_id_generic: |
| case op_get_array_length: |
| case op_get_string_length: |
| CRASH(); |
| |
| case op_init_global_const_nop: { |
| ASSERT(codeType() == GlobalCode); |
| Identifier ident = identifier(pc[i + 4].u.operand); |
| SymbolTableEntry entry = m_globalObject->symbolTable()->get(ident.impl()); |
| if (entry.isNull()) |
| break; |
| |
| // It's likely that we'll write to this var, so notify now and avoid the overhead of doing so at runtime. |
| entry.notifyWrite(); |
| |
| instructions[i + 0] = vm()->interpreter->getOpcode(op_init_global_const); |
| instructions[i + 1] = &m_globalObject->registerAt(entry.getIndex()); |
| break; |
| } |
| |
| case op_resolve_scope: { |
| const Identifier& ident = identifier(pc[i + 2].u.operand); |
| ResolveType type = static_cast<ResolveType>(pc[i + 3].u.operand); |
| |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Get, type); |
| instructions[i + 3].u.operand = op.type; |
| instructions[i + 4].u.operand = op.depth; |
| break; |
| } |
| |
| case op_get_from_scope: { |
| #if ENABLE(VALUE_PROFILER) |
| ValueProfile* profile = &m_valueProfiles[pc[i + opLength - 1].u.operand]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = i; |
| instructions[i + opLength - 1] = profile; |
| #endif |
| |
| // get_from_scope dst, scope, id, ResolveModeAndType, Structure, Operand |
| const Identifier& ident = identifier(pc[i + 3].u.operand); |
| ResolveModeAndType modeAndType = ResolveModeAndType(pc[i + 4].u.operand); |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Get, modeAndType.type()); |
| |
| instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); |
| if (op.structure) |
| instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); |
| instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); |
| break; |
| } |
| |
| case op_put_to_scope: { |
| // put_to_scope scope, id, value, ResolveModeAndType, Structure, Operand |
| const Identifier& ident = identifier(pc[i + 2].u.operand); |
| ResolveModeAndType modeAndType = ResolveModeAndType(pc[i + 4].u.operand); |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), scope, ident, Put, modeAndType.type()); |
| |
| instructions[i + 4].u.operand = ResolveModeAndType(modeAndType.mode(), op.type).operand(); |
| if (op.structure) |
| instructions[i + 5].u.structure.set(*vm(), ownerExecutable, op.structure); |
| instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); |
| break; |
| } |
| |
| case op_debug: { |
| instructions[i + 4] = columnNumberForBytecodeOffset(i); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| i += opLength; |
| } |
| m_instructions = WTF::RefCountedArray<Instruction>(instructions); |
| |
| // Set optimization thresholds only after m_instructions is initialized, since these |
| // rely on the instruction count (and are in theory permitted to also inspect the |
| // instruction stream to more accurate assess the cost of tier-up). |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| // If the concurrent thread will want the code block's hash, then compute it here |
| // synchronously. |
| if (Options::showDisassembly() |
| || Options::showDFGDisassembly() |
| || Options::dumpBytecodeAtDFGTime() |
| || Options::verboseCompilation() |
| || Options::logCompilationChanges() |
| || Options::validateGraph() |
| || Options::validateGraphAtEachPhase() |
| || Options::verboseOSR() |
| || Options::verboseCompilationQueue() |
| || Options::reportCompileTimes() |
| || Options::verboseCFA()) |
| hash(); |
| |
| if (Options::dumpGeneratedBytecodes()) |
| dumpBytecode(); |
| m_vm->finishedCompiling(this); |
| } |
| |
| CodeBlock::~CodeBlock() |
| { |
| if (m_vm->m_perBytecodeProfiler) |
| m_vm->m_perBytecodeProfiler->notifyDestruction(this); |
| |
| #if ENABLE(DFG_JIT) |
| // Remove myself from the set of DFG code blocks. Note that I may not be in this set |
| // (because I'm not a DFG code block), in which case this is a no-op anyway. |
| m_vm->heap.m_dfgCodeBlocks.m_set.remove(this); |
| #endif |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| dumpValueProfiles(); |
| #endif |
| |
| #if ENABLE(LLINT) |
| while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| m_incomingLLIntCalls.begin()->remove(); |
| #endif // ENABLE(LLINT) |
| #if ENABLE(JIT) |
| // We may be destroyed before any CodeBlocks that refer to us are destroyed. |
| // Consider that two CodeBlocks become unreachable at the same time. There |
| // is no guarantee about the order in which the CodeBlocks are destroyed. |
| // So, if we don't remove incoming calls, and get destroyed before the |
| // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's |
| // destructor will try to remove nodes from our (no longer valid) linked list. |
| while (m_incomingCalls.begin() != m_incomingCalls.end()) |
| m_incomingCalls.begin()->remove(); |
| |
| // Note that our outgoing calls will be removed from other CodeBlocks' |
| // m_incomingCalls linked lists through the execution of the ~CallLinkInfo |
| // destructors. |
| |
| for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) |
| m_structureStubInfos[i].deref(); |
| #endif // ENABLE(JIT) |
| |
| #if DUMP_CODE_BLOCK_STATISTICS |
| liveCodeBlockSet.remove(this); |
| #endif |
| } |
| |
| void CodeBlock::setNumParameters(int newValue) |
| { |
| m_numParameters = newValue; |
| |
| #if ENABLE(VALUE_PROFILER) |
| m_argumentValueProfiles.resizeToFit(newValue); |
| #endif |
| } |
| |
| void EvalCodeCache::visitAggregate(SlotVisitor& visitor) |
| { |
| EvalCacheMap::iterator end = m_cacheMap.end(); |
| for (EvalCacheMap::iterator ptr = m_cacheMap.begin(); ptr != end; ++ptr) |
| visitor.append(&ptr->value); |
| } |
| |
| void CodeBlock::visitAggregate(SlotVisitor& visitor) |
| { |
| #if ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| // I may be asked to scan myself more than once, and it may even happen concurrently. |
| // To this end, use a CAS loop to check if I've been called already. Only one thread |
| // may proceed past this point - whichever one wins the CAS race. |
| unsigned oldValue; |
| do { |
| oldValue = dfgCommon->visitAggregateHasBeenCalled; |
| if (oldValue) { |
| // Looks like someone else won! Return immediately to ensure that we don't |
| // trace the same CodeBlock concurrently. Doing so is hazardous since we will |
| // be mutating the state of ValueProfiles, which contain JSValues, which can |
| // have word-tearing on 32-bit, leading to awesome timing-dependent crashes |
| // that are nearly impossible to track down. |
| |
| // Also note that it must be safe to return early as soon as we see the |
| // value true (well, (unsigned)1), since once a GC thread is in this method |
| // and has won the CAS race (i.e. was responsible for setting the value true) |
| // it will definitely complete the rest of this method before declaring |
| // termination. |
| return; |
| } |
| } while (!WTF::weakCompareAndSwap(&dfgCommon->visitAggregateHasBeenCalled, 0, 1)); |
| } |
| #endif // ENABLE(PARALLEL_GC) && ENABLE(DFG_JIT) |
| |
| if (!!m_alternative) |
| m_alternative->visitAggregate(visitor); |
| |
| visitor.append(&m_unlinkedCode); |
| |
| // There are three things that may use unconditional finalizers: lazy bytecode freeing, |
| // inline cache clearing, and jettisoning. The probability of us wanting to do at |
| // least one of those things is probably quite close to 1. So we add one no matter what |
| // and when it runs, it figures out whether it has any work to do. |
| visitor.addUnconditionalFinalizer(this); |
| |
| // There are two things that we use weak reference harvesters for: DFG fixpoint for |
| // jettisoning, and trying to find structures that would be live based on some |
| // inline cache. So it makes sense to register them regardless. |
| visitor.addWeakReferenceHarvester(this); |
| m_allTransitionsHaveBeenMarked = false; |
| |
| if (shouldImmediatelyAssumeLivenessDuringScan()) { |
| // This code block is live, so scan all references strongly and return. |
| stronglyVisitStrongReferences(visitor); |
| stronglyVisitWeakReferences(visitor); |
| propagateTransitions(visitor); |
| return; |
| } |
| |
| #if ENABLE(DFG_JIT) |
| // We get here if we're live in the sense that our owner executable is live, |
| // but we're not yet live for sure in another sense: we may yet decide that this |
| // code block should be jettisoned based on its outgoing weak references being |
| // stale. Set a flag to indicate that we're still assuming that we're dead, and |
| // perform one round of determining if we're live. The GC may determine, based on |
| // either us marking additional objects, or by other objects being marked for |
| // other reasons, that this iteration should run again; it will notify us of this |
| // decision by calling harvestWeakReferences(). |
| |
| m_jitCode->dfgCommon()->livenessHasBeenProved = false; |
| |
| propagateTransitions(visitor); |
| determineLiveness(visitor); |
| #else // ENABLE(DFG_JIT) |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::propagateTransitions(SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| if (m_allTransitionsHaveBeenMarked) |
| return; |
| |
| bool allAreMarkedSoFar = true; |
| |
| #if ENABLE(LLINT) |
| Interpreter* interpreter = m_vm->interpreter; |
| if (jitType() == JITCode::InterpreterThunk) { |
| const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { |
| Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; |
| switch (interpreter->getOpcodeID(instruction[0].u.opcode)) { |
| case op_put_by_id_transition_direct: |
| case op_put_by_id_transition_normal: |
| case op_put_by_id_transition_direct_out_of_line: |
| case op_put_by_id_transition_normal_out_of_line: { |
| if (Heap::isMarked(instruction[4].u.structure.get())) |
| visitor.append(&instruction[6].u.structure); |
| else |
| allAreMarkedSoFar = false; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| #endif // ENABLE(LLINT) |
| |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) { |
| for (unsigned i = 0; i < m_structureStubInfos.size(); ++i) { |
| StructureStubInfo& stubInfo = m_structureStubInfos[i]; |
| switch (stubInfo.accessType) { |
| case access_put_by_id_transition_normal: |
| case access_put_by_id_transition_direct: { |
| JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); |
| if ((!origin || Heap::isMarked(origin)) |
| && Heap::isMarked(stubInfo.u.putByIdTransition.previousStructure.get())) |
| visitor.append(&stubInfo.u.putByIdTransition.structure); |
| else |
| allAreMarkedSoFar = false; |
| break; |
| } |
| |
| case access_put_by_id_list: { |
| PolymorphicPutByIdList* list = stubInfo.u.putByIdList.list; |
| JSCell* origin = stubInfo.codeOrigin.codeOriginOwner(); |
| if (origin && !Heap::isMarked(origin)) { |
| allAreMarkedSoFar = false; |
| break; |
| } |
| for (unsigned j = list->size(); j--;) { |
| PutByIdAccess& access = list->m_list[j]; |
| if (!access.isTransition()) |
| continue; |
| if (Heap::isMarked(access.oldStructure())) |
| visitor.append(&access.m_newStructure); |
| else |
| allAreMarkedSoFar = false; |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| } |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { |
| if ((!dfgCommon->transitions[i].m_codeOrigin |
| || Heap::isMarked(dfgCommon->transitions[i].m_codeOrigin.get())) |
| && Heap::isMarked(dfgCommon->transitions[i].m_from.get())) { |
| // If the following three things are live, then the target of the |
| // transition is also live: |
| // - This code block. We know it's live already because otherwise |
| // we wouldn't be scanning ourselves. |
| // - The code origin of the transition. Transitions may arise from |
| // code that was inlined. They are not relevant if the user's |
| // object that is required for the inlinee to run is no longer |
| // live. |
| // - The source of the transition. The transition checks if some |
| // heap location holds the source, and if so, stores the target. |
| // Hence the source must be live for the transition to be live. |
| visitor.append(&dfgCommon->transitions[i].m_to); |
| } else |
| allAreMarkedSoFar = false; |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| if (allAreMarkedSoFar) |
| m_allTransitionsHaveBeenMarked = true; |
| } |
| |
| void CodeBlock::determineLiveness(SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| if (shouldImmediatelyAssumeLivenessDuringScan()) |
| return; |
| |
| #if ENABLE(DFG_JIT) |
| // Check if we have any remaining work to do. |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| if (dfgCommon->livenessHasBeenProved) |
| return; |
| |
| // Now check all of our weak references. If all of them are live, then we |
| // have proved liveness and so we scan our strong references. If at end of |
| // GC we still have not proved liveness, then this code block is toast. |
| bool allAreLiveSoFar = true; |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| if (!Heap::isMarked(dfgCommon->weakReferences[i].get())) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| |
| // If some weak references are dead, then this fixpoint iteration was |
| // unsuccessful. |
| if (!allAreLiveSoFar) |
| return; |
| |
| // All weak references are live. Record this information so we don't |
| // come back here again, and scan the strong references. |
| dfgCommon->livenessHasBeenProved = true; |
| stronglyVisitStrongReferences(visitor); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::visitWeakReferences(SlotVisitor& visitor) |
| { |
| propagateTransitions(visitor); |
| determineLiveness(visitor); |
| } |
| |
| void CodeBlock::finalizeUnconditionally() |
| { |
| #if ENABLE(LLINT) |
| Interpreter* interpreter = m_vm->interpreter; |
| if (JITCode::couldBeInterpreted(jitType())) { |
| const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { |
| Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; |
| switch (interpreter->getOpcodeID(curInstruction[0].u.opcode)) { |
| case op_get_by_id: |
| case op_get_by_id_out_of_line: |
| case op_put_by_id: |
| case op_put_by_id_out_of_line: |
| if (!curInstruction[4].u.structure || Heap::isMarked(curInstruction[4].u.structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt property access with structure %p.\n", curInstruction[4].u.structure.get()); |
| curInstruction[4].u.structure.clear(); |
| curInstruction[5].u.operand = 0; |
| break; |
| case op_put_by_id_transition_direct: |
| case op_put_by_id_transition_normal: |
| case op_put_by_id_transition_direct_out_of_line: |
| case op_put_by_id_transition_normal_out_of_line: |
| if (Heap::isMarked(curInstruction[4].u.structure.get()) |
| && Heap::isMarked(curInstruction[6].u.structure.get()) |
| && Heap::isMarked(curInstruction[7].u.structureChain.get())) |
| break; |
| if (Options::verboseOSR()) { |
| dataLogF("Clearing LLInt put transition with structures %p -> %p, chain %p.\n", |
| curInstruction[4].u.structure.get(), |
| curInstruction[6].u.structure.get(), |
| curInstruction[7].u.structureChain.get()); |
| } |
| curInstruction[4].u.structure.clear(); |
| curInstruction[6].u.structure.clear(); |
| curInstruction[7].u.structureChain.clear(); |
| curInstruction[0].u.opcode = interpreter->getOpcode(op_put_by_id); |
| break; |
| case op_get_array_length: |
| break; |
| case op_get_from_scope: |
| case op_put_to_scope: { |
| WriteBarrierBase<Structure>& structure = curInstruction[5].u.structure; |
| if (!structure || Heap::isMarked(structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt scope access with structure %p.\n", structure.get()); |
| structure.clear(); |
| break; |
| } |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { |
| if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { |
| if (Options::verboseOSR()) |
| dataLog("Clearing LLInt call from ", *this, "\n"); |
| m_llintCallLinkInfos[i].unlink(); |
| } |
| if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) |
| m_llintCallLinkInfos[i].lastSeenCallee.clear(); |
| } |
| } |
| #endif // ENABLE(LLINT) |
| |
| #if ENABLE(DFG_JIT) |
| // Check if we're not live. If we are, then jettison. |
| if (!(shouldImmediatelyAssumeLivenessDuringScan() || m_jitCode->dfgCommon()->livenessHasBeenProved)) { |
| if (Options::verboseOSR()) |
| dataLog(*this, " has dead weak references, jettisoning during GC.\n"); |
| |
| if (DFG::shouldShowDisassembly()) { |
| dataLog(*this, " will be jettisoned because of the following dead references:\n"); |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { |
| DFG::WeakReferenceTransition& transition = dfgCommon->transitions[i]; |
| JSCell* origin = transition.m_codeOrigin.get(); |
| JSCell* from = transition.m_from.get(); |
| JSCell* to = transition.m_to.get(); |
| if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) |
| continue; |
| dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); |
| } |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| JSCell* weak = dfgCommon->weakReferences[i].get(); |
| if (Heap::isMarked(weak)) |
| continue; |
| dataLog(" Weak reference ", RawPointer(weak), ".\n"); |
| } |
| } |
| |
| jettison(); |
| return; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| #if ENABLE(JIT) |
| // Handle inline caches. |
| if (!!jitCode()) { |
| RepatchBuffer repatchBuffer(this); |
| for (unsigned i = 0; i < numberOfCallLinkInfos(); ++i) { |
| if (callLinkInfo(i).isLinked()) { |
| if (ClosureCallStubRoutine* stub = callLinkInfo(i).stub.get()) { |
| if (!Heap::isMarked(stub->structure()) |
| || !Heap::isMarked(stub->executable())) { |
| if (Options::verboseOSR()) { |
| dataLog( |
| "Clearing closure call from ", *this, " to ", |
| stub->executable()->hashFor(callLinkInfo(i).specializationKind()), |
| ", stub routine ", RawPointer(stub), ".\n"); |
| } |
| callLinkInfo(i).unlink(*m_vm, repatchBuffer); |
| } |
| } else if (!Heap::isMarked(callLinkInfo(i).callee.get())) { |
| if (Options::verboseOSR()) { |
| dataLog( |
| "Clearing call from ", *this, " to ", |
| RawPointer(callLinkInfo(i).callee.get()), " (", |
| callLinkInfo(i).callee.get()->executable()->hashFor( |
| callLinkInfo(i).specializationKind()), |
| ").\n"); |
| } |
| callLinkInfo(i).unlink(*m_vm, repatchBuffer); |
| } |
| } |
| if (!!callLinkInfo(i).lastSeenCallee |
| && !Heap::isMarked(callLinkInfo(i).lastSeenCallee.get())) |
| callLinkInfo(i).lastSeenCallee.clear(); |
| } |
| for (size_t size = m_structureStubInfos.size(), i = 0; i < size; ++i) { |
| StructureStubInfo& stubInfo = m_structureStubInfos[i]; |
| |
| if (stubInfo.visitWeakReferences()) |
| continue; |
| |
| resetStubDuringGCInternal(repatchBuffer, stubInfo); |
| } |
| } |
| #endif |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::resetStub(StructureStubInfo& stubInfo) |
| { |
| if (stubInfo.accessType == access_unset) |
| return; |
| |
| RepatchBuffer repatchBuffer(this); |
| resetStubInternal(repatchBuffer, stubInfo); |
| } |
| |
| void CodeBlock::resetStubInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) |
| { |
| AccessType accessType = static_cast<AccessType>(stubInfo.accessType); |
| |
| if (Options::verboseOSR()) { |
| // This can be called from GC destructor calls, so we don't try to do a full dump |
| // of the CodeBlock. |
| dataLog("Clearing structure cache (kind ", static_cast<int>(stubInfo.accessType), ") in ", RawPointer(this), ".\n"); |
| } |
| |
| switch (jitType()) { |
| case JITCode::BaselineJIT: |
| if (isGetByIdAccess(accessType)) |
| JIT::resetPatchGetById(repatchBuffer, &stubInfo); |
| else { |
| RELEASE_ASSERT(isPutByIdAccess(accessType)); |
| JIT::resetPatchPutById(repatchBuffer, &stubInfo); |
| } |
| break; |
| case JITCode::DFGJIT: |
| if (isGetByIdAccess(accessType)) |
| DFG::dfgResetGetByID(repatchBuffer, stubInfo); |
| else if (isPutByIdAccess(accessType)) |
| DFG::dfgResetPutByID(repatchBuffer, stubInfo); |
| else { |
| RELEASE_ASSERT(isInAccess(accessType)); |
| DFG::dfgResetIn(repatchBuffer, stubInfo); |
| } |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| stubInfo.reset(); |
| } |
| |
| void CodeBlock::resetStubDuringGCInternal(RepatchBuffer& repatchBuffer, StructureStubInfo& stubInfo) |
| { |
| resetStubInternal(repatchBuffer, stubInfo); |
| stubInfo.resetByGC = true; |
| } |
| #endif |
| |
| void CodeBlock::stronglyVisitStrongReferences(SlotVisitor& visitor) |
| { |
| visitor.append(&m_globalObject); |
| visitor.append(&m_ownerExecutable); |
| visitor.append(&m_unlinkedCode); |
| if (m_rareData) |
| m_rareData->m_evalCodeCache.visitAggregate(visitor); |
| visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); |
| for (size_t i = 0; i < m_functionExprs.size(); ++i) |
| visitor.append(&m_functionExprs[i]); |
| for (size_t i = 0; i < m_functionDecls.size(); ++i) |
| visitor.append(&m_functionDecls[i]); |
| for (unsigned i = 0; i < m_objectAllocationProfiles.size(); ++i) |
| m_objectAllocationProfiles[i].visitAggregate(visitor); |
| |
| updateAllPredictions(Collection); |
| } |
| |
| void CodeBlock::stronglyVisitWeakReferences(SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return; |
| |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| for (unsigned i = 0; i < dfgCommon->transitions.size(); ++i) { |
| if (!!dfgCommon->transitions[i].m_codeOrigin) |
| visitor.append(&dfgCommon->transitions[i].m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. |
| visitor.append(&dfgCommon->transitions[i].m_from); |
| visitor.append(&dfgCommon->transitions[i].m_to); |
| } |
| |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) |
| visitor.append(&dfgCommon->weakReferences[i]); |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineVersion() |
| { |
| #if ENABLE(JIT) |
| // When we're initializing the original baseline code block, we won't be able |
| // to get its replacement. But we'll know that it's the original baseline code |
| // block because it won't have JIT code yet and it won't have an alternative. |
| if (jitType() == JITCode::None && !alternative()) |
| return this; |
| |
| CodeBlock* result = replacement(); |
| ASSERT(result); |
| while (result->alternative()) |
| result = result->alternative(); |
| ASSERT(result); |
| ASSERT(JITCode::isBaselineCode(result->jitType())); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| #if ENABLE(JIT) |
| bool CodeBlock::hasOptimizedReplacement() |
| { |
| ASSERT(JITCode::isBaselineCode(jitType())); |
| bool result = JITCode::isHigherTier(replacement()->jitType(), jitType()); |
| if (result) |
| ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); |
| else { |
| ASSERT(JITCode::isBaselineCode(replacement()->jitType())); |
| ASSERT(replacement() == this); |
| } |
| return result; |
| } |
| #endif |
| |
| HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| |
| if (!m_rareData) |
| return 0; |
| |
| Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; |
| for (size_t i = 0; i < exceptionHandlers.size(); ++i) { |
| // Handlers are ordered innermost first, so the first handler we encounter |
| // that contains the source address is the correct handler to use. |
| if (exceptionHandlers[i].start <= bytecodeOffset && exceptionHandlers[i].end > bytecodeOffset) |
| return &exceptionHandlers[i]; |
| } |
| |
| return 0; |
| } |
| |
| unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| return m_ownerExecutable->lineNo() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); |
| } |
| |
| unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| int divot; |
| int startOffset; |
| int endOffset; |
| unsigned line; |
| unsigned column; |
| expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| return column; |
| } |
| |
| void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) |
| { |
| m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| divot += m_sourceOffset; |
| column += line ? 1 : firstLineColumnOffset(); |
| line += m_ownerExecutable->lineNo(); |
| } |
| |
| void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) |
| { |
| #if ENABLE(LLINT) |
| m_llintCallLinkInfos.shrinkToFit(); |
| #endif |
| #if ENABLE(JIT) |
| m_structureStubInfos.shrinkToFit(); |
| m_callLinkInfos.shrinkToFit(); |
| #endif |
| #if ENABLE(VALUE_PROFILER) |
| m_rareCaseProfiles.shrinkToFit(); |
| m_specialFastCaseProfiles.shrinkToFit(); |
| #endif |
| |
| if (shrinkMode == EarlyShrink) { |
| m_additionalIdentifiers.shrinkToFit(); |
| m_functionDecls.shrinkToFit(); |
| m_functionExprs.shrinkToFit(); |
| m_constantRegisters.shrinkToFit(); |
| |
| if (m_rareData) { |
| m_rareData->m_switchJumpTables.shrinkToFit(); |
| m_rareData->m_stringSwitchJumpTables.shrinkToFit(); |
| } |
| } // else don't shrink these, because we would have already pointed pointers into these tables. |
| |
| if (m_rareData) { |
| m_rareData->m_exceptionHandlers.shrinkToFit(); |
| #if ENABLE(JIT) |
| m_rareData->m_callReturnIndexVector.shrinkToFit(); |
| #endif |
| #if ENABLE(DFG_JIT) |
| m_rareData->m_inlineCallFrames.shrinkToFit(); |
| m_rareData->m_codeOrigins.shrinkToFit(); |
| #endif |
| } |
| } |
| |
| void CodeBlock::createActivation(CallFrame* callFrame) |
| { |
| ASSERT(codeType() == FunctionCode); |
| ASSERT(needsFullScopeChain()); |
| ASSERT(!callFrame->uncheckedR(activationRegister()).jsValue()); |
| JSActivation* activation = JSActivation::create(callFrame->vm(), callFrame, this); |
| callFrame->uncheckedR(activationRegister()) = JSValue(activation); |
| callFrame->setScope(activation); |
| } |
| |
| unsigned CodeBlock::addOrFindConstant(JSValue v) |
| { |
| unsigned result; |
| if (findConstant(v, result)) |
| return result; |
| return addConstant(v); |
| } |
| |
| bool CodeBlock::findConstant(JSValue v, unsigned& index) |
| { |
| unsigned numberOfConstants = numberOfConstantRegisters(); |
| for (unsigned i = 0; i < numberOfConstants; ++i) { |
| if (getConstant(FirstConstantRegisterIndex + i) == v) { |
| index = i; |
| return true; |
| } |
| } |
| index = numberOfConstants; |
| return false; |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::unlinkCalls() |
| { |
| if (!!m_alternative) |
| m_alternative->unlinkCalls(); |
| #if ENABLE(LLINT) |
| for (size_t i = 0; i < m_llintCallLinkInfos.size(); ++i) { |
| if (m_llintCallLinkInfos[i].isLinked()) |
| m_llintCallLinkInfos[i].unlink(); |
| } |
| #endif |
| if (!m_callLinkInfos.size()) |
| return; |
| if (!m_vm->canUseJIT()) |
| return; |
| RepatchBuffer repatchBuffer(this); |
| for (size_t i = 0; i < m_callLinkInfos.size(); i++) { |
| if (!m_callLinkInfos[i].isLinked()) |
| continue; |
| m_callLinkInfos[i].unlink(*m_vm, repatchBuffer); |
| } |
| } |
| |
| void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingCalls.push(incoming); |
| } |
| #endif // ENABLE(JIT) |
| |
| void CodeBlock::unlinkIncomingCalls() |
| { |
| #if ENABLE(LLINT) |
| while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| m_incomingLLIntCalls.begin()->unlink(); |
| #endif // ENABLE(LLINT) |
| #if ENABLE(JIT) |
| if (m_incomingCalls.isEmpty()) |
| return; |
| RepatchBuffer repatchBuffer(this); |
| while (m_incomingCalls.begin() != m_incomingCalls.end()) |
| m_incomingCalls.begin()->unlink(*m_vm, repatchBuffer); |
| #endif // ENABLE(JIT) |
| } |
| |
| #if ENABLE(LLINT) |
| void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingLLIntCalls.push(incoming); |
| } |
| #endif // ENABLE(LLINT) |
| |
| #if ENABLE(JIT) |
| ClosureCallStubRoutine* CodeBlock::findClosureCallForReturnPC(ReturnAddressPtr returnAddress) |
| { |
| for (unsigned i = m_callLinkInfos.size(); i--;) { |
| CallLinkInfo& info = m_callLinkInfos[i]; |
| if (!info.stub) |
| continue; |
| if (!info.stub->code().executableMemory()->contains(returnAddress.value())) |
| continue; |
| |
| RELEASE_ASSERT(info.stub->codeOrigin().bytecodeIndex != CodeOrigin::invalidBytecodeIndex); |
| return info.stub.get(); |
| } |
| |
| // The stub routine may have been jettisoned. This is rare, but we have to handle it. |
| const JITStubRoutineSet& set = m_vm->heap.jitStubRoutines(); |
| for (unsigned i = set.size(); i--;) { |
| GCAwareJITStubRoutine* genericStub = set.at(i); |
| if (!genericStub->isClosureCall()) |
| continue; |
| ClosureCallStubRoutine* stub = static_cast<ClosureCallStubRoutine*>(genericStub); |
| if (!stub->code().executableMemory()->contains(returnAddress.value())) |
| continue; |
| RELEASE_ASSERT(stub->codeOrigin().bytecodeIndex != CodeOrigin::invalidBytecodeIndex); |
| return stub; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| unsigned CodeBlock::bytecodeOffset(ExecState* exec, ReturnAddressPtr returnAddress) |
| { |
| UNUSED_PARAM(exec); |
| UNUSED_PARAM(returnAddress); |
| #if ENABLE(LLINT) |
| #if !ENABLE(LLINT_C_LOOP) |
| // When using the JIT, we could have addresses that are not bytecode |
| // addresses. We check if the return address is in the LLint glue and |
| // opcode handlers range here to ensure that we are looking at bytecode |
| // before attempting to convert the return address into a bytecode offset. |
| // |
| // In the case of the C Loop LLInt, the JIT is disabled, and the only |
| // valid return addresses should be bytecode PCs. So, we can and need to |
| // forego this check because when we do not ENABLE(COMPUTED_GOTO_OPCODES), |
| // then the bytecode "PC"s are actually the opcodeIDs and are not bounded |
| // by llint_begin and llint_end. |
| if (returnAddress.value() >= LLInt::getCodePtr(llint_begin) |
| && returnAddress.value() <= LLInt::getCodePtr(llint_end)) |
| #endif |
| { |
| RELEASE_ASSERT(exec->codeBlock()); |
| RELEASE_ASSERT(exec->codeBlock() == this); |
| RELEASE_ASSERT(JITCode::isBaselineCode(jitType())); |
| Instruction* instruction = exec->currentVPC(); |
| RELEASE_ASSERT(instruction); |
| |
| return bytecodeOffset(instruction); |
| } |
| #endif // !ENABLE(LLINT) |
| |
| #if ENABLE(JIT) |
| if (!m_rareData) |
| return 1; |
| Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callIndices = m_rareData->m_callReturnIndexVector; |
| if (!callIndices.size()) |
| return 1; |
| |
| if (jitCode()->contains(returnAddress.value())) { |
| unsigned callReturnOffset = jitCode()->offsetOf(returnAddress.value()); |
| CallReturnOffsetToBytecodeOffset* result = |
| binarySearch<CallReturnOffsetToBytecodeOffset, unsigned>( |
| callIndices, callIndices.size(), callReturnOffset, getCallReturnOffset); |
| RELEASE_ASSERT(result->callReturnOffset == callReturnOffset); |
| RELEASE_ASSERT(result->bytecodeOffset < instructionCount()); |
| return result->bytecodeOffset; |
| } |
| ClosureCallStubRoutine* closureInfo = findClosureCallForReturnPC(returnAddress); |
| CodeOrigin origin = closureInfo->codeOrigin(); |
| while (InlineCallFrame* inlineCallFrame = origin.inlineCallFrame) { |
| if (inlineCallFrame->baselineCodeBlock() == this) |
| break; |
| origin = inlineCallFrame->caller; |
| RELEASE_ASSERT(origin.bytecodeIndex != CodeOrigin::invalidBytecodeIndex); |
| } |
| RELEASE_ASSERT(origin.bytecodeIndex != CodeOrigin::invalidBytecodeIndex); |
| unsigned bytecodeIndex = origin.bytecodeIndex; |
| RELEASE_ASSERT(bytecodeIndex < instructionCount()); |
| return bytecodeIndex; |
| #endif // ENABLE(JIT) |
| |
| #if !ENABLE(LLINT) && !ENABLE(JIT) |
| return 1; |
| #endif |
| } |
| |
| void CodeBlock::clearEvalCache() |
| { |
| if (!!m_alternative) |
| m_alternative->clearEvalCache(); |
| if (!m_rareData) |
| return; |
| m_rareData->m_evalCodeCache.clear(); |
| } |
| |
| template<typename T, size_t inlineCapacity, typename U, typename V> |
| inline void replaceExistingEntries(Vector<T, inlineCapacity, U>& target, Vector<T, inlineCapacity, V>& source) |
| { |
| ASSERT(target.size() <= source.size()); |
| for (size_t i = 0; i < target.size(); ++i) |
| target[i] = source[i]; |
| } |
| |
| void CodeBlock::copyPostParseDataFrom(CodeBlock* alternative) |
| { |
| if (!alternative) |
| return; |
| |
| replaceExistingEntries(m_constantRegisters, alternative->m_constantRegisters); |
| replaceExistingEntries(m_functionDecls, alternative->m_functionDecls); |
| replaceExistingEntries(m_functionExprs, alternative->m_functionExprs); |
| if (!!m_rareData && !!alternative->m_rareData) |
| replaceExistingEntries(m_rareData->m_constantBuffers, alternative->m_rareData->m_constantBuffers); |
| } |
| |
| void CodeBlock::copyPostParseDataFromAlternative() |
| { |
| copyPostParseDataFrom(m_alternative.get()); |
| } |
| |
| void CodeBlock::install() |
| { |
| ownerExecutable()->installCode(this); |
| } |
| |
| PassRefPtr<CodeBlock> CodeBlock::newReplacement() |
| { |
| return ownerExecutable()->newReplacementCodeBlockFor(specializationKind()); |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::reoptimize() |
| { |
| ASSERT(replacement() != this); |
| ASSERT(replacement()->alternative() == this); |
| if (DFG::shouldShowDisassembly()) |
| dataLog(*replacement(), " will be jettisoned due to reoptimization of ", *this, ".\n"); |
| replacement()->jettison(); |
| countReoptimization(); |
| } |
| |
| CodeBlock* ProgramCodeBlock::replacement() |
| { |
| return &static_cast<ProgramExecutable*>(ownerExecutable())->generatedBytecode(); |
| } |
| |
| CodeBlock* EvalCodeBlock::replacement() |
| { |
| return &static_cast<EvalExecutable*>(ownerExecutable())->generatedBytecode(); |
| } |
| |
| CodeBlock* FunctionCodeBlock::replacement() |
| { |
| return &static_cast<FunctionExecutable*>(ownerExecutable())->generatedBytecodeFor(m_isConstructor ? CodeForConstruct : CodeForCall); |
| } |
| |
| DFG::CapabilityLevel ProgramCodeBlock::capabilityLevelInternal() |
| { |
| return DFG::programCapabilityLevel(this); |
| } |
| |
| DFG::CapabilityLevel EvalCodeBlock::capabilityLevelInternal() |
| { |
| return DFG::evalCapabilityLevel(this); |
| } |
| |
| DFG::CapabilityLevel FunctionCodeBlock::capabilityLevelInternal() |
| { |
| if (m_isConstructor) |
| return DFG::functionForConstructCapabilityLevel(this); |
| return DFG::functionForCallCapabilityLevel(this); |
| } |
| |
| void CodeBlock::jettison() |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| ASSERT(this == replacement()); |
| alternative()->optimizeAfterWarmUp(); |
| tallyFrequentExitSites(); |
| if (DFG::shouldShowDisassembly()) |
| dataLog("Jettisoning ", *this, ".\n"); |
| jettisonImpl(); |
| } |
| |
| void ProgramCodeBlock::jettisonImpl() |
| { |
| static_cast<ProgramExecutable*>(ownerExecutable())->jettisonOptimizedCode(*vm()); |
| } |
| |
| void EvalCodeBlock::jettisonImpl() |
| { |
| static_cast<EvalExecutable*>(ownerExecutable())->jettisonOptimizedCode(*vm()); |
| } |
| |
| void FunctionCodeBlock::jettisonImpl() |
| { |
| static_cast<FunctionExecutable*>(ownerExecutable())->jettisonOptimizedCodeFor(*vm(), m_isConstructor ? CodeForConstruct : CodeForCall); |
| } |
| #endif |
| |
| JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) |
| { |
| if (!codeOrigin.inlineCallFrame) |
| return globalObject(); |
| return jsCast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get())->generatedBytecode().globalObject(); |
| } |
| |
| void CodeBlock::noticeIncomingCall(ExecState* callerFrame) |
| { |
| CodeBlock* callerCodeBlock = callerFrame->codeBlock(); |
| |
| if (Options::verboseCallLink()) |
| dataLog("Noticing call link from ", *callerCodeBlock, " to ", *this, "\n"); |
| |
| if (!m_shouldAlwaysBeInlined) |
| return; |
| |
| #if ENABLE(DFG_JIT) |
| if (!hasBaselineJITProfiling()) |
| return; |
| |
| if (!DFG::mightInlineFunction(this)) |
| return; |
| |
| if (!canInline(m_capabilityLevelState)) |
| return; |
| |
| if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { |
| // If the caller is still in the interpreter, then we can't expect inlining to |
| // happen anytime soon. Assume it's profitable to optimize it separately. This |
| // ensures that a function is SABI only if it is called no more frequently than |
| // any of its callers. |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Marking SABI because caller is in LLInt.\n"); |
| return; |
| } |
| |
| if (callerCodeBlock->codeType() != FunctionCode) { |
| // If the caller is either eval or global code, assume that that won't be |
| // optimized anytime soon. For eval code this is particularly true since we |
| // delay eval optimization by a *lot*. |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Marking SABI because caller is not a function.\n"); |
| return; |
| } |
| |
| ExecState* frame = callerFrame; |
| for (unsigned i = Options::maximumInliningDepth(); i--; frame = frame->callerFrame()) { |
| if (frame->hasHostCallFrameFlag()) |
| break; |
| if (frame->codeBlock() == this) { |
| // Recursive calls won't be inlined. |
| if (Options::verboseCallLink()) |
| dataLog(" Marking SABI because recursion was detected.\n"); |
| m_shouldAlwaysBeInlined = false; |
| return; |
| } |
| } |
| |
| RELEASE_ASSERT(callerCodeBlock->m_capabilityLevelState != DFG::CapabilityLevelNotSet); |
| |
| if (canCompile(callerCodeBlock->m_capabilityLevelState)) |
| return; |
| |
| if (Options::verboseCallLink()) |
| dataLog(" Marking SABI because the caller is not a DFG candidate.\n"); |
| |
| m_shouldAlwaysBeInlined = false; |
| #endif |
| } |
| |
| #if ENABLE(JIT) |
| unsigned CodeBlock::reoptimizationRetryCounter() const |
| { |
| ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); |
| return m_reoptimizationRetryCounter; |
| } |
| |
| void CodeBlock::countReoptimization() |
| { |
| m_reoptimizationRetryCounter++; |
| if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) |
| m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); |
| } |
| |
| unsigned CodeBlock::numberOfDFGCompiles() |
| { |
| ASSERT(JITCode::isBaselineCode(jitType())); |
| return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| |
| int32_t CodeBlock::codeTypeThresholdMultiplier() const |
| { |
| if (codeType() == EvalCode) |
| return Options::evalThresholdMultiplier(); |
| |
| return 1; |
| } |
| |
| double CodeBlock::optimizationThresholdScalingFactor() |
| { |
| // This expression arises from doing a least-squares fit of |
| // |
| // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d |
| // |
| // against the data points: |
| // |
| // x F[x_] |
| // 10 0.9 (smallest reasonable code block) |
| // 200 1.0 (typical small-ish code block) |
| // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) |
| // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) |
| // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) |
| // 10000 6.0 (similar to above) |
| // |
| // I achieve the minimization using the following Mathematica code: |
| // |
| // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d |
| // |
| // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} |
| // |
| // solution = |
| // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), |
| // {a, b, c, d}][[2]] |
| // |
| // And the code below (to initialize a, b, c, d) is generated by: |
| // |
| // Print["const double " <> ToString[#[[1]]] <> " = " <> |
| // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution |
| // |
| // We've long known the following to be true: |
| // - Small code blocks are cheap to optimize and so we should do it sooner rather |
| // than later. |
| // - Large code blocks are expensive to optimize and so we should postpone doing so, |
| // and sometimes have a large enough threshold that we never optimize them. |
| // - The difference in cost is not totally linear because (a) just invoking the |
| // DFG incurs some base cost and (b) for large code blocks there is enough slop |
| // in the correlation between instruction count and the actual compilation cost |
| // that for those large blocks, the instruction count should not have a strong |
| // influence on our threshold. |
| // |
| // I knew the goals but I didn't know how to achieve them; so I picked an interesting |
| // example where the heuristics were right (code block in 3d-cube with instruction |
| // count 320, which got compiled early as it should have been) and one where they were |
| // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive |
| // to compile and didn't run often enough to warrant compilation in my opinion), and |
| // then threw in additional data points that represented my own guess of what our |
| // heuristics should do for some round-numbered examples. |
| // |
| // The expression to which I decided to fit the data arose because I started with an |
| // affine function, and then did two things: put the linear part in an Abs to ensure |
| // that the fit didn't end up choosing a negative value of c (which would result in |
| // the function turning over and going negative for large x) and I threw in a Sqrt |
| // term because Sqrt represents my intution that the function should be more sensitive |
| // to small changes in small values of x, but less sensitive when x gets large. |
| |
| // Note that the current fit essentially eliminates the linear portion of the |
| // expression (c == 0.0). |
| const double a = 0.061504; |
| const double b = 1.02406; |
| const double c = 0.0; |
| const double d = 0.825914; |
| |
| double instructionCount = this->instructionCount(); |
| |
| ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. |
| |
| double result = d + a * sqrt(instructionCount + b) + c * instructionCount; |
| if (Options::verboseOSR()) { |
| dataLog( |
| *this, ": instruction count is ", instructionCount, |
| ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), |
| "\n"); |
| } |
| return result * codeTypeThresholdMultiplier(); |
| } |
| |
| static int32_t clipThreshold(double threshold) |
| { |
| if (threshold < 1.0) |
| return 1; |
| |
| if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max())) |
| return std::numeric_limits<int32_t>::max(); |
| |
| return static_cast<int32_t>(threshold); |
| } |
| |
| int32_t CodeBlock::counterValueForOptimizeAfterWarmUp() |
| { |
| return clipThreshold( |
| Options::thresholdForOptimizeAfterWarmUp() * |
| optimizationThresholdScalingFactor() * |
| (1 << reoptimizationRetryCounter())); |
| } |
| |
| int32_t CodeBlock::counterValueForOptimizeAfterLongWarmUp() |
| { |
| return clipThreshold( |
| Options::thresholdForOptimizeAfterLongWarmUp() * |
| optimizationThresholdScalingFactor() * |
| (1 << reoptimizationRetryCounter())); |
| } |
| |
| int32_t CodeBlock::counterValueForOptimizeSoon() |
| { |
| return clipThreshold( |
| Options::thresholdForOptimizeSoon() * |
| optimizationThresholdScalingFactor() * |
| (1 << reoptimizationRetryCounter())); |
| } |
| |
| bool CodeBlock::checkIfOptimizationThresholdReached() |
| { |
| #if ENABLE(DFG_JIT) |
| if (m_vm->worklist |
| && m_vm->worklist->compilationState(this) == DFG::Worklist::Compiled) { |
| optimizeNextInvocation(); |
| return true; |
| } |
| #endif |
| |
| return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); |
| } |
| |
| void CodeBlock::optimizeNextInvocation() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing next invocation.\n"); |
| m_jitExecuteCounter.setNewThreshold(0, this); |
| } |
| |
| void CodeBlock::dontOptimizeAnytimeSoon() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Not optimizing anytime soon.\n"); |
| m_jitExecuteCounter.deferIndefinitely(); |
| } |
| |
| void CodeBlock::optimizeAfterWarmUp() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing after warm-up.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterWarmUp(), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeAfterLongWarmUp() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing after long warm-up.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeAfterLongWarmUp(), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeSoon() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing soon.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold(counterValueForOptimizeSoon(), this); |
| #endif |
| } |
| |
| void CodeBlock::forceOptimizationSlowPathConcurrently() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Forcing slow path concurrently.\n"); |
| m_jitExecuteCounter.forceSlowPathConcurrently(); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) |
| { |
| RELEASE_ASSERT(jitType() == JITCode::BaselineJIT); |
| RELEASE_ASSERT((result == CompilationSuccessful) == (replacement() != this)); |
| switch (result) { |
| case CompilationSuccessful: |
| RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); |
| optimizeNextInvocation(); |
| break; |
| case CompilationFailed: |
| dontOptimizeAnytimeSoon(); |
| break; |
| case CompilationDeferred: |
| // We'd like to do dontOptimizeAnytimeSoon() but we cannot because |
| // forceOptimizationSlowPathConcurrently() is inherently racy. It won't |
| // necessarily guarantee anything. So, we make sure that even if that |
| // function ends up being a no-op, we still eventually retry and realize |
| // that we have optimized code ready. |
| optimizeAfterWarmUp(); |
| break; |
| case CompilationInvalidated: |
| // Retry with exponential backoff. |
| countReoptimization(); |
| optimizeAfterWarmUp(); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| #endif |
| |
| static bool structureStubInfoLessThan(const StructureStubInfo& a, const StructureStubInfo& b) |
| { |
| return a.callReturnLocation.executableAddress() < b.callReturnLocation.executableAddress(); |
| } |
| |
| void CodeBlock::sortStructureStubInfos() |
| { |
| std::sort(m_structureStubInfos.begin(), m_structureStubInfos.end(), structureStubInfoLessThan); |
| } |
| |
| uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| // Compute this the lame way so we don't saturate. This is called infrequently |
| // enough that this loop won't hurt us. |
| unsigned result = desiredThreshold; |
| for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { |
| unsigned newResult = result << 1; |
| if (newResult < result) |
| return std::numeric_limits<uint32_t>::max(); |
| result = newResult; |
| } |
| return result; |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimization() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); |
| } |
| |
| bool CodeBlock::shouldReoptimizeNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimization(); |
| } |
| |
| bool CodeBlock::shouldReoptimizeFromLoopNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); |
| } |
| #endif |
| |
| #if ENABLE(VALUE_PROFILER) |
| ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) |
| { |
| for (unsigned i = 0; i < m_arrayProfiles.size(); ++i) { |
| if (m_arrayProfiles[i].bytecodeOffset() == bytecodeOffset) |
| return &m_arrayProfiles[i]; |
| } |
| return 0; |
| } |
| |
| ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) |
| { |
| ArrayProfile* result = getArrayProfile(bytecodeOffset); |
| if (result) |
| return result; |
| return addArrayProfile(bytecodeOffset); |
| } |
| |
| void CodeBlock::updateAllPredictionsAndCountLiveness( |
| OperationInProgress operation, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| numberOfLiveNonArgumentValueProfiles = 0; |
| numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. |
| for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { |
| ValueProfile* profile = getFromAllValueProfiles(i); |
| unsigned numSamples = profile->totalNumberOfSamples(); |
| if (numSamples > ValueProfile::numberOfBuckets) |
| numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. |
| numberOfSamplesInProfiles += numSamples; |
| if (profile->m_bytecodeOffset < 0) { |
| profile->computeUpdatedPrediction(locker, operation); |
| continue; |
| } |
| if (profile->numberOfSamples() || profile->m_prediction != SpecNone) |
| numberOfLiveNonArgumentValueProfiles++; |
| profile->computeUpdatedPrediction(locker, operation); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| m_lazyOperandValueProfiles.computeUpdatedPredictions(locker, operation); |
| #endif |
| } |
| |
| void CodeBlock::updateAllValueProfilePredictions(OperationInProgress operation) |
| { |
| unsigned ignoredValue1, ignoredValue2; |
| updateAllPredictionsAndCountLiveness(operation, ignoredValue1, ignoredValue2); |
| } |
| |
| void CodeBlock::updateAllArrayPredictions() |
| { |
| ConcurrentJITLocker locker(m_lock); |
| |
| for (unsigned i = m_arrayProfiles.size(); i--;) |
| m_arrayProfiles[i].computeUpdatedPrediction(locker, this); |
| |
| // Don't count these either, for similar reasons. |
| for (unsigned i = m_arrayAllocationProfiles.size(); i--;) |
| m_arrayAllocationProfiles[i].updateIndexingType(); |
| } |
| |
| void CodeBlock::updateAllPredictions(OperationInProgress operation) |
| { |
| updateAllValueProfilePredictions(operation); |
| updateAllArrayPredictions(); |
| } |
| |
| bool CodeBlock::shouldOptimizeNow() |
| { |
| if (Options::verboseOSR()) |
| dataLog("Considering optimizing ", *this, "...\n"); |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| dumpValueProfiles(); |
| #endif |
| |
| if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) |
| return true; |
| |
| updateAllArrayPredictions(); |
| |
| unsigned numberOfLiveNonArgumentValueProfiles; |
| unsigned numberOfSamplesInProfiles; |
| updateAllPredictionsAndCountLiveness(NoOperation, numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); |
| |
| if (Options::verboseOSR()) { |
| dataLogF( |
| "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", |
| (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), |
| numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), |
| (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), |
| numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); |
| } |
| |
| if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) |
| && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) |
| && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) |
| return true; |
| |
| ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max()); |
| m_optimizationDelayCounter++; |
| optimizeAfterWarmUp(); |
| return false; |
| } |
| #endif |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::tallyFrequentExitSites() |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| ASSERT(alternative()->jitType() == JITCode::BaselineJIT); |
| |
| CodeBlock* profiledBlock = alternative(); |
| |
| switch (jitType()) { |
| case JITCode::DFGJIT: { |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| DFG::OSRExit& exit = jitCode->osrExit[i]; |
| |
| if (!exit.considerAddingAsFrequentExitSite(profiledBlock)) |
| continue; |
| |
| #if DFG_ENABLE(DEBUG_VERBOSE) |
| dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n"); |
| #endif |
| } |
| break; |
| } |
| |
| #if ENABLE(FTL_JIT) |
| case JITCode::FTLJIT: { |
| // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit |
| // vector contains a totally different type, that just so happens to behave like |
| // DFG::JITCode::osrExit. |
| FTL::JITCode* jitCode = m_jitCode->ftl(); |
| for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| FTL::OSRExit& exit = jitCode->osrExit[i]; |
| |
| if (!exit.considerAddingAsFrequentExitSite(profiledBlock)) |
| continue; |
| |
| #if DFG_ENABLE(DEBUG_VERBOSE) |
| dataLog("OSR exit #", i, " (bc#", exit.m_codeOrigin.bytecodeIndex, ", ", exit.m_kind, ") for ", *this, " occurred frequently: counting as frequent exit site.\n"); |
| #endif |
| } |
| break; |
| } |
| #endif |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| void CodeBlock::dumpValueProfiles() |
| { |
| dataLog("ValueProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { |
| ValueProfile* profile = getFromAllValueProfiles(i); |
| if (profile->m_bytecodeOffset < 0) { |
| ASSERT(profile->m_bytecodeOffset == -1); |
| dataLogF(" arg = %u: ", i); |
| } else |
| dataLogF(" bc = %d: ", profile->m_bytecodeOffset); |
| if (!profile->numberOfSamples() && profile->m_prediction == SpecNone) { |
| dataLogF("<empty>\n"); |
| continue; |
| } |
| profile->dump(WTF::dataFile()); |
| dataLogF("\n"); |
| } |
| dataLog("RareCaseProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { |
| RareCaseProfile* profile = rareCaseProfile(i); |
| dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); |
| } |
| dataLog("SpecialFastCaseProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < numberOfSpecialFastCaseProfiles(); ++i) { |
| RareCaseProfile* profile = specialFastCaseProfile(i); |
| dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); |
| } |
| } |
| #endif // ENABLE(VERBOSE_VALUE_PROFILE) |
| |
| size_t CodeBlock::predictedMachineCodeSize() |
| { |
| // This will be called from CodeBlock::CodeBlock before either m_vm or the |
| // instructions have been initialized. It's OK to return 0 because what will really |
| // matter is the recomputation of this value when the slow path is triggered. |
| if (!m_vm) |
| return 0; |
| |
| if (!m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT) |
| return 0; // It's as good of a prediction as we'll get. |
| |
| // Be conservative: return a size that will be an overestimation 84% of the time. |
| double multiplier = m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.mean() + |
| m_vm->machineCodeBytesPerBytecodeWordForBaselineJIT.standardDeviation(); |
| |
| // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing |
| // here is OK, since this whole method is just a heuristic. |
| if (multiplier < 0 || multiplier > 1000) |
| return 0; |
| |
| double doubleResult = multiplier * m_instructions.size(); |
| |
| // Be even more paranoid: silently reject values that won't fit into a size_t. If |
| // the function is so huge that we can't even fit it into virtual memory then we |
| // should probably have some other guards in place to prevent us from even getting |
| // to this point. |
| if (doubleResult > std::numeric_limits<size_t>::max()) |
| return 0; |
| |
| return static_cast<size_t>(doubleResult); |
| } |
| |
| bool CodeBlock::usesOpcode(OpcodeID opcodeID) |
| { |
| Interpreter* interpreter = vm()->interpreter; |
| Instruction* instructionsBegin = instructions().begin(); |
| unsigned instructionCount = instructions().size(); |
| |
| for (unsigned bytecodeOffset = 0; bytecodeOffset < instructionCount; ) { |
| switch (interpreter->getOpcodeID(instructionsBegin[bytecodeOffset].u.opcode)) { |
| #define DEFINE_OP(curOpcode, length) \ |
| case curOpcode: \ |
| if (curOpcode == opcodeID) \ |
| return true; \ |
| bytecodeOffset += length; \ |
| break; |
| FOR_EACH_OPCODE_ID(DEFINE_OP) |
| #undef DEFINE_OP |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| String CodeBlock::nameForRegister(int registerNumber) |
| { |
| ConcurrentJITLocker locker(symbolTable()->m_lock); |
| SymbolTable::Map::iterator end = symbolTable()->end(locker); |
| for (SymbolTable::Map::iterator ptr = symbolTable()->begin(locker); ptr != end; ++ptr) { |
| if (ptr->value.getIndex() == registerNumber) { |
| // FIXME: This won't work from the compilation thread. |
| // https://bugs.webkit.org/show_bug.cgi?id=115300 |
| return String(ptr->key); |
| } |
| } |
| if (needsActivation() && registerNumber == activationRegister()) |
| return ASCIILiteral("activation"); |
| if (registerNumber == thisRegister()) |
| return ASCIILiteral("this"); |
| if (usesArguments()) { |
| if (registerNumber == argumentsRegister()) |
| return ASCIILiteral("arguments"); |
| if (unmodifiedArgumentsRegister(argumentsRegister()) == registerNumber) |
| return ASCIILiteral("real arguments"); |
| } |
| if (registerNumber < 0) { |
| int argumentPosition = -registerNumber; |
| argumentPosition -= JSStack::CallFrameHeaderSize + 1; |
| return String::format("arguments[%3d]", argumentPosition - 1).impl(); |
| } |
| return ""; |
| } |
| |
| } // namespace JSC |