| /* |
| * Copyright (c) 2008, 2009, Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Google Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "BMPImageReader.h" |
| |
| namespace WebCore { |
| |
| BMPImageReader::BMPImageReader(ScalableImageDecoder* parent, size_t decodedAndHeaderOffset, size_t imgDataOffset, bool usesAndMask) |
| : m_parent(parent) |
| , m_buffer(0) |
| , m_decodedOffset(decodedAndHeaderOffset) |
| , m_headerOffset(decodedAndHeaderOffset) |
| , m_imgDataOffset(imgDataOffset) |
| , m_isOS21x(false) |
| , m_isOS22x(false) |
| , m_isTopDown(false) |
| , m_needToProcessBitmasks(false) |
| , m_needToProcessColorTable(false) |
| , m_tableSizeInBytes(0) |
| , m_seenNonZeroAlphaPixel(false) |
| , m_seenZeroAlphaPixel(false) |
| , m_andMaskState(usesAndMask ? NotYetDecoded : None) |
| { |
| // Clue-in decodeBMP() that we need to detect the correct info header size. |
| memset(&m_infoHeader, 0, sizeof(m_infoHeader)); |
| } |
| |
| bool BMPImageReader::decodeBMP(bool onlySize) |
| { |
| // Calculate size of info header. |
| if (!m_infoHeader.biSize && !readInfoHeaderSize()) |
| return false; |
| |
| // Read and process info header. |
| if ((m_decodedOffset < (m_headerOffset + m_infoHeader.biSize)) && !processInfoHeader()) |
| return false; |
| |
| // processInfoHeader() set the size, so if that's all we needed, we're done. |
| if (onlySize) |
| return true; |
| |
| // Read and process the bitmasks, if needed. |
| if (m_needToProcessBitmasks && !processBitmasks()) |
| return false; |
| |
| // Read and process the color table, if needed. |
| if (m_needToProcessColorTable && !processColorTable()) |
| return false; |
| |
| // Initialize the framebuffer if needed. |
| ASSERT(m_buffer); // Parent should set this before asking us to decode! |
| if (m_buffer->isInvalid()) { |
| if (!m_buffer->initialize(m_parent->size(), m_parent->premultiplyAlpha())) |
| return m_parent->setFailed(); // Unable to allocate. |
| |
| m_buffer->setDecodingStatus(DecodingStatus::Partial); |
| m_buffer->setHasAlpha(false); |
| |
| if (!m_isTopDown) |
| m_coord.setY(m_parent->size().height() - 1); |
| } |
| |
| // Decode the data. |
| if ((m_andMaskState != Decoding) && !pastEndOfImage(0)) { |
| if ((m_infoHeader.biCompression != RLE4) && (m_infoHeader.biCompression != RLE8) && (m_infoHeader.biCompression != RLE24)) { |
| const ProcessingResult result = processNonRLEData(false, 0); |
| if (result != Success) |
| return (result == Failure) ? m_parent->setFailed() : false; |
| } else if (!processRLEData()) |
| return false; |
| } |
| |
| // If the image has an AND mask and there was no alpha data, process the |
| // mask. |
| if ((m_andMaskState == NotYetDecoded) && !m_buffer->hasAlpha()) { |
| // Reset decoding coordinates to start of image. |
| m_coord.setX(0); |
| m_coord.setY(m_isTopDown ? 0 : (m_parent->size().height() - 1)); |
| |
| // The AND mask is stored as 1-bit data. |
| m_infoHeader.biBitCount = 1; |
| |
| m_andMaskState = Decoding; |
| } |
| if (m_andMaskState == Decoding) { |
| const ProcessingResult result = processNonRLEData(false, 0); |
| if (result != Success) |
| return (result == Failure) ? m_parent->setFailed() : false; |
| } |
| |
| // Done! |
| m_buffer->setDecodingStatus(DecodingStatus::Complete); |
| return true; |
| } |
| |
| bool BMPImageReader::readInfoHeaderSize() |
| { |
| // Get size of info header. |
| ASSERT(m_decodedOffset == m_headerOffset); |
| if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < 4)) |
| return false; |
| m_infoHeader.biSize = readUint32(0); |
| // Don't increment m_decodedOffset here, it just makes the code in |
| // processInfoHeader() more confusing. |
| |
| // Don't allow the header to overflow (which would be harmless here, but |
| // problematic or at least confusing in other places), or to overrun the |
| // image data. |
| if (((m_headerOffset + m_infoHeader.biSize) < m_headerOffset) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize)))) |
| return m_parent->setFailed(); |
| |
| // See if this is a header size we understand: |
| // OS/2 1.x: 12 |
| if (m_infoHeader.biSize == 12) |
| m_isOS21x = true; |
| // Windows V3: 40 |
| else if ((m_infoHeader.biSize == 40) || isWindowsV4Plus()) |
| ; |
| // OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46 |
| else if ((m_infoHeader.biSize >= 16) && (m_infoHeader.biSize <= 64) && (!(m_infoHeader.biSize & 3) || (m_infoHeader.biSize == 42) || (m_infoHeader.biSize == 46))) |
| m_isOS22x = true; |
| else |
| return m_parent->setFailed(); |
| |
| return true; |
| } |
| |
| bool BMPImageReader::processInfoHeader() |
| { |
| // Read info header. |
| ASSERT(m_decodedOffset == m_headerOffset); |
| if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_infoHeader.biSize) || !readInfoHeader()) |
| return false; |
| m_decodedOffset += m_infoHeader.biSize; |
| |
| // Sanity-check header values. |
| if (!isInfoHeaderValid()) |
| return m_parent->setFailed(); |
| |
| // Set our size. |
| if (!m_parent->setSize(IntSize(m_infoHeader.biWidth, m_infoHeader.biHeight))) |
| return false; |
| |
| // For paletted images, bitmaps can set biClrUsed to 0 to mean "all |
| // colors", so set it to the maximum number of colors for this bit depth. |
| // Also do this for bitmaps that put too large a value here. |
| if (m_infoHeader.biBitCount < 16) { |
| const uint32_t maxColors = static_cast<uint32_t>(1) << m_infoHeader.biBitCount; |
| if (!m_infoHeader.biClrUsed || (m_infoHeader.biClrUsed > maxColors)) |
| m_infoHeader.biClrUsed = maxColors; |
| } |
| |
| // For any bitmaps that set their BitCount to the wrong value, reset the |
| // counts now that we've calculated the number of necessary colors, since |
| // other code relies on this value being correct. |
| if (m_infoHeader.biCompression == RLE8) |
| m_infoHeader.biBitCount = 8; |
| else if (m_infoHeader.biCompression == RLE4) |
| m_infoHeader.biBitCount = 4; |
| |
| // Tell caller what still needs to be processed. |
| if (m_infoHeader.biBitCount >= 16) |
| m_needToProcessBitmasks = true; |
| else if (m_infoHeader.biBitCount) |
| m_needToProcessColorTable = true; |
| |
| return true; |
| } |
| |
| bool BMPImageReader::readInfoHeader() |
| { |
| // Pre-initialize some fields that not all headers set. |
| m_infoHeader.biCompression = RGB; |
| m_infoHeader.biClrUsed = 0; |
| |
| if (m_isOS21x) { |
| m_infoHeader.biWidth = readUint16(4); |
| m_infoHeader.biHeight = readUint16(6); |
| ASSERT(m_andMaskState == None); // ICO is a Windows format, not OS/2! |
| m_infoHeader.biBitCount = readUint16(10); |
| return true; |
| } |
| |
| m_infoHeader.biWidth = readUint32(4); |
| m_infoHeader.biHeight = readUint32(8); |
| if (m_andMaskState != None) |
| m_infoHeader.biHeight /= 2; |
| m_infoHeader.biBitCount = readUint16(14); |
| |
| // Read compression type, if present. |
| if (m_infoHeader.biSize >= 20) { |
| uint32_t biCompression = readUint32(16); |
| |
| // Detect OS/2 2.x-specific compression types. |
| if ((biCompression == 3) && (m_infoHeader.biBitCount == 1)) { |
| m_infoHeader.biCompression = HUFFMAN1D; |
| m_isOS22x = true; |
| } else if ((biCompression == 4) && (m_infoHeader.biBitCount == 24)) { |
| m_infoHeader.biCompression = RLE24; |
| m_isOS22x = true; |
| } else if (biCompression > 5) |
| return m_parent->setFailed(); // Some type we don't understand. |
| else |
| m_infoHeader.biCompression = static_cast<CompressionType>(biCompression); |
| } |
| |
| // Read colors used, if present. |
| if (m_infoHeader.biSize >= 36) |
| m_infoHeader.biClrUsed = readUint32(32); |
| |
| // Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do |
| // that here. If the bit depth is less than 16, these values will be |
| // ignored by the image data decoders. If the bit depth is at least 16 but |
| // the compression format isn't BITFIELDS, these values will be ignored and |
| // overwritten* in processBitmasks(). |
| // NOTE: We allow alpha here. Microsoft doesn't really document this well, |
| // but some BMPs appear to use it. |
| // |
| // For non-Windows V4+, m_bitMasks[] et. al will be initialized later |
| // during processBitmasks(). |
| // |
| // *Except the alpha channel. Bizarrely, some RGB bitmaps expect decoders |
| // to pay attention to the alpha mask here, so there's a special case in |
| // processBitmasks() that doesn't always overwrite that value. |
| if (isWindowsV4Plus()) { |
| m_bitMasks[0] = readUint32(40); |
| m_bitMasks[1] = readUint32(44); |
| m_bitMasks[2] = readUint32(48); |
| m_bitMasks[3] = readUint32(52); |
| } |
| |
| // Detect top-down BMPs. |
| if (m_infoHeader.biHeight < 0) { |
| m_isTopDown = true; |
| m_infoHeader.biHeight = -m_infoHeader.biHeight; |
| } |
| |
| return true; |
| } |
| |
| bool BMPImageReader::isInfoHeaderValid() const |
| { |
| // Non-positive widths/heights are invalid. (We've already flipped the |
| // sign of the height for top-down bitmaps.) |
| if ((m_infoHeader.biWidth <= 0) || !m_infoHeader.biHeight) |
| return false; |
| |
| // Only Windows V3+ has top-down bitmaps. |
| if (m_isTopDown && (m_isOS21x || m_isOS22x)) |
| return false; |
| |
| // Only bit depths of 1, 4, 8, or 24 are universally supported. |
| if ((m_infoHeader.biBitCount != 1) && (m_infoHeader.biBitCount != 4) && (m_infoHeader.biBitCount != 8) && (m_infoHeader.biBitCount != 24)) { |
| // Windows V3+ additionally supports bit depths of 0 (for embedded |
| // JPEG/PNG images), 16, and 32. |
| if (m_isOS21x || m_isOS22x || (m_infoHeader.biBitCount && (m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32))) |
| return false; |
| } |
| |
| // Each compression type is only valid with certain bit depths (except RGB, |
| // which can be used with any bit depth). Also, some formats do not |
| // some compression types. |
| switch (m_infoHeader.biCompression) { |
| case RGB: |
| if (!m_infoHeader.biBitCount) |
| return false; |
| break; |
| |
| case RLE8: |
| // Supposedly there are undocumented formats like "BitCount = 1, |
| // Compression = RLE4" (which means "4 bit, but with a 2-color table"), |
| // so also allow the paletted RLE compression types to have too low a |
| // bit count; we'll correct this later. |
| if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 8)) |
| return false; |
| break; |
| |
| case RLE4: |
| // See comments in RLE8. |
| if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 4)) |
| return false; |
| break; |
| |
| case BITFIELDS: |
| // Only valid for Windows V3+. |
| if (m_isOS21x || m_isOS22x || ((m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32))) |
| return false; |
| break; |
| |
| case JPEG: |
| case PNG: |
| // Only valid for Windows V3+. |
| if (m_isOS21x || m_isOS22x || m_infoHeader.biBitCount) |
| return false; |
| break; |
| |
| case HUFFMAN1D: |
| // Only valid for OS/2 2.x. |
| if (!m_isOS22x || (m_infoHeader.biBitCount != 1)) |
| return false; |
| break; |
| |
| case RLE24: |
| // Only valid for OS/2 2.x. |
| if (!m_isOS22x || (m_infoHeader.biBitCount != 24)) |
| return false; |
| break; |
| |
| default: |
| // Some type we don't understand. This should have been caught in |
| // readInfoHeader(). |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| // Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS. |
| if (m_isTopDown && (m_infoHeader.biCompression != RGB) && (m_infoHeader.biCompression != BITFIELDS)) |
| return false; |
| |
| // Reject the following valid bitmap types that we don't currently bother |
| // decoding. Few other people decode these either, they're unlikely to be |
| // in much use. |
| // TODO(pkasting): Consider supporting these someday. |
| // * Bitmaps larger than 2^16 pixels in either dimension (Windows |
| // probably doesn't draw these well anyway, and the decoded data would |
| // take a lot of memory). |
| if ((m_infoHeader.biWidth >= (1 << 16)) || (m_infoHeader.biHeight >= (1 << 16))) |
| return false; |
| // * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found |
| // in the wild, only used to send data to printers?). |
| if ((m_infoHeader.biCompression == JPEG) || (m_infoHeader.biCompression == PNG)) |
| return false; |
| // * OS/2 2.x Huffman-encoded monochrome bitmaps (see |
| // http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D" |
| // algorithm). |
| if (m_infoHeader.biCompression == HUFFMAN1D) |
| return false; |
| |
| return true; |
| } |
| |
| bool BMPImageReader::processBitmasks() |
| { |
| // Create m_bitMasks[] values. |
| if (m_infoHeader.biCompression != BITFIELDS) { |
| // The format doesn't actually use bitmasks. To simplify the decode |
| // logic later, create bitmasks for the RGB data. For Windows V4+, |
| // this overwrites the masks we read from the header, which are |
| // supposed to be ignored in non-BITFIELDS cases. |
| // 16 bits: MSB <- xRRRRRGG GGGBBBBB -> LSB |
| // 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB |
| const int numBits = (m_infoHeader.biBitCount == 16) ? 5 : 8; |
| for (int i = 0; i <= 2; ++i) |
| m_bitMasks[i] = ((static_cast<uint32_t>(1) << (numBits * (3 - i))) - 1) ^ ((static_cast<uint32_t>(1) << (numBits * (2 - i))) - 1); |
| |
| // For Windows V4+ 32-bit RGB, don't overwrite the alpha mask from the |
| // header (see note in readInfoHeader()). |
| if (m_infoHeader.biBitCount < 32) |
| m_bitMasks[3] = 0; |
| else if (!isWindowsV4Plus()) |
| m_bitMasks[3] = static_cast<uint32_t>(0xff000000); |
| } else if (!isWindowsV4Plus()) { |
| // For Windows V4+ BITFIELDS mode bitmaps, this was already done when |
| // we read the info header. |
| |
| // Fail if we don't have enough file space for the bitmasks. |
| static const size_t SIZEOF_BITMASKS = 12; |
| if (((m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS)))) |
| return m_parent->setFailed(); |
| |
| // Read bitmasks. |
| if ((m_data->size() - m_decodedOffset) < SIZEOF_BITMASKS) |
| return false; |
| m_bitMasks[0] = readUint32(0); |
| m_bitMasks[1] = readUint32(4); |
| m_bitMasks[2] = readUint32(8); |
| // No alpha in anything other than Windows V4+. |
| m_bitMasks[3] = 0; |
| |
| m_decodedOffset += SIZEOF_BITMASKS; |
| } |
| |
| // We've now decoded all the non-image data we care about. Skip anything |
| // else before the actual raster data. |
| if (m_imgDataOffset) |
| m_decodedOffset = m_imgDataOffset; |
| m_needToProcessBitmasks = false; |
| |
| // Check masks and set shift values. |
| for (int i = 0; i < 4; ++i) { |
| // Trim the mask to the allowed bit depth. Some Windows V4+ BMPs |
| // specify a bogus alpha channel in bits that don't exist in the pixel |
| // data (for example, bits 25-31 in a 24-bit RGB format). |
| if (m_infoHeader.biBitCount < 32) |
| m_bitMasks[i] &= ((static_cast<uint32_t>(1) << m_infoHeader.biBitCount) - 1); |
| |
| // For empty masks (common on the alpha channel, especially after the |
| // trimming above), quickly clear the shifts and continue, to avoid an |
| // infinite loop in the counting code below. |
| uint32_t tempMask = m_bitMasks[i]; |
| if (!tempMask) { |
| m_bitShiftsRight[i] = m_bitShiftsLeft[i] = 0; |
| continue; |
| } |
| |
| // Make sure bitmask does not overlap any other bitmasks. |
| for (int j = 0; j < i; ++j) { |
| if (tempMask & m_bitMasks[j]) |
| return m_parent->setFailed(); |
| } |
| |
| // Count offset into pixel data. |
| for (m_bitShiftsRight[i] = 0; !(tempMask & 1); tempMask >>= 1) |
| ++m_bitShiftsRight[i]; |
| |
| // Count size of mask. |
| for (m_bitShiftsLeft[i] = 8; tempMask & 1; tempMask >>= 1) |
| --m_bitShiftsLeft[i]; |
| |
| // Make sure bitmask is contiguous. |
| if (tempMask) |
| return m_parent->setFailed(); |
| |
| // Since RGBABuffer tops out at 8 bits per channel, adjust the shift |
| // amounts to use the most significant 8 bits of the channel. |
| if (m_bitShiftsLeft[i] < 0) { |
| m_bitShiftsRight[i] -= m_bitShiftsLeft[i]; |
| m_bitShiftsLeft[i] = 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool BMPImageReader::processColorTable() |
| { |
| m_tableSizeInBytes = m_infoHeader.biClrUsed * (m_isOS21x ? 3 : 4); |
| |
| // Fail if we don't have enough file space for the color table. |
| if (((m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes)))) |
| return m_parent->setFailed(); |
| |
| // Read color table. |
| if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_tableSizeInBytes)) |
| return false; |
| m_colorTable.resize(m_infoHeader.biClrUsed); |
| for (size_t i = 0; i < m_infoHeader.biClrUsed; ++i) { |
| m_colorTable[i].rgbBlue = m_data->data()[m_decodedOffset++]; |
| m_colorTable[i].rgbGreen = m_data->data()[m_decodedOffset++]; |
| m_colorTable[i].rgbRed = m_data->data()[m_decodedOffset++]; |
| // Skip padding byte (not present on OS/2 1.x). |
| if (!m_isOS21x) |
| ++m_decodedOffset; |
| } |
| |
| // We've now decoded all the non-image data we care about. Skip anything |
| // else before the actual raster data. |
| if (m_imgDataOffset) |
| m_decodedOffset = m_imgDataOffset; |
| m_needToProcessColorTable = false; |
| |
| return true; |
| } |
| |
| bool BMPImageReader::processRLEData() |
| { |
| if (m_decodedOffset > m_data->size()) |
| return false; |
| |
| // RLE decoding is poorly specified. Two main problems: |
| // (1) Are EOL markers necessary? What happens when we have too many |
| // pixels for one row? |
| // http://www.fileformat.info/format/bmp/egff.htm says extra pixels |
| // should wrap to the next line. Real BMPs I've encountered seem to |
| // instead expect extra pixels to be ignored until the EOL marker is |
| // seen, although this has only happened in a few cases and I suspect |
| // those BMPs may be invalid. So we only change lines on EOL (or Delta |
| // with dy > 0), and fail in most cases when pixels extend past the end |
| // of the line. |
| // (2) When Delta, EOL, or EOF are seen, what happens to the "skipped" |
| // pixels? |
| // http://www.daubnet.com/formats/BMP.html says these should be filled |
| // with color 0. However, the "do nothing" and "don't care" comments |
| // of other references suggest leaving these alone, i.e. letting them |
| // be transparent to the background behind the image. This seems to |
| // match how MSPAINT treats BMPs, so we do that. Note that when we |
| // actually skip pixels for a case like this, we need to note on the |
| // framebuffer that we have alpha. |
| |
| // Impossible to decode row-at-a-time, so just do things as a stream of |
| // bytes. |
| while (true) { |
| // Every entry takes at least two bytes; bail if there isn't enough |
| // data. |
| if ((m_data->size() - m_decodedOffset) < 2) |
| return false; |
| |
| // For every entry except EOF, we'd better not have reached the end of |
| // the image. |
| const uint8_t count = m_data->data()[m_decodedOffset]; |
| const uint8_t code = m_data->data()[m_decodedOffset + 1]; |
| if ((count || (code != 1)) && pastEndOfImage(0)) |
| return m_parent->setFailed(); |
| |
| // Decode. |
| if (!count) { |
| switch (code) { |
| case 0: // Magic token: EOL |
| // Skip any remaining pixels in this row. |
| if (m_coord.x() < m_parent->size().width()) |
| m_buffer->setHasAlpha(true); |
| moveBufferToNextRow(); |
| |
| m_decodedOffset += 2; |
| break; |
| |
| case 1: // Magic token: EOF |
| // Skip any remaining pixels in the image. |
| if ((m_coord.x() < m_parent->size().width()) || (m_isTopDown ? (m_coord.y() < (m_parent->size().height() - 1)) : (m_coord.y() > 0))) |
| m_buffer->setHasAlpha(true); |
| return true; |
| |
| case 2: { // Magic token: Delta |
| // The next two bytes specify dx and dy. Bail if there isn't |
| // enough data. |
| if ((m_data->size() - m_decodedOffset) < 4) |
| return false; |
| |
| // Fail if this takes us past the end of the desired row or |
| // past the end of the image. |
| const uint8_t dx = m_data->data()[m_decodedOffset + 2]; |
| const uint8_t dy = m_data->data()[m_decodedOffset + 3]; |
| if (dx || dy) |
| m_buffer->setHasAlpha(true); |
| if (((m_coord.x() + dx) > m_parent->size().width()) || pastEndOfImage(dy)) |
| return m_parent->setFailed(); |
| |
| // Skip intervening pixels. |
| m_coord.move(dx, m_isTopDown ? dy : -dy); |
| |
| m_decodedOffset += 4; |
| break; |
| } |
| |
| default: { // Absolute mode |
| // |code| pixels specified as in BI_RGB, zero-padded at the end |
| // to a multiple of 16 bits. |
| // Because processNonRLEData() expects m_decodedOffset to |
| // point to the beginning of the pixel data, bump it past |
| // the escape bytes and then reset if decoding failed. |
| m_decodedOffset += 2; |
| const ProcessingResult result = processNonRLEData(true, code); |
| if (result == Failure) |
| return m_parent->setFailed(); |
| if (result == InsufficientData) { |
| m_decodedOffset -= 2; |
| return false; |
| } |
| break; |
| } |
| } |
| } else { // Encoded mode |
| // The following color data is repeated for |count| total pixels. |
| // Strangely, some BMPs seem to specify excessively large counts |
| // here; ignore pixels past the end of the row. |
| const int endX = std::min(m_coord.x() + count, m_parent->size().width()); |
| |
| if (m_infoHeader.biCompression == RLE24) { |
| // Bail if there isn't enough data. |
| if ((m_data->size() - m_decodedOffset) < 4) |
| return false; |
| |
| // One BGR triple that we copy |count| times. |
| fillRGBA(endX, m_data->data()[m_decodedOffset + 3], m_data->data()[m_decodedOffset + 2], code, 0xff); |
| m_decodedOffset += 4; |
| } else { |
| // RLE8 has one color index that gets repeated; RLE4 has two |
| // color indexes in the upper and lower 4 bits of the byte, |
| // which are alternated. |
| size_t colorIndexes[2] = {code, code}; |
| if (m_infoHeader.biCompression == RLE4) { |
| colorIndexes[0] = (colorIndexes[0] >> 4) & 0xf; |
| colorIndexes[1] &= 0xf; |
| } |
| if ((colorIndexes[0] >= m_infoHeader.biClrUsed) || (colorIndexes[1] >= m_infoHeader.biClrUsed)) |
| return m_parent->setFailed(); |
| for (int which = 0; m_coord.x() < endX; ) { |
| setI(colorIndexes[which]); |
| which = !which; |
| } |
| |
| m_decodedOffset += 2; |
| } |
| } |
| } |
| } |
| |
| BMPImageReader::ProcessingResult BMPImageReader::processNonRLEData(bool inRLE, int numPixels) |
| { |
| if (m_decodedOffset > m_data->size()) |
| return InsufficientData; |
| |
| if (!inRLE) |
| numPixels = m_parent->size().width(); |
| |
| // Fail if we're being asked to decode more pixels than remain in the row. |
| const int endX = m_coord.x() + numPixels; |
| if (endX > m_parent->size().width()) |
| return Failure; |
| |
| // Determine how many bytes of data the requested number of pixels |
| // requires. |
| const size_t pixelsPerByte = 8 / m_infoHeader.biBitCount; |
| const size_t bytesPerPixel = m_infoHeader.biBitCount / 8; |
| const size_t unpaddedNumBytes = (m_infoHeader.biBitCount < 16) ? ((numPixels + pixelsPerByte - 1) / pixelsPerByte) : (numPixels * bytesPerPixel); |
| // RLE runs are zero-padded at the end to a multiple of 16 bits. Non-RLE |
| // data is in rows and is zero-padded to a multiple of 32 bits. |
| const size_t alignBits = inRLE ? 1 : 3; |
| const size_t paddedNumBytes = (unpaddedNumBytes + alignBits) & ~alignBits; |
| |
| // Decode as many rows as we can. (For RLE, where we only want to decode |
| // one row, we've already checked that this condition is true.) |
| while (!pastEndOfImage(0)) { |
| // Bail if we don't have enough data for the desired number of pixels. |
| if ((m_data->size() - m_decodedOffset) < paddedNumBytes) |
| return InsufficientData; |
| |
| if (m_infoHeader.biBitCount < 16) { |
| // Paletted data. Pixels are stored little-endian within bytes. |
| // Decode pixels one byte at a time, left to right (so, starting at |
| // the most significant bits in the byte). |
| const uint8_t mask = (1 << m_infoHeader.biBitCount) - 1; |
| for (size_t byte = 0; byte < unpaddedNumBytes; ++byte) { |
| uint8_t pixelData = m_data->data()[m_decodedOffset + byte]; |
| for (size_t pixel = 0; (pixel < pixelsPerByte) && (m_coord.x() < endX); ++pixel) { |
| const size_t colorIndex = (pixelData >> (8 - m_infoHeader.biBitCount)) & mask; |
| if (m_andMaskState == Decoding) { |
| // There's no way to accurately represent an AND + XOR |
| // operation as an RGBA image, so where the AND values |
| // are 1, we simply set the framebuffer pixels to fully |
| // transparent, on the assumption that most ICOs on the |
| // web will not be doing a lot of inverting. |
| if (colorIndex) { |
| setPixel(0, 0, 0, 0); |
| m_buffer->setHasAlpha(true); |
| } else |
| m_coord.move(1, 0); |
| } else { |
| if (colorIndex >= m_infoHeader.biClrUsed) |
| return Failure; |
| setI(colorIndex); |
| } |
| pixelData <<= m_infoHeader.biBitCount; |
| } |
| } |
| } else { |
| // RGB data. Decode pixels one at a time, left to right. |
| while (m_coord.x() < endX) { |
| const uint32_t pixel = readCurrentPixel(bytesPerPixel); |
| |
| // Some BMPs specify an alpha channel but don't actually use it |
| // (it contains all 0s). To avoid displaying these images as |
| // fully-transparent, decode as if images are fully opaque |
| // until we actually see a non-zero alpha value; at that point, |
| // reset any previously-decoded pixels to fully transparent and |
| // continue decoding based on the real alpha channel values. |
| // As an optimization, avoid setting "hasAlpha" to true for |
| // images where all alpha values are 255; opaque images are |
| // faster to draw. |
| int alpha = getAlpha(pixel); |
| if (!m_seenNonZeroAlphaPixel && !alpha) { |
| m_seenZeroAlphaPixel = true; |
| alpha = 255; |
| } else { |
| m_seenNonZeroAlphaPixel = true; |
| if (m_seenZeroAlphaPixel) { |
| m_buffer->backingStore()->clear(); |
| m_buffer->setHasAlpha(true); |
| m_seenZeroAlphaPixel = false; |
| } else if (alpha != 255) |
| m_buffer->setHasAlpha(true); |
| } |
| |
| setPixel(getComponent(pixel, 0), getComponent(pixel, 1), |
| getComponent(pixel, 2), alpha); |
| } |
| } |
| |
| // Success, keep going. |
| m_decodedOffset += paddedNumBytes; |
| if (inRLE) |
| return Success; |
| moveBufferToNextRow(); |
| } |
| |
| // Finished decoding whole image. |
| return Success; |
| } |
| |
| void BMPImageReader::moveBufferToNextRow() |
| { |
| m_coord.move(-m_coord.x(), m_isTopDown ? 1 : -1); |
| } |
| |
| } // namespace WebCore |