blob: af65e08ca880240ea9f19c3c1fc1fdc57ab4d4ab [file] [log] [blame]
/*
* Copyright (C) 2008-2017 Apple Inc. All Rights Reserved.
* Copyright (C) 2013 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <cstring>
#include <memory>
#include <type_traits>
#include <wtf/Assertions.h>
#include <wtf/CheckedArithmetic.h>
#include <wtf/Compiler.h>
// Use this macro to declare and define a debug-only global variable that may have a
// non-trivial constructor and destructor. When building with clang, this will suppress
// warnings about global constructors and exit-time destructors.
#define DEFINE_GLOBAL_FOR_LOGGING(type, name, arguments) \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wglobal-constructors\"") \
_Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \
static type name arguments; \
_Pragma("clang diagnostic pop")
#ifndef NDEBUG
#if COMPILER(CLANG)
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) DEFINE_GLOBAL_FOR_LOGGING(type, name, arguments)
#else
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \
static type name arguments;
#endif // COMPILER(CLANG)
#else
#define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments)
#endif // NDEBUG
// OBJECT_OFFSETOF: Like the C++ offsetof macro, but you can use it with classes.
// The magic number 0x4000 is insignificant. We use it to avoid using NULL, since
// NULL can cause compiler problems, especially in cases of multiple inheritance.
#define OBJECT_OFFSETOF(class, field) (reinterpret_cast<ptrdiff_t>(&(reinterpret_cast<class*>(0x4000)->field)) - 0x4000)
#define CAST_OFFSET(from, to) (reinterpret_cast<uintptr_t>(static_cast<to>((reinterpret_cast<from>(0x4000)))) - 0x4000)
// STRINGIZE: Can convert any value to quoted string, even expandable macros
#define STRINGIZE(exp) #exp
#define STRINGIZE_VALUE_OF(exp) STRINGIZE(exp)
// WTF_CONCAT: concatenate two symbols into one, even expandable macros
#define WTF_CONCAT_INTERNAL_DONT_USE(a, b) a ## b
#define WTF_CONCAT(a, b) WTF_CONCAT_INTERNAL_DONT_USE(a, b)
/*
* The reinterpret_cast<Type1*>([pointer to Type2]) expressions - where
* sizeof(Type1) > sizeof(Type2) - cause the following warning on ARM with GCC:
* increases required alignment of target type.
*
* An implicit or an extra static_cast<void*> bypasses the warning.
* For more info see the following bugzilla entries:
* - https://bugs.webkit.org/show_bug.cgi?id=38045
* - http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43976
*/
#if (CPU(ARM) || CPU(MIPS)) && COMPILER(GCC_COMPATIBLE)
template<typename Type>
inline bool isPointerTypeAlignmentOkay(Type* ptr)
{
return !(reinterpret_cast<intptr_t>(ptr) % __alignof__(Type));
}
template<typename TypePtr>
inline TypePtr reinterpret_cast_ptr(void* ptr)
{
ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr)));
return reinterpret_cast<TypePtr>(ptr);
}
template<typename TypePtr>
inline TypePtr reinterpret_cast_ptr(const void* ptr)
{
ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr)));
return reinterpret_cast<TypePtr>(ptr);
}
#else
template<typename Type>
inline bool isPointerTypeAlignmentOkay(Type*)
{
return true;
}
#define reinterpret_cast_ptr reinterpret_cast
#endif
namespace WTF {
enum CheckMoveParameterTag { CheckMoveParameter };
static const size_t KB = 1024;
static const size_t MB = 1024 * 1024;
static const size_t GB = 1024 * 1024 * 1024;
inline bool isPointerAligned(void* p)
{
return !((intptr_t)(p) & (sizeof(char*) - 1));
}
inline bool is8ByteAligned(void* p)
{
return !((uintptr_t)(p) & (sizeof(double) - 1));
}
/*
* C++'s idea of a reinterpret_cast lacks sufficient cojones.
*/
template<typename ToType, typename FromType>
inline ToType bitwise_cast(FromType from)
{
static_assert(sizeof(FromType) == sizeof(ToType), "bitwise_cast size of FromType and ToType must be equal!");
#if COMPILER_SUPPORTS(BUILTIN_IS_TRIVIALLY_COPYABLE)
// Not all recent STL implementations support the std::is_trivially_copyable type trait. Work around this by only checking on toolchains which have the equivalent compiler intrinsic.
static_assert(__is_trivially_copyable(ToType), "bitwise_cast of non-trivially-copyable type!");
static_assert(__is_trivially_copyable(FromType), "bitwise_cast of non-trivially-copyable type!");
#endif
typename std::remove_const<ToType>::type to { };
std::memcpy(static_cast<void*>(&to), static_cast<void*>(&from), sizeof(to));
return to;
}
template<typename ToType, typename FromType>
inline ToType safeCast(FromType value)
{
RELEASE_ASSERT(isInBounds<ToType>(value));
return static_cast<ToType>(value);
}
// Returns a count of the number of bits set in 'bits'.
inline size_t bitCount(unsigned bits)
{
bits = bits - ((bits >> 1) & 0x55555555);
bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
return (((bits + (bits >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}
inline size_t bitCount(uint64_t bits)
{
return bitCount(static_cast<unsigned>(bits)) + bitCount(static_cast<unsigned>(bits >> 32));
}
// Macro that returns a compile time constant with the length of an array, but gives an error if passed a non-array.
template<typename T, size_t Size> char (&ArrayLengthHelperFunction(T (&)[Size]))[Size];
// GCC needs some help to deduce a 0 length array.
#if COMPILER(GCC_COMPATIBLE)
template<typename T> char (&ArrayLengthHelperFunction(T (&)[0]))[0];
#endif
#define WTF_ARRAY_LENGTH(array) sizeof(::WTF::ArrayLengthHelperFunction(array))
ALWAYS_INLINE constexpr size_t roundUpToMultipleOfImpl(size_t divisor, size_t x)
{
size_t remainderMask = divisor - 1;
return (x + remainderMask) & ~remainderMask;
}
// Efficient implementation that takes advantage of powers of two.
inline size_t roundUpToMultipleOf(size_t divisor, size_t x)
{
ASSERT(divisor && !(divisor & (divisor - 1)));
return roundUpToMultipleOfImpl(divisor, x);
}
template<size_t divisor> constexpr size_t roundUpToMultipleOf(size_t x)
{
static_assert(divisor && !(divisor & (divisor - 1)), "divisor must be a power of two!");
return roundUpToMultipleOfImpl(divisor, x);
}
template<size_t divisor, typename T> inline T* roundUpToMultipleOf(T* x)
{
static_assert(sizeof(T*) == sizeof(size_t), "");
return reinterpret_cast<T*>(roundUpToMultipleOf<divisor>(reinterpret_cast<size_t>(x)));
}
enum BinarySearchMode {
KeyMustBePresentInArray,
KeyMightNotBePresentInArray,
ReturnAdjacentElementIfKeyIsNotPresent
};
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey, BinarySearchMode mode>
inline ArrayElementType* binarySearchImpl(ArrayType& array, size_t size, KeyType key, const ExtractKey& extractKey = ExtractKey())
{
size_t offset = 0;
while (size > 1) {
size_t pos = (size - 1) >> 1;
KeyType val = extractKey(&array[offset + pos]);
if (val == key)
return &array[offset + pos];
// The item we are looking for is smaller than the item being check; reduce the value of 'size',
// chopping off the right hand half of the array.
if (key < val)
size = pos;
// Discard all values in the left hand half of the array, up to and including the item at pos.
else {
size -= (pos + 1);
offset += (pos + 1);
}
ASSERT(mode != KeyMustBePresentInArray || size);
}
if (mode == KeyMightNotBePresentInArray && !size)
return 0;
ArrayElementType* result = &array[offset];
if (mode == KeyMightNotBePresentInArray && key != extractKey(result))
return 0;
if (mode == KeyMustBePresentInArray) {
ASSERT(size == 1);
ASSERT(key == extractKey(result));
}
return result;
}
// If the element is not found, crash if asserts are enabled, and behave like approximateBinarySearch in release builds.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* binarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(array, size, key, extractKey);
}
// Return zero if the element is not found.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* tryBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(array, size, key, extractKey);
}
// Return the element that is either to the left, or the right, of where the element would have been found.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* approximateBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(array, size, key, extractKey);
}
// Variants of the above that use const.
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* binarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* tryBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey>
inline ArrayElementType* approximateBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey())
{
return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(const_cast<ArrayType&>(array), size, key, extractKey);
}
template<typename VectorType, typename ElementType>
inline void insertIntoBoundedVector(VectorType& vector, size_t size, const ElementType& element, size_t index)
{
for (size_t i = size; i-- > index + 1;)
vector[i] = vector[i - 1];
vector[index] = element;
}
// This is here instead of CompilationThread.h to prevent that header from being included
// everywhere. The fact that this method, and that header, exist outside of JSC is a bug.
// https://bugs.webkit.org/show_bug.cgi?id=131815
WTF_EXPORT_PRIVATE bool isCompilationThread();
template<typename Func>
bool isStatelessLambda()
{
return std::is_empty<Func>::value;
}
template<typename ResultType, typename Func, typename... ArgumentTypes>
ResultType callStatelessLambda(ArgumentTypes&&... arguments)
{
uint64_t data[(sizeof(Func) + sizeof(uint64_t) - 1) / sizeof(uint64_t)];
memset(data, 0, sizeof(data));
return (*bitwise_cast<Func*>(data))(std::forward<ArgumentTypes>(arguments)...);
}
template<typename T, typename U>
bool checkAndSet(T& left, U right)
{
if (left == right)
return false;
left = right;
return true;
}
template<typename T>
bool findBitInWord(T word, size_t& index, size_t endIndex, bool value)
{
static_assert(std::is_unsigned<T>::value, "Type used in findBitInWord must be unsigned");
word >>= index;
while (index < endIndex) {
if ((word & 1) == static_cast<T>(value))
return true;
index++;
word >>= 1;
}
index = endIndex;
return false;
}
// Visitor adapted from http://stackoverflow.com/questions/25338795/is-there-a-name-for-this-tuple-creation-idiom
template <class A, class... B>
struct Visitor : Visitor<A>, Visitor<B...> {
Visitor(A a, B... b)
: Visitor<A>(a)
, Visitor<B...>(b...)
{
}
using Visitor<A>::operator ();
using Visitor<B...>::operator ();
};
template <class A>
struct Visitor<A> : A {
Visitor(A a)
: A(a)
{
}
using A::operator();
};
template <class... F>
Visitor<F...> makeVisitor(F... f)
{
return Visitor<F...>(f...);
}
namespace Detail
{
template <typename, template <typename...> class>
struct IsTemplate_ : std::false_type
{
};
template <typename... Ts, template <typename...> class C>
struct IsTemplate_<C<Ts...>, C> : std::true_type
{
};
}
template <typename T, template <typename...> class Template>
struct IsTemplate : public std::integral_constant<bool, Detail::IsTemplate_<T, Template>::value> {};
namespace Detail
{
template <template <typename...> class Base, typename Derived>
struct IsBaseOfTemplateImpl
{
template <typename... Args>
static std::true_type test(Base<Args...>*);
static std::false_type test(void*);
static constexpr const bool value = decltype(test(std::declval<typename std::remove_cv<Derived>::type*>()))::value;
};
}
template <template <typename...> class Base, typename Derived>
struct IsBaseOfTemplate : public std::integral_constant<bool, Detail::IsBaseOfTemplateImpl<Base, Derived>::value> {};
template <class T>
struct RemoveCVAndReference {
typedef typename std::remove_cv<typename std::remove_reference<T>::type>::type type;
};
template<typename IteratorTypeLeft, typename IteratorTypeRight, typename IteratorTypeDst>
IteratorTypeDst mergeDeduplicatedSorted(IteratorTypeLeft leftBegin, IteratorTypeLeft leftEnd, IteratorTypeRight rightBegin, IteratorTypeRight rightEnd, IteratorTypeDst dstBegin)
{
IteratorTypeLeft leftIter = leftBegin;
IteratorTypeRight rightIter = rightBegin;
IteratorTypeDst dstIter = dstBegin;
if (leftIter < leftEnd && rightIter < rightEnd) {
for (;;) {
auto left = *leftIter;
auto right = *rightIter;
if (left < right) {
*dstIter++ = left;
leftIter++;
if (leftIter >= leftEnd)
break;
} else if (left == right) {
*dstIter++ = left;
leftIter++;
rightIter++;
if (leftIter >= leftEnd || rightIter >= rightEnd)
break;
} else {
*dstIter++ = right;
rightIter++;
if (rightIter >= rightEnd)
break;
}
}
}
while (leftIter < leftEnd)
*dstIter++ = *leftIter++;
while (rightIter < rightEnd)
*dstIter++ = *rightIter++;
return dstIter;
}
// libstdc++5 does not have constexpr std::tie. Since we cannot redefine std::tie with constexpr, we define WTF::tie instead.
// This workaround can be removed after 2019-04 and all users of WTF::tie can be converted to std::tie
// For more info see: https://bugs.webkit.org/show_bug.cgi?id=180692 and https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65978
template <class ...Args>
constexpr std::tuple<Args&...> tie(Args&... values)
{
return std::tuple<Args&...>(values...);
}
} // namespace WTF
// This version of placement new omits a 0 check.
enum NotNullTag { NotNull };
inline void* operator new(size_t, NotNullTag, void* location)
{
ASSERT(location);
return location;
}
// This adds various C++14 features for versions of the STL that may not yet have them.
namespace std {
#if COMPILER(CLANG) && __cplusplus < 201400L
template<class T> struct _Unique_if {
typedef unique_ptr<T> _Single_object;
};
template<class T> struct _Unique_if<T[]> {
typedef unique_ptr<T[]> _Unknown_bound;
};
template<class T, size_t N> struct _Unique_if<T[N]> {
typedef void _Known_bound;
};
template<class T, class... Args> inline typename _Unique_if<T>::_Single_object
make_unique(Args&&... args)
{
return unique_ptr<T>(new T(std::forward<Args>(args)...));
}
template<class T> inline typename _Unique_if<T>::_Unknown_bound
make_unique(size_t n)
{
typedef typename remove_extent<T>::type U;
return unique_ptr<T>(new U[n]());
}
template<class T, class... Args> typename _Unique_if<T>::_Known_bound
make_unique(Args&&...) = delete;
// std::exchange
template<class T, class U = T>
T exchange(T& t, U&& newValue)
{
T oldValue = std::move(t);
t = std::forward<U>(newValue);
return oldValue;
}
#endif
template<WTF::CheckMoveParameterTag, typename T>
ALWAYS_INLINE constexpr typename remove_reference<T>::type&& move(T&& value)
{
static_assert(is_lvalue_reference<T>::value, "T is not an lvalue reference; move() is unnecessary.");
using NonRefQualifiedType = typename remove_reference<T>::type;
static_assert(!is_const<NonRefQualifiedType>::value, "T is const qualified.");
return move(forward<T>(value));
}
#if __cplusplus < 201703L && (!defined(_MSC_FULL_VER) || _MSC_FULL_VER < 190023918) && !defined(__cpp_lib_logical_traits)
template<class...> struct wtf_conjunction_impl;
template<> struct wtf_conjunction_impl<> : true_type { };
template<class B0> struct wtf_conjunction_impl<B0> : B0 { };
template<class B0, class B1> struct wtf_conjunction_impl<B0, B1> : conditional<B0::value, B1, B0>::type { };
template<class B0, class B1, class B2, class... Bn> struct wtf_conjunction_impl<B0, B1, B2, Bn...> : conditional<B0::value, wtf_conjunction_impl<B1, B2, Bn...>, B0>::type { };
template<class... _Args> struct conjunction : wtf_conjunction_impl<_Args...> { };
#endif
// Provide in_place_t when not building with -std=c++17, or when building with libstdc++ 6
// (which doesn't define the _GLIBCXX_RELEASE macro that's been introduced in libstdc++ 7).
#if ((defined(__GLIBCXX__) && !defined(_GLIBCXX_RELEASE))) && (!defined(_MSVC_LANG) || _MSVC_LANG < 201703L)
// These are inline variable for C++17 and later.
#define __IN_PLACE_INLINE_VARIABLE static const
struct in_place_t {
explicit in_place_t() = default;
};
__IN_PLACE_INLINE_VARIABLE constexpr in_place_t in_place { };
template <class T> struct in_place_type_t {
explicit in_place_type_t() = default;
};
template <class T>
__IN_PLACE_INLINE_VARIABLE constexpr in_place_type_t<T> in_place_type { };
template <size_t I> struct in_place_index_t {
explicit in_place_index_t() = default;
};
template <size_t I>
__IN_PLACE_INLINE_VARIABLE constexpr in_place_index_t<I> in_place_index { };
#endif // __cplusplus < 201703L
enum class ZeroStatus {
MayBeZero,
NonZero
};
constexpr size_t clz(uint32_t value, ZeroStatus mightBeZero = ZeroStatus::MayBeZero)
{
if (mightBeZero == ZeroStatus::MayBeZero && value) {
#if COMPILER(MSVC)
return __lzcnt(value);
#else
return __builtin_clz(value);
#endif
}
return 32;
}
} // namespace std
#define WTFMove(value) std::move<WTF::CheckMoveParameter>(value)
using WTF::KB;
using WTF::MB;
using WTF::GB;
using WTF::approximateBinarySearch;
using WTF::binarySearch;
using WTF::bitwise_cast;
using WTF::callStatelessLambda;
using WTF::checkAndSet;
using WTF::findBitInWord;
using WTF::insertIntoBoundedVector;
using WTF::isCompilationThread;
using WTF::isPointerAligned;
using WTF::isStatelessLambda;
using WTF::is8ByteAligned;
using WTF::mergeDeduplicatedSorted;
using WTF::roundUpToMultipleOf;
using WTF::safeCast;
using WTF::tryBinarySearch;