| /* |
| * Copyright (C) 2009 Apple Inc. All rights reserved. |
| * Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #if ENABLE(JIT) |
| #include "JIT.h" |
| |
| #include "JITInlineMethods.h" |
| #include "JITStubCall.h" |
| #include "JSArray.h" |
| #include "JSCell.h" |
| #include "JSFunction.h" |
| #include "JSPropertyNameIterator.h" |
| #include "LinkBuffer.h" |
| |
| namespace JSC { |
| |
| #if !USE(JSVALUE32_64) |
| |
| #define RECORD_JUMP_TARGET(targetOffset) \ |
| do { m_labels[m_bytecodeOffset + (targetOffset)].used(); } while (false) |
| |
| void JIT::privateCompileCTIMachineTrampolines(RefPtr<ExecutablePool>* executablePool, JSGlobalData* globalData, TrampolineStructure *trampolines) |
| { |
| #if ENABLE(JIT_OPTIMIZE_MOD) |
| Label softModBegin = align(); |
| softModulo(); |
| #endif |
| #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) |
| // (2) The second function provides fast property access for string length |
| Label stringLengthBegin = align(); |
| |
| // Check eax is a string |
| Jump string_failureCases1 = emitJumpIfNotJSCell(regT0); |
| Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr)); |
| |
| // Checks out okay! - get the length from the Ustring. |
| load32(Address(regT0, OBJECT_OFFSETOF(JSString, m_length)), regT0); |
| |
| Jump string_failureCases3 = branch32(Above, regT0, Imm32(JSImmediate::maxImmediateInt)); |
| |
| // regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here. |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| |
| ret(); |
| #endif |
| |
| // (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct. |
| COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit); |
| |
| // VirtualCallLink Trampoline |
| // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. |
| Label virtualCallLinkBegin = align(); |
| compileOpCallInitializeCallFrame(); |
| preserveReturnAddressAfterCall(regT3); |
| emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); |
| restoreArgumentReference(); |
| Call callLazyLinkCall = call(); |
| restoreReturnAddressBeforeReturn(regT3); |
| emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); |
| jump(regT0); |
| |
| // VirtualConstructLink Trampoline |
| // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. |
| Label virtualConstructLinkBegin = align(); |
| compileOpCallInitializeCallFrame(); |
| preserveReturnAddressAfterCall(regT3); |
| emitPutToCallFrameHeader(regT3, RegisterFile::ReturnPC); |
| restoreArgumentReference(); |
| Call callLazyLinkConstruct = call(); |
| restoreReturnAddressBeforeReturn(regT3); |
| emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); |
| jump(regT0); |
| |
| // VirtualCall Trampoline |
| // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. |
| Label virtualCallBegin = align(); |
| compileOpCallInitializeCallFrame(); |
| |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); |
| |
| Jump hasCodeBlock3 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForCall)), Imm32(0)); |
| preserveReturnAddressAfterCall(regT3); |
| restoreArgumentReference(); |
| Call callCompileCall = call(); |
| emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); |
| restoreReturnAddressBeforeReturn(regT3); |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); |
| hasCodeBlock3.link(this); |
| |
| loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForCallWithArityCheck)), regT0); |
| jump(regT0); |
| |
| // VirtualConstruct Trampoline |
| // regT0 holds callee, regT1 holds argCount. regT2 will hold the FunctionExecutable. |
| Label virtualConstructBegin = align(); |
| compileOpCallInitializeCallFrame(); |
| |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); |
| |
| Jump hasCodeBlock4 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForConstruct)), Imm32(0)); |
| preserveReturnAddressAfterCall(regT3); |
| restoreArgumentReference(); |
| Call callCompileConstruct = call(); |
| emitGetFromCallFrameHeader32(RegisterFile::ArgumentCount, regT1); |
| restoreReturnAddressBeforeReturn(regT3); |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2); |
| hasCodeBlock4.link(this); |
| |
| loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForConstructWithArityCheck)), regT0); |
| jump(regT0); |
| |
| // NativeCall Trampoline |
| Label nativeCallThunk = privateCompileCTINativeCall(globalData); |
| Label nativeConstructThunk = privateCompileCTINativeCall(globalData, true); |
| |
| #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) |
| Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1); |
| Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2); |
| Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3); |
| #endif |
| |
| // All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object. |
| LinkBuffer patchBuffer(this, m_globalData->executableAllocator.poolForSize(m_assembler.size())); |
| |
| #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) |
| patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail)); |
| patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail)); |
| patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail)); |
| #endif |
| #if ENABLE(JIT_OPTIMIZE_CALL) |
| patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall)); |
| patchBuffer.link(callLazyLinkConstruct, FunctionPtr(cti_vm_lazyLinkConstruct)); |
| #endif |
| patchBuffer.link(callCompileCall, FunctionPtr(cti_op_call_jitCompile)); |
| patchBuffer.link(callCompileConstruct, FunctionPtr(cti_op_construct_jitCompile)); |
| |
| CodeRef finalCode = patchBuffer.finalizeCode(); |
| *executablePool = finalCode.m_executablePool; |
| |
| trampolines->ctiVirtualCallLink = trampolineAt(finalCode, virtualCallLinkBegin); |
| trampolines->ctiVirtualConstructLink = trampolineAt(finalCode, virtualConstructLinkBegin); |
| trampolines->ctiVirtualCall = trampolineAt(finalCode, virtualCallBegin); |
| trampolines->ctiVirtualConstruct = trampolineAt(finalCode, virtualConstructBegin); |
| trampolines->ctiNativeCall = trampolineAt(finalCode, nativeCallThunk); |
| trampolines->ctiNativeConstruct = trampolineAt(finalCode, nativeConstructThunk); |
| #if ENABLE(JIT_OPTIMIZE_MOD) |
| trampolines->ctiSoftModulo = trampolineAt(finalCode, softModBegin); |
| #endif |
| #if ENABLE(JIT_OPTIMIZE_PROPERTY_ACCESS) |
| trampolines->ctiStringLengthTrampoline = trampolineAt(finalCode, stringLengthBegin); |
| #endif |
| } |
| |
| JIT::Label JIT::privateCompileCTINativeCall(JSGlobalData* globalData, bool isConstruct) |
| { |
| int executableOffsetToFunction = isConstruct ? OBJECT_OFFSETOF(NativeExecutable, m_constructor) : OBJECT_OFFSETOF(NativeExecutable, m_function); |
| |
| Label nativeCallThunk = align(); |
| |
| // Load caller frame's scope chain into this callframe so that whatever we call can |
| // get to its global data. |
| emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, regT0); |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1, regT0); |
| emitPutToCallFrameHeader(regT1, RegisterFile::ScopeChain); |
| |
| peek(regT1); |
| emitPutToCallFrameHeader(regT1, RegisterFile::ReturnPC); |
| |
| #if CPU(X86_64) |
| // Calling convention: f(edi, esi, edx, ecx, ...); |
| // Host function signature: f(ExecState*); |
| move(callFrameRegister, X86Registers::edi); |
| |
| subPtr(Imm32(16 - sizeof(void*)), stackPointerRegister); // Align stack after call. |
| |
| emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, X86Registers::esi); |
| loadPtr(Address(X86Registers::esi, OBJECT_OFFSETOF(JSFunction, m_executable)), X86Registers::r9); |
| move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack. |
| call(Address(X86Registers::r9, executableOffsetToFunction)); |
| |
| addPtr(Imm32(16 - sizeof(void*)), stackPointerRegister); |
| |
| #elif ENABLE(JIT_OPTIMIZE_NATIVE_CALL) |
| #error "JIT_OPTIMIZE_NATIVE_CALL not yet supported on this platform." |
| #else |
| breakpoint(); |
| #endif |
| |
| // Check for an exception |
| loadPtr(&(globalData->exception), regT2); |
| Jump exceptionHandler = branchTestPtr(NonZero, regT2); |
| |
| // Return. |
| ret(); |
| |
| // Handle an exception |
| exceptionHandler.link(this); |
| // Grab the return address. |
| peek(regT1); |
| move(ImmPtr(&globalData->exceptionLocation), regT2); |
| storePtr(regT1, regT2); |
| poke(callFrameRegister, 1 + OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); |
| poke(ImmPtr(FunctionPtr(ctiVMThrowTrampoline).value())); |
| ret(); |
| |
| return nativeCallThunk; |
| } |
| |
| JIT::CodePtr JIT::privateCompileCTINativeCall(PassRefPtr<ExecutablePool>, JSGlobalData* globalData, NativeFunction) |
| { |
| return globalData->jitStubs.ctiNativeCall(); |
| } |
| |
| void JIT::emit_op_mov(Instruction* currentInstruction) |
| { |
| int dst = currentInstruction[1].u.operand; |
| int src = currentInstruction[2].u.operand; |
| |
| if (m_codeBlock->isConstantRegisterIndex(src)) { |
| storePtr(ImmPtr(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register))); |
| if (dst == m_lastResultBytecodeRegister) |
| killLastResultRegister(); |
| } else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) { |
| // If either the src or dst is the cached register go though |
| // get/put registers to make sure we track this correctly. |
| emitGetVirtualRegister(src, regT0); |
| emitPutVirtualRegister(dst); |
| } else { |
| // Perform the copy via regT1; do not disturb any mapping in regT0. |
| loadPtr(Address(callFrameRegister, src * sizeof(Register)), regT1); |
| storePtr(regT1, Address(callFrameRegister, dst * sizeof(Register))); |
| } |
| } |
| |
| void JIT::emit_op_end(Instruction* currentInstruction) |
| { |
| if (m_codeBlock->needsFullScopeChain()) |
| JITStubCall(this, cti_op_end).call(); |
| ASSERT(returnValueRegister != callFrameRegister); |
| emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); |
| restoreReturnAddressBeforeReturn(Address(callFrameRegister, RegisterFile::ReturnPC * static_cast<int>(sizeof(Register)))); |
| ret(); |
| } |
| |
| void JIT::emit_op_jmp(Instruction* currentInstruction) |
| { |
| unsigned target = currentInstruction[1].u.operand; |
| addJump(jump(), target); |
| RECORD_JUMP_TARGET(target); |
| } |
| |
| void JIT::emit_op_loop_if_lesseq(Instruction* currentInstruction) |
| { |
| emitTimeoutCheck(); |
| |
| unsigned op1 = currentInstruction[1].u.operand; |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| if (isOperandConstantImmediateInt(op2)) { |
| emitGetVirtualRegister(op1, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| int32_t op2imm = getConstantOperandImmediateInt(op2); |
| #else |
| int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2))); |
| #endif |
| addJump(branch32(LessThanOrEqual, regT0, Imm32(op2imm)), target); |
| } else { |
| emitGetVirtualRegisters(op1, regT0, op2, regT1); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT1); |
| addJump(branch32(LessThanOrEqual, regT0, regT1), target); |
| } |
| } |
| |
| void JIT::emit_op_new_object(Instruction* currentInstruction) |
| { |
| JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_instanceof(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned value = currentInstruction[2].u.operand; |
| unsigned baseVal = currentInstruction[3].u.operand; |
| unsigned proto = currentInstruction[4].u.operand; |
| |
| // Load the operands (baseVal, proto, and value respectively) into registers. |
| // We use regT0 for baseVal since we will be done with this first, and we can then use it for the result. |
| emitGetVirtualRegister(value, regT2); |
| emitGetVirtualRegister(baseVal, regT0); |
| emitGetVirtualRegister(proto, regT1); |
| |
| // Check that baseVal & proto are cells. |
| emitJumpSlowCaseIfNotJSCell(regT2, value); |
| emitJumpSlowCaseIfNotJSCell(regT0, baseVal); |
| emitJumpSlowCaseIfNotJSCell(regT1, proto); |
| |
| // Check that baseVal 'ImplementsDefaultHasInstance'. |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT0); |
| addSlowCase(branchTest8(Zero, Address(regT0, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(ImplementsDefaultHasInstance))); |
| |
| // Optimistically load the result true, and start looping. |
| // Initially, regT1 still contains proto and regT2 still contains value. |
| // As we loop regT2 will be updated with its prototype, recursively walking the prototype chain. |
| move(ImmPtr(JSValue::encode(jsBoolean(true))), regT0); |
| Label loop(this); |
| |
| // Load the prototype of the object in regT2. If this is equal to regT1 - WIN! |
| // Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again. |
| loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| loadPtr(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype)), regT2); |
| Jump isInstance = branchPtr(Equal, regT2, regT1); |
| emitJumpIfJSCell(regT2).linkTo(loop, this); |
| |
| // We get here either by dropping out of the loop, or if value was not an Object. Result is false. |
| move(ImmPtr(JSValue::encode(jsBoolean(false))), regT0); |
| |
| // isInstance jumps right down to here, to skip setting the result to false (it has already set true). |
| isInstance.link(this); |
| emitPutVirtualRegister(dst); |
| } |
| |
| void JIT::emit_op_new_func(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_new_func); |
| stubCall.addArgument(ImmPtr(m_codeBlock->functionDecl(currentInstruction[2].u.operand))); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_call(Instruction* currentInstruction) |
| { |
| compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++); |
| } |
| |
| void JIT::emit_op_call_eval(Instruction* currentInstruction) |
| { |
| compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex++); |
| } |
| |
| void JIT::emit_op_load_varargs(Instruction* currentInstruction) |
| { |
| int argCountDst = currentInstruction[1].u.operand; |
| int argsOffset = currentInstruction[2].u.operand; |
| |
| JITStubCall stubCall(this, cti_op_load_varargs); |
| stubCall.addArgument(Imm32(argsOffset)); |
| stubCall.call(); |
| // Stores a naked int32 in the register file. |
| store32(returnValueRegister, Address(callFrameRegister, argCountDst * sizeof(Register))); |
| } |
| |
| void JIT::emit_op_call_varargs(Instruction* currentInstruction) |
| { |
| compileOpCallVarargs(currentInstruction); |
| } |
| |
| void JIT::emit_op_construct(Instruction* currentInstruction) |
| { |
| compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++); |
| } |
| |
| void JIT::emit_op_get_global_var(Instruction* currentInstruction) |
| { |
| JSVariableObject* globalObject = static_cast<JSVariableObject*>(currentInstruction[2].u.jsCell); |
| move(ImmPtr(globalObject), regT0); |
| emitGetVariableObjectRegister(regT0, currentInstruction[3].u.operand, regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_put_global_var(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegister(currentInstruction[3].u.operand, regT1); |
| JSVariableObject* globalObject = static_cast<JSVariableObject*>(currentInstruction[1].u.jsCell); |
| move(ImmPtr(globalObject), regT0); |
| emitPutVariableObjectRegister(regT1, regT0, currentInstruction[2].u.operand); |
| } |
| |
| void JIT::emit_op_get_scoped_var(Instruction* currentInstruction) |
| { |
| int skip = currentInstruction[3].u.operand; |
| |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); |
| while (skip--) |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); |
| |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT0); |
| emitGetVariableObjectRegister(regT0, currentInstruction[2].u.operand, regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_put_scoped_var(Instruction* currentInstruction) |
| { |
| int skip = currentInstruction[2].u.operand; |
| |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT1); |
| emitGetVirtualRegister(currentInstruction[3].u.operand, regT0); |
| while (skip--) |
| loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, next)), regT1); |
| |
| loadPtr(Address(regT1, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); |
| emitPutVariableObjectRegister(regT0, regT1, currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_tear_off_activation(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_tear_off_activation); |
| stubCall.addArgument(currentInstruction[1].u.operand, regT2); |
| stubCall.addArgument(unmodifiedArgumentsRegister(currentInstruction[2].u.operand), regT2); |
| stubCall.call(); |
| } |
| |
| void JIT::emit_op_tear_off_arguments(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| |
| Jump argsNotCreated = branchTestPtr(Zero, Address(callFrameRegister, sizeof(Register) * (unmodifiedArgumentsRegister(dst)))); |
| JITStubCall stubCall(this, cti_op_tear_off_arguments); |
| stubCall.addArgument(unmodifiedArgumentsRegister(dst), regT2); |
| stubCall.call(); |
| argsNotCreated.link(this); |
| } |
| |
| void JIT::emit_op_ret(Instruction* currentInstruction) |
| { |
| // We could JIT generate the deref, only calling out to C when the refcount hits zero. |
| if (m_codeBlock->needsFullScopeChain()) |
| JITStubCall(this, cti_op_ret_scopeChain).call(); |
| |
| ASSERT(callFrameRegister != regT1); |
| ASSERT(regT1 != returnValueRegister); |
| ASSERT(returnValueRegister != callFrameRegister); |
| |
| // Return the result in %eax. |
| emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); |
| |
| // Grab the return address. |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); |
| |
| // Restore our caller's "r". |
| emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); |
| |
| // Return. |
| restoreReturnAddressBeforeReturn(regT1); |
| ret(); |
| } |
| |
| void JIT::emit_op_ret_object_or_this(Instruction* currentInstruction) |
| { |
| // We could JIT generate the deref, only calling out to C when the refcount hits zero. |
| if (m_codeBlock->needsFullScopeChain()) |
| JITStubCall(this, cti_op_ret_scopeChain).call(); |
| |
| ASSERT(callFrameRegister != regT1); |
| ASSERT(regT1 != returnValueRegister); |
| ASSERT(returnValueRegister != callFrameRegister); |
| |
| // Return the result in %eax. |
| emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister); |
| Jump notJSCell = emitJumpIfNotJSCell(returnValueRegister); |
| loadPtr(Address(returnValueRegister, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| Jump notObject = branch8(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo) + OBJECT_OFFSETOF(TypeInfo, m_type)), Imm32(ObjectType)); |
| |
| // Grab the return address. |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); |
| |
| // Restore our caller's "r". |
| emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); |
| |
| // Return. |
| restoreReturnAddressBeforeReturn(regT1); |
| ret(); |
| |
| // Return 'this' in %eax. |
| notJSCell.link(this); |
| notObject.link(this); |
| emitGetVirtualRegister(currentInstruction[2].u.operand, returnValueRegister); |
| |
| // Grab the return address. |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, regT1); |
| |
| // Restore our caller's "r". |
| emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, callFrameRegister); |
| |
| // Return. |
| restoreReturnAddressBeforeReturn(regT1); |
| ret(); |
| } |
| |
| void JIT::emit_op_new_array(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_new_array); |
| stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); |
| stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_resolve(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_resolve); |
| stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_to_primitive(Instruction* currentInstruction) |
| { |
| int dst = currentInstruction[1].u.operand; |
| int src = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(src, regT0); |
| |
| Jump isImm = emitJumpIfNotJSCell(regT0); |
| addSlowCase(branchPtr(NotEqual, Address(regT0), ImmPtr(m_globalData->jsStringVPtr))); |
| isImm.link(this); |
| |
| if (dst != src) |
| emitPutVirtualRegister(dst); |
| |
| } |
| |
| void JIT::emit_op_strcat(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_strcat); |
| stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); |
| stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_resolve_base(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_resolve_base); |
| stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_resolve_skip(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_resolve_skip); |
| stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); |
| stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_resolve_global(Instruction* currentInstruction, bool) |
| { |
| // Fast case |
| void* globalObject = currentInstruction[2].u.jsCell; |
| unsigned currentIndex = m_globalResolveInfoIndex++; |
| void* structureAddress = &(m_codeBlock->globalResolveInfo(currentIndex).structure); |
| void* offsetAddr = &(m_codeBlock->globalResolveInfo(currentIndex).offset); |
| |
| // Check Structure of global object |
| move(ImmPtr(globalObject), regT0); |
| loadPtr(structureAddress, regT1); |
| addSlowCase(branchPtr(NotEqual, regT1, Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)))); // Structures don't match |
| |
| // Load cached property |
| // Assume that the global object always uses external storage. |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSGlobalObject, m_externalStorage)), regT0); |
| load32(offsetAddr, regT1); |
| loadPtr(BaseIndex(regT0, regT1, ScalePtr), regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_resolve_global(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| void* globalObject = currentInstruction[2].u.jsCell; |
| Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); |
| |
| unsigned currentIndex = m_globalResolveInfoIndex++; |
| |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_resolve_global); |
| stubCall.addArgument(ImmPtr(globalObject)); |
| stubCall.addArgument(ImmPtr(ident)); |
| stubCall.addArgument(Imm32(currentIndex)); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_op_not(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); |
| xorPtr(Imm32(static_cast<int32_t>(JSImmediate::FullTagTypeBool)), regT0); |
| addSlowCase(branchTestPtr(NonZero, regT0, Imm32(static_cast<int32_t>(~JSImmediate::ExtendedPayloadBitBoolValue)))); |
| xorPtr(Imm32(static_cast<int32_t>(JSImmediate::FullTagTypeBool | JSImmediate::ExtendedPayloadBitBoolValue)), regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_jfalse(Instruction* currentInstruction) |
| { |
| unsigned target = currentInstruction[2].u.operand; |
| emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); |
| |
| addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))), target); |
| Jump isNonZero = emitJumpIfImmediateInteger(regT0); |
| |
| addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(false)))), target); |
| addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(true))))); |
| |
| isNonZero.link(this); |
| RECORD_JUMP_TARGET(target); |
| } |
| |
| void JIT::emit_op_jeq_null(Instruction* currentInstruction) |
| { |
| unsigned src = currentInstruction[1].u.operand; |
| unsigned target = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(src, regT0); |
| Jump isImmediate = emitJumpIfNotJSCell(regT0); |
| |
| // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| addJump(branchTest8(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target); |
| Jump wasNotImmediate = jump(); |
| |
| // Now handle the immediate cases - undefined & null |
| isImmediate.link(this); |
| andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); |
| addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNull()))), target); |
| |
| wasNotImmediate.link(this); |
| RECORD_JUMP_TARGET(target); |
| }; |
| void JIT::emit_op_jneq_null(Instruction* currentInstruction) |
| { |
| unsigned src = currentInstruction[1].u.operand; |
| unsigned target = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(src, regT0); |
| Jump isImmediate = emitJumpIfNotJSCell(regT0); |
| |
| // First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure. |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| addJump(branchTest8(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined)), target); |
| Jump wasNotImmediate = jump(); |
| |
| // Now handle the immediate cases - undefined & null |
| isImmediate.link(this); |
| andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); |
| addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsNull()))), target); |
| |
| wasNotImmediate.link(this); |
| RECORD_JUMP_TARGET(target); |
| } |
| |
| void JIT::emit_op_jneq_ptr(Instruction* currentInstruction) |
| { |
| unsigned src = currentInstruction[1].u.operand; |
| JSCell* ptr = currentInstruction[2].u.jsCell; |
| unsigned target = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegister(src, regT0); |
| addJump(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(JSValue(ptr)))), target); |
| |
| RECORD_JUMP_TARGET(target); |
| } |
| |
| void JIT::emit_op_jsr(Instruction* currentInstruction) |
| { |
| int retAddrDst = currentInstruction[1].u.operand; |
| int target = currentInstruction[2].u.operand; |
| DataLabelPtr storeLocation = storePtrWithPatch(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * retAddrDst)); |
| addJump(jump(), target); |
| m_jsrSites.append(JSRInfo(storeLocation, label())); |
| killLastResultRegister(); |
| RECORD_JUMP_TARGET(target); |
| } |
| |
| void JIT::emit_op_sret(Instruction* currentInstruction) |
| { |
| jump(Address(callFrameRegister, sizeof(Register) * currentInstruction[1].u.operand)); |
| killLastResultRegister(); |
| } |
| |
| void JIT::emit_op_eq(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); |
| emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); |
| set32(Equal, regT1, regT0, regT0); |
| emitTagAsBoolImmediate(regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_bitnot(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegister(currentInstruction[2].u.operand, regT0); |
| emitJumpSlowCaseIfNotImmediateInteger(regT0); |
| #if USE(JSVALUE64) |
| not32(regT0); |
| emitFastArithIntToImmNoCheck(regT0, regT0); |
| #else |
| xorPtr(Imm32(~JSImmediate::TagTypeNumber), regT0); |
| #endif |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_resolve_with_base(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_resolve_with_base); |
| stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand))); |
| stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); |
| stubCall.call(currentInstruction[2].u.operand); |
| } |
| |
| void JIT::emit_op_new_func_exp(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_new_func_exp); |
| stubCall.addArgument(ImmPtr(m_codeBlock->functionExpr(currentInstruction[2].u.operand))); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_jtrue(Instruction* currentInstruction) |
| { |
| unsigned target = currentInstruction[2].u.operand; |
| emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); |
| |
| Jump isZero = branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))); |
| addJump(emitJumpIfImmediateInteger(regT0), target); |
| |
| addJump(branchPtr(Equal, regT0, ImmPtr(JSValue::encode(jsBoolean(true)))), target); |
| addSlowCase(branchPtr(NotEqual, regT0, ImmPtr(JSValue::encode(jsBoolean(false))))); |
| |
| isZero.link(this); |
| RECORD_JUMP_TARGET(target); |
| } |
| |
| void JIT::emit_op_neq(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); |
| emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); |
| set32(NotEqual, regT1, regT0, regT0); |
| emitTagAsBoolImmediate(regT0); |
| |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| |
| } |
| |
| void JIT::emit_op_bitxor(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); |
| emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); |
| xorPtr(regT1, regT0); |
| emitFastArithReTagImmediate(regT0, regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_bitor(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1); |
| emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2); |
| orPtr(regT1, regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_throw(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_throw); |
| stubCall.addArgument(currentInstruction[1].u.operand, regT2); |
| stubCall.call(); |
| ASSERT(regT0 == returnValueRegister); |
| #ifndef NDEBUG |
| // cti_op_throw always changes it's return address, |
| // this point in the code should never be reached. |
| breakpoint(); |
| #endif |
| } |
| |
| void JIT::emit_op_get_pnames(Instruction* currentInstruction) |
| { |
| int dst = currentInstruction[1].u.operand; |
| int base = currentInstruction[2].u.operand; |
| int i = currentInstruction[3].u.operand; |
| int size = currentInstruction[4].u.operand; |
| int breakTarget = currentInstruction[5].u.operand; |
| |
| JumpList isNotObject; |
| |
| emitGetVirtualRegister(base, regT0); |
| if (!m_codeBlock->isKnownNotImmediate(base)) |
| isNotObject.append(emitJumpIfNotJSCell(regT0)); |
| if (base != m_codeBlock->thisRegister()) { |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| isNotObject.append(branch8(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(ObjectType))); |
| } |
| |
| // We could inline the case where you have a valid cache, but |
| // this call doesn't seem to be hot. |
| Label isObject(this); |
| JITStubCall getPnamesStubCall(this, cti_op_get_pnames); |
| getPnamesStubCall.addArgument(regT0); |
| getPnamesStubCall.call(dst); |
| load32(Address(regT0, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStringsSize)), regT3); |
| store32(Imm32(0), addressFor(i)); |
| store32(regT3, addressFor(size)); |
| Jump end = jump(); |
| |
| isNotObject.link(this); |
| move(regT0, regT1); |
| and32(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT1); |
| addJump(branch32(Equal, regT1, Imm32(JSImmediate::FullTagTypeNull)), breakTarget); |
| |
| JITStubCall toObjectStubCall(this, cti_to_object); |
| toObjectStubCall.addArgument(regT0); |
| toObjectStubCall.call(base); |
| jump().linkTo(isObject, this); |
| |
| end.link(this); |
| } |
| |
| void JIT::emit_op_next_pname(Instruction* currentInstruction) |
| { |
| int dst = currentInstruction[1].u.operand; |
| int base = currentInstruction[2].u.operand; |
| int i = currentInstruction[3].u.operand; |
| int size = currentInstruction[4].u.operand; |
| int it = currentInstruction[5].u.operand; |
| int target = currentInstruction[6].u.operand; |
| |
| JumpList callHasProperty; |
| |
| Label begin(this); |
| load32(addressFor(i), regT0); |
| Jump end = branch32(Equal, regT0, addressFor(size)); |
| |
| // Grab key @ i |
| loadPtr(addressFor(it), regT1); |
| loadPtr(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStrings)), regT2); |
| |
| #if USE(JSVALUE64) |
| loadPtr(BaseIndex(regT2, regT0, TimesEight), regT2); |
| #else |
| loadPtr(BaseIndex(regT2, regT0, TimesFour), regT2); |
| #endif |
| |
| emitPutVirtualRegister(dst, regT2); |
| |
| // Increment i |
| add32(Imm32(1), regT0); |
| store32(regT0, addressFor(i)); |
| |
| // Verify that i is valid: |
| emitGetVirtualRegister(base, regT0); |
| |
| // Test base's structure |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| callHasProperty.append(branchPtr(NotEqual, regT2, Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedStructure))))); |
| |
| // Test base's prototype chain |
| loadPtr(Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedPrototypeChain))), regT3); |
| loadPtr(Address(regT3, OBJECT_OFFSETOF(StructureChain, m_vector)), regT3); |
| addJump(branchTestPtr(Zero, Address(regT3)), target); |
| |
| Label checkPrototype(this); |
| loadPtr(Address(regT2, OBJECT_OFFSETOF(Structure, m_prototype)), regT2); |
| callHasProperty.append(emitJumpIfNotJSCell(regT2)); |
| loadPtr(Address(regT2, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| callHasProperty.append(branchPtr(NotEqual, regT2, Address(regT3))); |
| addPtr(Imm32(sizeof(Structure*)), regT3); |
| branchTestPtr(NonZero, Address(regT3)).linkTo(checkPrototype, this); |
| |
| // Continue loop. |
| addJump(jump(), target); |
| |
| // Slow case: Ask the object if i is valid. |
| callHasProperty.link(this); |
| emitGetVirtualRegister(dst, regT1); |
| JITStubCall stubCall(this, cti_has_property); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| |
| // Test for valid key. |
| addJump(branchTest32(NonZero, regT0), target); |
| jump().linkTo(begin, this); |
| |
| // End of loop. |
| end.link(this); |
| } |
| |
| void JIT::emit_op_push_scope(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_push_scope); |
| stubCall.addArgument(currentInstruction[1].u.operand, regT2); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_pop_scope(Instruction*) |
| { |
| JITStubCall(this, cti_op_pop_scope).call(); |
| } |
| |
| void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned src1 = currentInstruction[2].u.operand; |
| unsigned src2 = currentInstruction[3].u.operand; |
| |
| emitGetVirtualRegisters(src1, regT0, src2, regT1); |
| |
| // Jump to a slow case if either operand is a number, or if both are JSCell*s. |
| move(regT0, regT2); |
| orPtr(regT1, regT2); |
| addSlowCase(emitJumpIfJSCell(regT2)); |
| addSlowCase(emitJumpIfImmediateNumber(regT2)); |
| |
| if (type == OpStrictEq) |
| set32(Equal, regT1, regT0, regT0); |
| else |
| set32(NotEqual, regT1, regT0, regT0); |
| emitTagAsBoolImmediate(regT0); |
| |
| emitPutVirtualRegister(dst); |
| } |
| |
| void JIT::emit_op_stricteq(Instruction* currentInstruction) |
| { |
| compileOpStrictEq(currentInstruction, OpStrictEq); |
| } |
| |
| void JIT::emit_op_nstricteq(Instruction* currentInstruction) |
| { |
| compileOpStrictEq(currentInstruction, OpNStrictEq); |
| } |
| |
| void JIT::emit_op_to_jsnumber(Instruction* currentInstruction) |
| { |
| int srcVReg = currentInstruction[2].u.operand; |
| emitGetVirtualRegister(srcVReg, regT0); |
| |
| Jump wasImmediate = emitJumpIfImmediateInteger(regT0); |
| |
| emitJumpSlowCaseIfNotJSCell(regT0, srcVReg); |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| addSlowCase(branch8(NotEqual, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_type)), Imm32(NumberType))); |
| |
| wasImmediate.link(this); |
| |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_push_new_scope(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_push_new_scope); |
| stubCall.addArgument(ImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand))); |
| stubCall.addArgument(currentInstruction[3].u.operand, regT2); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_catch(Instruction* currentInstruction) |
| { |
| killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code. |
| peek(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof (void*)); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_jmp_scopes(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_jmp_scopes); |
| stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); |
| stubCall.call(); |
| addJump(jump(), currentInstruction[2].u.operand); |
| RECORD_JUMP_TARGET(currentInstruction[2].u.operand); |
| } |
| |
| void JIT::emit_op_switch_imm(Instruction* currentInstruction) |
| { |
| unsigned tableIndex = currentInstruction[1].u.operand; |
| unsigned defaultOffset = currentInstruction[2].u.operand; |
| unsigned scrutinee = currentInstruction[3].u.operand; |
| |
| // create jump table for switch destinations, track this switch statement. |
| SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex); |
| m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate)); |
| jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); |
| |
| JITStubCall stubCall(this, cti_op_switch_imm); |
| stubCall.addArgument(scrutinee, regT2); |
| stubCall.addArgument(Imm32(tableIndex)); |
| stubCall.call(); |
| jump(regT0); |
| } |
| |
| void JIT::emit_op_switch_char(Instruction* currentInstruction) |
| { |
| unsigned tableIndex = currentInstruction[1].u.operand; |
| unsigned defaultOffset = currentInstruction[2].u.operand; |
| unsigned scrutinee = currentInstruction[3].u.operand; |
| |
| // create jump table for switch destinations, track this switch statement. |
| SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex); |
| m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character)); |
| jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size()); |
| |
| JITStubCall stubCall(this, cti_op_switch_char); |
| stubCall.addArgument(scrutinee, regT2); |
| stubCall.addArgument(Imm32(tableIndex)); |
| stubCall.call(); |
| jump(regT0); |
| } |
| |
| void JIT::emit_op_switch_string(Instruction* currentInstruction) |
| { |
| unsigned tableIndex = currentInstruction[1].u.operand; |
| unsigned defaultOffset = currentInstruction[2].u.operand; |
| unsigned scrutinee = currentInstruction[3].u.operand; |
| |
| // create jump table for switch destinations, track this switch statement. |
| StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex); |
| m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset)); |
| |
| JITStubCall stubCall(this, cti_op_switch_string); |
| stubCall.addArgument(scrutinee, regT2); |
| stubCall.addArgument(Imm32(tableIndex)); |
| stubCall.call(); |
| jump(regT0); |
| } |
| |
| void JIT::emit_op_new_error(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_new_error); |
| stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); |
| stubCall.addArgument(ImmPtr(JSValue::encode(m_codeBlock->getConstant(currentInstruction[3].u.operand)))); |
| stubCall.addArgument(Imm32(m_bytecodeOffset)); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_debug(Instruction* currentInstruction) |
| { |
| #if ENABLE(DEBUG_WITH_BREAKPOINT) |
| UNUSED_PARAM(currentInstruction); |
| breakpoint(); |
| #else |
| JITStubCall stubCall(this, cti_op_debug); |
| stubCall.addArgument(Imm32(currentInstruction[1].u.operand)); |
| stubCall.addArgument(Imm32(currentInstruction[2].u.operand)); |
| stubCall.addArgument(Imm32(currentInstruction[3].u.operand)); |
| stubCall.call(); |
| #endif |
| } |
| |
| void JIT::emit_op_eq_null(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned src1 = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(src1, regT0); |
| Jump isImmediate = emitJumpIfNotJSCell(regT0); |
| |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| setTest8(NonZero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); |
| |
| Jump wasNotImmediate = jump(); |
| |
| isImmediate.link(this); |
| |
| andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); |
| setPtr(Equal, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); |
| |
| wasNotImmediate.link(this); |
| |
| emitTagAsBoolImmediate(regT0); |
| emitPutVirtualRegister(dst); |
| |
| } |
| |
| void JIT::emit_op_neq_null(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned src1 = currentInstruction[2].u.operand; |
| |
| emitGetVirtualRegister(src1, regT0); |
| Jump isImmediate = emitJumpIfNotJSCell(regT0); |
| |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT2); |
| setTest8(Zero, Address(regT2, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(MasqueradesAsUndefined), regT0); |
| |
| Jump wasNotImmediate = jump(); |
| |
| isImmediate.link(this); |
| |
| andPtr(Imm32(~JSImmediate::ExtendedTagBitUndefined), regT0); |
| setPtr(NotEqual, regT0, Imm32(JSImmediate::FullTagTypeNull), regT0); |
| |
| wasNotImmediate.link(this); |
| |
| emitTagAsBoolImmediate(regT0); |
| emitPutVirtualRegister(dst); |
| } |
| |
| void JIT::emit_op_enter(Instruction*) |
| { |
| // Even though CTI doesn't use them, we initialize our constant |
| // registers to zap stale pointers, to avoid unnecessarily prolonging |
| // object lifetime and increasing GC pressure. |
| size_t count = m_codeBlock->m_numVars; |
| for (size_t j = 0; j < count; ++j) |
| emitInitRegister(j); |
| |
| } |
| |
| void JIT::emit_op_enter_with_activation(Instruction* currentInstruction) |
| { |
| // Even though CTI doesn't use them, we initialize our constant |
| // registers to zap stale pointers, to avoid unnecessarily prolonging |
| // object lifetime and increasing GC pressure. |
| size_t count = m_codeBlock->m_numVars; |
| for (size_t j = 0; j < count; ++j) |
| emitInitRegister(j); |
| |
| JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_create_arguments(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| |
| Jump argsCreated = branchTestPtr(NonZero, Address(callFrameRegister, sizeof(Register) * dst)); |
| if (m_codeBlock->m_numParameters == 1) |
| JITStubCall(this, cti_op_create_arguments_no_params).call(); |
| else |
| JITStubCall(this, cti_op_create_arguments).call(); |
| emitPutVirtualRegister(dst); |
| emitPutVirtualRegister(unmodifiedArgumentsRegister(dst)); |
| argsCreated.link(this); |
| } |
| |
| void JIT::emit_op_init_arguments(Instruction* currentInstruction) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| |
| storePtr(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * dst)); |
| storePtr(ImmPtr(0), Address(callFrameRegister, sizeof(Register) * (unmodifiedArgumentsRegister(dst)))); |
| } |
| |
| void JIT::emit_op_convert_this(Instruction* currentInstruction) |
| { |
| emitGetVirtualRegister(currentInstruction[1].u.operand, regT0); |
| |
| emitJumpSlowCaseIfNotJSCell(regT0); |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(JSCell, m_structure)), regT1); |
| addSlowCase(branchTest8(NonZero, Address(regT1, OBJECT_OFFSETOF(Structure, m_typeInfo.m_flags)), Imm32(NeedsThisConversion))); |
| } |
| |
| void JIT::emit_op_get_callee(Instruction* currentInstruction) |
| { |
| unsigned result = currentInstruction[1].u.operand; |
| emitGetFromCallFrameHeaderPtr(RegisterFile::Callee, regT0); |
| emitPutVirtualRegister(result); |
| } |
| |
| void JIT::emit_op_create_this(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_create_this); |
| stubCall.addArgument(currentInstruction[2].u.operand, regT1); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emit_op_profile_will_call(Instruction* currentInstruction) |
| { |
| peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); |
| Jump noProfiler = branchTestPtr(Zero, Address(regT1)); |
| |
| JITStubCall stubCall(this, cti_op_profile_will_call); |
| stubCall.addArgument(currentInstruction[1].u.operand, regT1); |
| stubCall.call(); |
| noProfiler.link(this); |
| |
| } |
| |
| void JIT::emit_op_profile_did_call(Instruction* currentInstruction) |
| { |
| peek(regT1, OBJECT_OFFSETOF(JITStackFrame, enabledProfilerReference) / sizeof (void*)); |
| Jump noProfiler = branchTestPtr(Zero, Address(regT1)); |
| |
| JITStubCall stubCall(this, cti_op_profile_did_call); |
| stubCall.addArgument(currentInstruction[1].u.operand, regT1); |
| stubCall.call(); |
| noProfiler.link(this); |
| } |
| |
| |
| // Slow cases |
| |
| void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_convert_this); |
| stubCall.addArgument(regT0); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| |
| JITStubCall stubCall(this, cti_op_to_primitive); |
| stubCall.addArgument(regT0); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_loop_if_lesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned op2 = currentInstruction[2].u.operand; |
| unsigned target = currentInstruction[3].u.operand; |
| if (isOperandConstantImmediateInt(op2)) { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_loop_if_lesseq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(currentInstruction[2].u.operand, regT2); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(NonZero, regT0), target); |
| } else { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_loop_if_lesseq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(NonZero, regT0), target); |
| } |
| } |
| |
| void JIT::emitSlow_op_put_by_val(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned base = currentInstruction[1].u.operand; |
| unsigned property = currentInstruction[2].u.operand; |
| unsigned value = currentInstruction[3].u.operand; |
| |
| linkSlowCase(iter); // property int32 check |
| linkSlowCaseIfNotJSCell(iter, base); // base cell check |
| linkSlowCase(iter); // base not array check |
| linkSlowCase(iter); // in vector check |
| |
| JITStubCall stubPutByValCall(this, cti_op_put_by_val); |
| stubPutByValCall.addArgument(regT0); |
| stubPutByValCall.addArgument(property, regT2); |
| stubPutByValCall.addArgument(value, regT2); |
| stubPutByValCall.call(); |
| } |
| |
| void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| xorPtr(Imm32(static_cast<int32_t>(JSImmediate::FullTagTypeBool)), regT0); |
| JITStubCall stubCall(this, cti_op_not); |
| stubCall.addArgument(regT0); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_jtrue); |
| stubCall.addArgument(regT0); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand); // inverted! |
| } |
| |
| void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_bitnot); |
| stubCall.addArgument(regT0); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_jtrue); |
| stubCall.addArgument(regT0); |
| stubCall.call(); |
| emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand); |
| } |
| |
| void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_bitxor); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_bitor); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_eq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| emitTagAsBoolImmediate(regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_eq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(); |
| xor32(Imm32(0x1), regT0); |
| emitTagAsBoolImmediate(regT0); |
| emitPutVirtualRegister(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_stricteq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCase(iter); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_nstricteq); |
| stubCall.addArgument(regT0); |
| stubCall.addArgument(regT1); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| unsigned value = currentInstruction[2].u.operand; |
| unsigned baseVal = currentInstruction[3].u.operand; |
| unsigned proto = currentInstruction[4].u.operand; |
| |
| linkSlowCaseIfNotJSCell(iter, value); |
| linkSlowCaseIfNotJSCell(iter, baseVal); |
| linkSlowCaseIfNotJSCell(iter, proto); |
| linkSlowCase(iter); |
| JITStubCall stubCall(this, cti_op_instanceof); |
| stubCall.addArgument(value, regT2); |
| stubCall.addArgument(baseVal, regT2); |
| stubCall.addArgument(proto, regT2); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call); |
| } |
| |
| void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_call_eval); |
| } |
| |
| void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| compileOpCallVarargsSlowCase(currentInstruction, iter); |
| } |
| |
| void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| compileOpCallSlowCase(currentInstruction, iter, m_callLinkInfoIndex++, op_construct); |
| } |
| |
| void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand); |
| linkSlowCase(iter); |
| |
| JITStubCall stubCall(this, cti_op_to_jsnumber); |
| stubCall.addArgument(regT0); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| #endif // !USE(JSVALUE32_64) |
| |
| void JIT::emit_op_resolve_global_dynamic(Instruction* currentInstruction) |
| { |
| int skip = currentInstruction[6].u.operand; |
| |
| emitGetFromCallFrameHeaderPtr(RegisterFile::ScopeChain, regT0); |
| while (skip--) { |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, object)), regT1); |
| addSlowCase(checkStructure(regT1, m_globalData->activationStructure.get())); |
| loadPtr(Address(regT0, OBJECT_OFFSETOF(ScopeChainNode, next)), regT0); |
| } |
| emit_op_resolve_global(currentInstruction, true); |
| } |
| |
| void JIT::emitSlow_op_resolve_global_dynamic(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter) |
| { |
| unsigned dst = currentInstruction[1].u.operand; |
| void* globalObject = currentInstruction[2].u.jsCell; |
| Identifier* ident = &m_codeBlock->identifier(currentInstruction[3].u.operand); |
| int skip = currentInstruction[6].u.operand; |
| while (skip--) |
| linkSlowCase(iter); |
| JITStubCall resolveStubCall(this, cti_op_resolve); |
| resolveStubCall.addArgument(ImmPtr(ident)); |
| resolveStubCall.call(dst); |
| emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_resolve_global_dynamic)); |
| |
| unsigned currentIndex = m_globalResolveInfoIndex++; |
| |
| linkSlowCase(iter); // We managed to skip all the nodes in the scope chain, but the cache missed. |
| JITStubCall stubCall(this, cti_op_resolve_global); |
| stubCall.addArgument(ImmPtr(globalObject)); |
| stubCall.addArgument(ImmPtr(ident)); |
| stubCall.addArgument(Imm32(currentIndex)); |
| stubCall.call(dst); |
| } |
| |
| void JIT::emit_op_new_regexp(Instruction* currentInstruction) |
| { |
| JITStubCall stubCall(this, cti_op_new_regexp); |
| stubCall.addArgument(ImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand))); |
| stubCall.call(currentInstruction[1].u.operand); |
| } |
| |
| // For both JSValue32_64 and JSValue32 |
| #if ENABLE(JIT_OPTIMIZE_MOD) |
| #if CPU(ARM_TRADITIONAL) |
| void JIT::softModulo() |
| { |
| push(regS0); |
| push(regS1); |
| push(regT1); |
| push(regT3); |
| #if USE(JSVALUE32_64) |
| m_assembler.mov_r(regT3, regT2); |
| m_assembler.mov_r(regT2, regT0); |
| #else |
| m_assembler.mov_r(regT3, m_assembler.asr(regT2, 1)); |
| m_assembler.mov_r(regT2, m_assembler.asr(regT0, 1)); |
| #endif |
| m_assembler.mov_r(regT1, ARMAssembler::getOp2(0)); |
| |
| m_assembler.teq_r(regT3, ARMAssembler::getOp2(0)); |
| m_assembler.rsb_r(regT3, regT3, ARMAssembler::getOp2(0), ARMAssembler::MI); |
| m_assembler.eor_r(regT1, regT1, ARMAssembler::getOp2(1), ARMAssembler::MI); |
| |
| m_assembler.teq_r(regT2, ARMAssembler::getOp2(0)); |
| m_assembler.rsb_r(regT2, regT2, ARMAssembler::getOp2(0), ARMAssembler::MI); |
| m_assembler.eor_r(regT1, regT1, ARMAssembler::getOp2(2), ARMAssembler::MI); |
| |
| Jump exitBranch = branch32(LessThan, regT2, regT3); |
| |
| m_assembler.sub_r(regS1, regT3, ARMAssembler::getOp2(1)); |
| m_assembler.tst_r(regS1, regT3); |
| m_assembler.and_r(regT2, regT2, regS1, ARMAssembler::EQ); |
| m_assembler.and_r(regT0, regS1, regT3); |
| Jump exitBranch2 = branchTest32(Zero, regT0); |
| |
| m_assembler.clz_r(regS1, regT2); |
| m_assembler.clz_r(regS0, regT3); |
| m_assembler.sub_r(regS0, regS0, regS1); |
| |
| m_assembler.rsbs_r(regS0, regS0, ARMAssembler::getOp2(31)); |
| |
| m_assembler.mov_r(regS0, m_assembler.lsl(regS0, 1), ARMAssembler::NE); |
| |
| m_assembler.add_r(ARMRegisters::pc, ARMRegisters::pc, m_assembler.lsl(regS0, 2), ARMAssembler::NE); |
| m_assembler.mov_r(regT0, regT0); |
| |
| for (int i = 31; i > 0; --i) { |
| m_assembler.cmp_r(regT2, m_assembler.lsl(regT3, i)); |
| m_assembler.sub_r(regT2, regT2, m_assembler.lsl(regT3, i), ARMAssembler::CS); |
| } |
| |
| m_assembler.cmp_r(regT2, regT3); |
| m_assembler.sub_r(regT2, regT2, regT3, ARMAssembler::CS); |
| |
| exitBranch.link(this); |
| exitBranch2.link(this); |
| |
| m_assembler.teq_r(regT1, ARMAssembler::getOp2(0)); |
| m_assembler.rsb_r(regT2, regT2, ARMAssembler::getOp2(0), ARMAssembler::GT); |
| |
| #if USE(JSVALUE32_64) |
| m_assembler.mov_r(regT0, regT2); |
| #else |
| m_assembler.mov_r(regT0, m_assembler.lsl(regT2, 1)); |
| m_assembler.eor_r(regT0, regT0, ARMAssembler::getOp2(1)); |
| #endif |
| pop(regT3); |
| pop(regT1); |
| pop(regS1); |
| pop(regS0); |
| ret(); |
| } |
| #else |
| #error "JIT_OPTIMIZE_MOD not yet supported on this platform." |
| #endif // CPU(ARM_TRADITIONAL) |
| #endif |
| } // namespace JSC |
| |
| #endif // ENABLE(JIT) |