blob: f9c3ba9d71647d423db18a14419804d34f30f441 [file] [log] [blame]
/*
* Copyright (C) 2012-2019 Apple Inc. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "UnlinkedCodeBlock.h"
#include "BytecodeGenerator.h"
#include "BytecodeLivenessAnalysis.h"
#include "BytecodeRewriter.h"
#include "ClassInfo.h"
#include "CodeCache.h"
#include "ExecutableInfo.h"
#include "FunctionOverrides.h"
#include "InstructionStream.h"
#include "JSCInlines.h"
#include "JSString.h"
#include "Opcode.h"
#include "Parser.h"
#include "PreciseJumpTargetsInlines.h"
#include "SourceProvider.h"
#include "Structure.h"
#include "SymbolTable.h"
#include "UnlinkedEvalCodeBlock.h"
#include "UnlinkedFunctionCodeBlock.h"
#include "UnlinkedMetadataTableInlines.h"
#include "UnlinkedModuleProgramCodeBlock.h"
#include "UnlinkedProgramCodeBlock.h"
#include <wtf/DataLog.h>
namespace JSC {
const ClassInfo UnlinkedCodeBlock::s_info = { "UnlinkedCodeBlock", nullptr, nullptr, nullptr, CREATE_METHOD_TABLE(UnlinkedCodeBlock) };
UnlinkedCodeBlock::UnlinkedCodeBlock(VM* vm, Structure* structure, CodeType codeType, const ExecutableInfo& info, OptionSet<CodeGenerationMode> codeGenerationMode)
: Base(*vm, structure)
, m_usesEval(info.usesEval())
, m_isStrictMode(info.isStrictMode())
, m_isConstructor(info.isConstructor())
, m_hasCapturedVariables(false)
, m_isBuiltinFunction(info.isBuiltinFunction())
, m_superBinding(static_cast<unsigned>(info.superBinding()))
, m_scriptMode(static_cast<unsigned>(info.scriptMode()))
, m_isArrowFunctionContext(info.isArrowFunctionContext())
, m_isClassContext(info.isClassContext())
, m_hasTailCalls(false)
, m_constructorKind(static_cast<unsigned>(info.constructorKind()))
, m_derivedContextType(static_cast<unsigned>(info.derivedContextType()))
, m_evalContextType(static_cast<unsigned>(info.evalContextType()))
, m_codeType(static_cast<unsigned>(codeType))
, m_didOptimize(static_cast<unsigned>(MixedTriState))
, m_parseMode(info.parseMode())
, m_codeGenerationMode(codeGenerationMode)
, m_metadata(UnlinkedMetadataTable::create())
{
for (auto& constantRegisterIndex : m_linkTimeConstants)
constantRegisterIndex = 0;
ASSERT(m_constructorKind == static_cast<unsigned>(info.constructorKind()));
ASSERT(m_codeType == static_cast<unsigned>(codeType));
ASSERT(m_didOptimize == static_cast<unsigned>(MixedTriState));
}
void UnlinkedCodeBlock::visitChildren(JSCell* cell, SlotVisitor& visitor)
{
UnlinkedCodeBlock* thisObject = jsCast<UnlinkedCodeBlock*>(cell);
ASSERT_GC_OBJECT_INHERITS(thisObject, info());
Base::visitChildren(thisObject, visitor);
auto locker = holdLock(thisObject->cellLock());
for (FunctionExpressionVector::iterator ptr = thisObject->m_functionDecls.begin(), end = thisObject->m_functionDecls.end(); ptr != end; ++ptr)
visitor.append(*ptr);
for (FunctionExpressionVector::iterator ptr = thisObject->m_functionExprs.begin(), end = thisObject->m_functionExprs.end(); ptr != end; ++ptr)
visitor.append(*ptr);
visitor.appendValues(thisObject->m_constantRegisters.data(), thisObject->m_constantRegisters.size());
size_t extraMemory = thisObject->m_metadata->sizeInBytes();
if (thisObject->m_instructions)
extraMemory += thisObject->m_instructions->sizeInBytes();
visitor.reportExtraMemoryVisited(extraMemory);
}
size_t UnlinkedCodeBlock::estimatedSize(JSCell* cell, VM& vm)
{
UnlinkedCodeBlock* thisObject = jsCast<UnlinkedCodeBlock*>(cell);
size_t extraSize = thisObject->m_metadata->sizeInBytes();
if (thisObject->m_instructions)
extraSize += thisObject->m_instructions->sizeInBytes();
return Base::estimatedSize(cell, vm) + extraSize;
}
int UnlinkedCodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset)
{
ASSERT(bytecodeOffset < instructions().size());
int divot { 0 };
int startOffset { 0 };
int endOffset { 0 };
unsigned line { 0 };
unsigned column { 0 };
expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column);
return line;
}
inline void UnlinkedCodeBlock::getLineAndColumn(const ExpressionRangeInfo& info,
unsigned& line, unsigned& column) const
{
switch (info.mode) {
case ExpressionRangeInfo::FatLineMode:
info.decodeFatLineMode(line, column);
break;
case ExpressionRangeInfo::FatColumnMode:
info.decodeFatColumnMode(line, column);
break;
case ExpressionRangeInfo::FatLineAndColumnMode: {
unsigned fatIndex = info.position;
ExpressionRangeInfo::FatPosition& fatPos = m_rareData->m_expressionInfoFatPositions[fatIndex];
line = fatPos.line;
column = fatPos.column;
break;
}
} // switch
}
#ifndef NDEBUG
static void dumpLineColumnEntry(size_t index, const InstructionStream& instructionStream, unsigned instructionOffset, unsigned line, unsigned column)
{
const auto instruction = instructionStream.at(instructionOffset);
const char* event = "";
if (instruction->is<OpDebug>()) {
switch (instruction->as<OpDebug>().m_debugHookType) {
case WillExecuteProgram: event = " WillExecuteProgram"; break;
case DidExecuteProgram: event = " DidExecuteProgram"; break;
case DidEnterCallFrame: event = " DidEnterCallFrame"; break;
case DidReachBreakpoint: event = " DidReachBreakpoint"; break;
case WillLeaveCallFrame: event = " WillLeaveCallFrame"; break;
case WillExecuteStatement: event = " WillExecuteStatement"; break;
case WillExecuteExpression: event = " WillExecuteExpression"; break;
}
}
dataLogF(" [%zu] pc %u @ line %u col %u : %s%s\n", index, instructionOffset, line, column, instruction->name(), event);
}
void UnlinkedCodeBlock::dumpExpressionRangeInfo()
{
Vector<ExpressionRangeInfo>& expressionInfo = m_expressionInfo;
size_t size = m_expressionInfo.size();
dataLogF("UnlinkedCodeBlock %p expressionRangeInfo[%zu] {\n", this, size);
for (size_t i = 0; i < size; i++) {
ExpressionRangeInfo& info = expressionInfo[i];
unsigned line;
unsigned column;
getLineAndColumn(info, line, column);
dumpLineColumnEntry(i, instructions(), info.instructionOffset, line, column);
}
dataLog("}\n");
}
#endif
void UnlinkedCodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset,
int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) const
{
ASSERT(bytecodeOffset < instructions().size());
if (!m_expressionInfo.size()) {
startOffset = 0;
endOffset = 0;
divot = 0;
line = 0;
column = 0;
return;
}
const Vector<ExpressionRangeInfo>& expressionInfo = m_expressionInfo;
int low = 0;
int high = expressionInfo.size();
while (low < high) {
int mid = low + (high - low) / 2;
if (expressionInfo[mid].instructionOffset <= bytecodeOffset)
low = mid + 1;
else
high = mid;
}
if (!low)
low = 1;
const ExpressionRangeInfo& info = expressionInfo[low - 1];
startOffset = info.startOffset;
endOffset = info.endOffset;
divot = info.divotPoint;
getLineAndColumn(info, line, column);
}
void UnlinkedCodeBlock::addExpressionInfo(unsigned instructionOffset,
int divot, int startOffset, int endOffset, unsigned line, unsigned column)
{
if (divot > ExpressionRangeInfo::MaxDivot) {
// Overflow has occurred, we can only give line number info for errors for this region
divot = 0;
startOffset = 0;
endOffset = 0;
} else if (startOffset > ExpressionRangeInfo::MaxOffset) {
// If the start offset is out of bounds we clear both offsets
// so we only get the divot marker. Error message will have to be reduced
// to line and charPosition number.
startOffset = 0;
endOffset = 0;
} else if (endOffset > ExpressionRangeInfo::MaxOffset) {
// The end offset is only used for additional context, and is much more likely
// to overflow (eg. function call arguments) so we are willing to drop it without
// dropping the rest of the range.
endOffset = 0;
}
unsigned positionMode =
(line <= ExpressionRangeInfo::MaxFatLineModeLine && column <= ExpressionRangeInfo::MaxFatLineModeColumn)
? ExpressionRangeInfo::FatLineMode
: (line <= ExpressionRangeInfo::MaxFatColumnModeLine && column <= ExpressionRangeInfo::MaxFatColumnModeColumn)
? ExpressionRangeInfo::FatColumnMode
: ExpressionRangeInfo::FatLineAndColumnMode;
ExpressionRangeInfo info;
info.instructionOffset = instructionOffset;
info.divotPoint = divot;
info.startOffset = startOffset;
info.endOffset = endOffset;
info.mode = positionMode;
switch (positionMode) {
case ExpressionRangeInfo::FatLineMode:
info.encodeFatLineMode(line, column);
break;
case ExpressionRangeInfo::FatColumnMode:
info.encodeFatColumnMode(line, column);
break;
case ExpressionRangeInfo::FatLineAndColumnMode: {
createRareDataIfNecessary();
unsigned fatIndex = m_rareData->m_expressionInfoFatPositions.size();
ExpressionRangeInfo::FatPosition fatPos = { line, column };
m_rareData->m_expressionInfoFatPositions.append(fatPos);
info.position = fatIndex;
}
} // switch
m_expressionInfo.append(info);
}
bool UnlinkedCodeBlock::typeProfilerExpressionInfoForBytecodeOffset(unsigned bytecodeOffset, unsigned& startDivot, unsigned& endDivot)
{
static const bool verbose = false;
if (!m_rareData) {
if (verbose)
dataLogF("Don't have assignment info for offset:%u\n", bytecodeOffset);
startDivot = UINT_MAX;
endDivot = UINT_MAX;
return false;
}
auto iter = m_rareData->m_typeProfilerInfoMap.find(bytecodeOffset);
if (iter == m_rareData->m_typeProfilerInfoMap.end()) {
if (verbose)
dataLogF("Don't have assignment info for offset:%u\n", bytecodeOffset);
startDivot = UINT_MAX;
endDivot = UINT_MAX;
return false;
}
RareData::TypeProfilerExpressionRange& range = iter->value;
startDivot = range.m_startDivot;
endDivot = range.m_endDivot;
return true;
}
void UnlinkedCodeBlock::addTypeProfilerExpressionInfo(unsigned instructionOffset, unsigned startDivot, unsigned endDivot)
{
createRareDataIfNecessary();
RareData::TypeProfilerExpressionRange range;
range.m_startDivot = startDivot;
range.m_endDivot = endDivot;
m_rareData->m_typeProfilerInfoMap.set(instructionOffset, range);
}
UnlinkedCodeBlock::~UnlinkedCodeBlock()
{
}
void UnlinkedCodeBlock::setInstructions(std::unique_ptr<InstructionStream> instructions)
{
ASSERT(instructions);
{
auto locker = holdLock(cellLock());
m_instructions = WTFMove(instructions);
m_metadata->finalize();
}
Heap::heap(this)->reportExtraMemoryAllocated(m_instructions->sizeInBytes() + m_metadata->sizeInBytes());
}
const InstructionStream& UnlinkedCodeBlock::instructions() const
{
ASSERT(m_instructions.get());
return *m_instructions;
}
UnlinkedHandlerInfo* UnlinkedCodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler)
{
return handlerForIndex(bytecodeOffset, requiredHandler);
}
UnlinkedHandlerInfo* UnlinkedCodeBlock::handlerForIndex(unsigned index, RequiredHandler requiredHandler)
{
if (!m_rareData)
return nullptr;
return UnlinkedHandlerInfo::handlerForIndex(m_rareData->m_exceptionHandlers, index, requiredHandler);
}
void UnlinkedCodeBlock::applyModification(BytecodeRewriter& rewriter, InstructionStreamWriter& instructions)
{
// Before applying the changes, we adjust the jumps based on the original bytecode offset, the offset to the jump target, and
// the insertion information.
rewriter.adjustJumpTargets();
// Then, exception handlers should be adjusted.
if (m_rareData) {
for (UnlinkedHandlerInfo& handler : m_rareData->m_exceptionHandlers) {
handler.target = rewriter.adjustAbsoluteOffset(handler.target);
handler.start = rewriter.adjustAbsoluteOffset(handler.start);
handler.end = rewriter.adjustAbsoluteOffset(handler.end);
}
for (size_t i = 0; i < m_rareData->m_opProfileControlFlowBytecodeOffsets.size(); ++i)
m_rareData->m_opProfileControlFlowBytecodeOffsets[i] = rewriter.adjustAbsoluteOffset(m_rareData->m_opProfileControlFlowBytecodeOffsets[i]);
if (!m_rareData->m_typeProfilerInfoMap.isEmpty()) {
HashMap<unsigned, RareData::TypeProfilerExpressionRange> adjustedTypeProfilerInfoMap;
for (auto& entry : m_rareData->m_typeProfilerInfoMap)
adjustedTypeProfilerInfoMap.set(rewriter.adjustAbsoluteOffset(entry.key), entry.value);
m_rareData->m_typeProfilerInfoMap.swap(adjustedTypeProfilerInfoMap);
}
}
for (size_t i = 0; i < m_propertyAccessInstructions.size(); ++i)
m_propertyAccessInstructions[i] = rewriter.adjustAbsoluteOffset(m_propertyAccessInstructions[i]);
for (size_t i = 0; i < m_expressionInfo.size(); ++i)
m_expressionInfo[i].instructionOffset = rewriter.adjustAbsoluteOffset(m_expressionInfo[i].instructionOffset);
// Then, modify the unlinked instructions.
rewriter.applyModification();
// And recompute the jump target based on the modified unlinked instructions.
m_jumpTargets.clear();
recomputePreciseJumpTargets(this, instructions, m_jumpTargets);
}
void UnlinkedCodeBlock::shrinkToFit()
{
auto locker = holdLock(cellLock());
m_jumpTargets.shrinkToFit();
m_propertyAccessInstructions.shrinkToFit();
m_identifiers.shrinkToFit();
m_constantRegisters.shrinkToFit();
m_constantsSourceCodeRepresentation.shrinkToFit();
m_functionDecls.shrinkToFit();
m_functionExprs.shrinkToFit();
m_expressionInfo.shrinkToFit();
if (m_rareData) {
m_rareData->m_exceptionHandlers.shrinkToFit();
m_rareData->m_switchJumpTables.shrinkToFit();
m_rareData->m_stringSwitchJumpTables.shrinkToFit();
m_rareData->m_expressionInfoFatPositions.shrinkToFit();
m_rareData->m_opProfileControlFlowBytecodeOffsets.shrinkToFit();
m_rareData->m_bitVectors.shrinkToFit();
m_rareData->m_constantIdentifierSets.shrinkToFit();
}
}
void UnlinkedCodeBlock::dump(PrintStream&) const
{
}
BytecodeLivenessAnalysis& UnlinkedCodeBlock::livenessAnalysisSlow(CodeBlock* codeBlock)
{
RELEASE_ASSERT(codeBlock->unlinkedCodeBlock() == this);
{
ConcurrentJSLocker locker(m_lock);
if (!m_liveness) {
// There is a chance two compiler threads raced to the slow path.
// Grabbing the lock above defends against computing liveness twice.
m_liveness = std::make_unique<BytecodeLivenessAnalysis>(codeBlock);
}
}
return *m_liveness;
}
void UnlinkedCodeBlock::addOutOfLineJumpTarget(InstructionStream::Offset bytecodeOffset, int target)
{
RELEASE_ASSERT(target);
m_outOfLineJumpTargets.set(bytecodeOffset, target);
}
int UnlinkedCodeBlock::outOfLineJumpOffset(InstructionStream::Offset bytecodeOffset)
{
ASSERT(m_outOfLineJumpTargets.contains(bytecodeOffset));
return m_outOfLineJumpTargets.get(bytecodeOffset);
}
} // namespace JSC