blob: d0a4f6aeb28fe10ff23f99e9f0b65142ba2ee941 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/ParseContext.h"
#include <stdarg.h>
#include <stdio.h>
#include "common/mathutil.h"
#include "compiler/preprocessor/SourceLocation.h"
#include "compiler/translator/Cache.h"
#include "compiler/translator/IntermNode_util.h"
#include "compiler/translator/ValidateGlobalInitializer.h"
#include "compiler/translator/ValidateSwitch.h"
#include "compiler/translator/glslang.h"
#include "compiler/translator/util.h"
namespace sh
{
///////////////////////////////////////////////////////////////////////
//
// Sub- vector and matrix fields
//
////////////////////////////////////////////////////////////////////////
namespace
{
const int kWebGLMaxStructNesting = 4;
const std::array<const char *, 8> kAtomicBuiltin = {{"atomicAdd", "atomicMin", "atomicMax",
"atomicAnd", "atomicOr", "atomicXor",
"atomicExchange", "atomicCompSwap"}};
bool IsAtomicBuiltin(const TString &name)
{
for (size_t i = 0; i < kAtomicBuiltin.size(); ++i)
{
if (name.compare(kAtomicBuiltin[i]) == 0)
{
return true;
}
}
return false;
}
bool ContainsSampler(const TStructure *structType);
bool ContainsSampler(const TType &type)
{
if (IsSampler(type.getBasicType()))
{
return true;
}
if (type.getBasicType() == EbtStruct)
{
return ContainsSampler(type.getStruct());
}
return false;
}
bool ContainsSampler(const TStructure *structType)
{
for (const auto &field : structType->fields())
{
if (ContainsSampler(*field->type()))
return true;
}
return false;
}
// Get a token from an image argument to use as an error message token.
const char *GetImageArgumentToken(TIntermTyped *imageNode)
{
ASSERT(IsImage(imageNode->getBasicType()));
while (imageNode->getAsBinaryNode() &&
(imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect ||
imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect))
{
imageNode = imageNode->getAsBinaryNode()->getLeft();
}
TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode();
if (imageSymbol)
{
return imageSymbol->getSymbol().c_str();
}
return "image";
}
bool CanSetDefaultPrecisionOnType(const TPublicType &type)
{
if (!SupportsPrecision(type.getBasicType()))
{
return false;
}
if (type.getBasicType() == EbtUInt)
{
// ESSL 3.00.4 section 4.5.4
return false;
}
if (type.isAggregate())
{
// Not allowed to set for aggregate types
return false;
}
return true;
}
// Map input primitive types to input array sizes in a geometry shader.
GLuint GetGeometryShaderInputArraySize(TLayoutPrimitiveType primitiveType)
{
switch (primitiveType)
{
case EptPoints:
return 1u;
case EptLines:
return 2u;
case EptTriangles:
return 3u;
case EptLinesAdjacency:
return 4u;
case EptTrianglesAdjacency:
return 6u;
default:
UNREACHABLE();
return 0u;
}
}
bool IsBufferOrSharedVariable(TIntermTyped *var)
{
if (var->isInterfaceBlock() || var->getQualifier() == EvqBuffer ||
var->getQualifier() == EvqShared)
{
return true;
}
return false;
}
} // namespace
// This tracks each binding point's current default offset for inheritance of subsequent
// variables using the same binding, and keeps offsets unique and non overlapping.
// See GLSL ES 3.1, section 4.4.6.
class TParseContext::AtomicCounterBindingState
{
public:
AtomicCounterBindingState() : mDefaultOffset(0) {}
// Inserts a new span and returns -1 if overlapping, else returns the starting offset of
// newly inserted span.
int insertSpan(int start, size_t length)
{
gl::RangeI newSpan(start, start + static_cast<int>(length));
for (const auto &span : mSpans)
{
if (newSpan.intersects(span))
{
return -1;
}
}
mSpans.push_back(newSpan);
mDefaultOffset = newSpan.high();
return start;
}
// Inserts a new span starting from the default offset.
int appendSpan(size_t length) { return insertSpan(mDefaultOffset, length); }
void setDefaultOffset(int offset) { mDefaultOffset = offset; }
private:
int mDefaultOffset;
std::vector<gl::RangeI> mSpans;
};
TParseContext::TParseContext(TSymbolTable &symt,
TExtensionBehavior &ext,
sh::GLenum type,
ShShaderSpec spec,
ShCompileOptions options,
bool checksPrecErrors,
TDiagnostics *diagnostics,
const ShBuiltInResources &resources)
: symbolTable(symt),
mDeferredNonEmptyDeclarationErrorCheck(false),
mShaderType(type),
mShaderSpec(spec),
mCompileOptions(options),
mShaderVersion(100),
mTreeRoot(nullptr),
mLoopNestingLevel(0),
mStructNestingLevel(0),
mSwitchNestingLevel(0),
mCurrentFunctionType(nullptr),
mFunctionReturnsValue(false),
mChecksPrecisionErrors(checksPrecErrors),
mFragmentPrecisionHighOnESSL1(false),
mDefaultUniformMatrixPacking(EmpColumnMajor),
mDefaultUniformBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
mDefaultBufferMatrixPacking(EmpColumnMajor),
mDefaultBufferBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared),
mDiagnostics(diagnostics),
mDirectiveHandler(ext,
*mDiagnostics,
mShaderVersion,
mShaderType,
resources.WEBGL_debug_shader_precision == 1),
mPreprocessor(mDiagnostics, &mDirectiveHandler, pp::PreprocessorSettings()),
mScanner(nullptr),
mUsesFragData(false),
mUsesFragColor(false),
mUsesSecondaryOutputs(false),
mMinProgramTexelOffset(resources.MinProgramTexelOffset),
mMaxProgramTexelOffset(resources.MaxProgramTexelOffset),
mMinProgramTextureGatherOffset(resources.MinProgramTextureGatherOffset),
mMaxProgramTextureGatherOffset(resources.MaxProgramTextureGatherOffset),
mComputeShaderLocalSizeDeclared(false),
mComputeShaderLocalSize(-1),
mNumViews(-1),
mMaxNumViews(resources.MaxViewsOVR),
mMaxImageUnits(resources.MaxImageUnits),
mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits),
mMaxUniformLocations(resources.MaxUniformLocations),
mMaxUniformBufferBindings(resources.MaxUniformBufferBindings),
mMaxAtomicCounterBindings(resources.MaxAtomicCounterBindings),
mMaxShaderStorageBufferBindings(resources.MaxShaderStorageBufferBindings),
mDeclaringFunction(false),
mGeometryShaderInputPrimitiveType(EptUndefined),
mGeometryShaderOutputPrimitiveType(EptUndefined),
mGeometryShaderInvocations(0),
mGeometryShaderMaxVertices(-1),
mMaxGeometryShaderInvocations(resources.MaxGeometryShaderInvocations),
mMaxGeometryShaderMaxVertices(resources.MaxGeometryOutputVertices),
mGeometryShaderInputArraySize(0u)
{
}
TParseContext::~TParseContext()
{
}
bool TParseContext::parseVectorFields(const TSourceLoc &line,
const TString &compString,
int vecSize,
TVector<int> *fieldOffsets)
{
ASSERT(fieldOffsets);
size_t fieldCount = compString.size();
if (fieldCount > 4u)
{
error(line, "illegal vector field selection", compString.c_str());
return false;
}
fieldOffsets->resize(fieldCount);
enum
{
exyzw,
ergba,
estpq
} fieldSet[4];
for (unsigned int i = 0u; i < fieldOffsets->size(); ++i)
{
switch (compString[i])
{
case 'x':
(*fieldOffsets)[i] = 0;
fieldSet[i] = exyzw;
break;
case 'r':
(*fieldOffsets)[i] = 0;
fieldSet[i] = ergba;
break;
case 's':
(*fieldOffsets)[i] = 0;
fieldSet[i] = estpq;
break;
case 'y':
(*fieldOffsets)[i] = 1;
fieldSet[i] = exyzw;
break;
case 'g':
(*fieldOffsets)[i] = 1;
fieldSet[i] = ergba;
break;
case 't':
(*fieldOffsets)[i] = 1;
fieldSet[i] = estpq;
break;
case 'z':
(*fieldOffsets)[i] = 2;
fieldSet[i] = exyzw;
break;
case 'b':
(*fieldOffsets)[i] = 2;
fieldSet[i] = ergba;
break;
case 'p':
(*fieldOffsets)[i] = 2;
fieldSet[i] = estpq;
break;
case 'w':
(*fieldOffsets)[i] = 3;
fieldSet[i] = exyzw;
break;
case 'a':
(*fieldOffsets)[i] = 3;
fieldSet[i] = ergba;
break;
case 'q':
(*fieldOffsets)[i] = 3;
fieldSet[i] = estpq;
break;
default:
error(line, "illegal vector field selection", compString.c_str());
return false;
}
}
for (unsigned int i = 0u; i < fieldOffsets->size(); ++i)
{
if ((*fieldOffsets)[i] >= vecSize)
{
error(line, "vector field selection out of range", compString.c_str());
return false;
}
if (i > 0)
{
if (fieldSet[i] != fieldSet[i - 1])
{
error(line, "illegal - vector component fields not from the same set",
compString.c_str());
return false;
}
}
}
return true;
}
///////////////////////////////////////////////////////////////////////
//
// Errors
//
////////////////////////////////////////////////////////////////////////
//
// Used by flex/bison to output all syntax and parsing errors.
//
void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token)
{
mDiagnostics->error(loc, reason, token);
}
void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token)
{
mDiagnostics->warning(loc, reason, token);
}
void TParseContext::outOfRangeError(bool isError,
const TSourceLoc &loc,
const char *reason,
const char *token)
{
if (isError)
{
error(loc, reason, token);
}
else
{
warning(loc, reason, token);
}
}
//
// Same error message for all places assignments don't work.
//
void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right)
{
std::stringstream reasonStream;
reasonStream << "cannot convert from '" << right << "' to '" << left << "'";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
//
// Same error message for all places unary operations don't work.
//
void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand)
{
std::stringstream reasonStream;
reasonStream << "wrong operand type - no operation '" << op
<< "' exists that takes an operand of type " << operand
<< " (or there is no acceptable conversion)";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
//
// Same error message for all binary operations don't work.
//
void TParseContext::binaryOpError(const TSourceLoc &line,
const char *op,
TString left,
TString right)
{
std::stringstream reasonStream;
reasonStream << "wrong operand types - no operation '" << op
<< "' exists that takes a left-hand operand of type '" << left
<< "' and a right operand of type '" << right
<< "' (or there is no acceptable conversion)";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
void TParseContext::checkPrecisionSpecified(const TSourceLoc &line,
TPrecision precision,
TBasicType type)
{
if (!mChecksPrecisionErrors)
return;
if (precision != EbpUndefined && !SupportsPrecision(type))
{
error(line, "illegal type for precision qualifier", getBasicString(type));
}
if (precision == EbpUndefined)
{
switch (type)
{
case EbtFloat:
error(line, "No precision specified for (float)", "");
return;
case EbtInt:
case EbtUInt:
UNREACHABLE(); // there's always a predeclared qualifier
error(line, "No precision specified (int)", "");
return;
default:
if (IsOpaqueType(type))
{
error(line, "No precision specified", getBasicString(type));
return;
}
}
}
}
// Both test and if necessary, spit out an error, to see if the node is really
// an l-value that can be operated on this way.
bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node)
{
TIntermSymbol *symNode = node->getAsSymbolNode();
TIntermBinary *binaryNode = node->getAsBinaryNode();
TIntermSwizzle *swizzleNode = node->getAsSwizzleNode();
if (swizzleNode)
{
bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand());
if (ok && swizzleNode->hasDuplicateOffsets())
{
error(line, " l-value of swizzle cannot have duplicate components", op);
return false;
}
return ok;
}
if (binaryNode)
{
switch (binaryNode->getOp())
{
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
return checkCanBeLValue(line, op, binaryNode->getLeft());
default:
break;
}
error(line, " l-value required", op);
return false;
}
std::string message;
switch (node->getQualifier())
{
case EvqConst:
message = "can't modify a const";
break;
case EvqConstReadOnly:
message = "can't modify a const";
break;
case EvqAttribute:
message = "can't modify an attribute";
break;
case EvqFragmentIn:
case EvqVertexIn:
case EvqGeometryIn:
case EvqFlatIn:
case EvqSmoothIn:
case EvqCentroidIn:
message = "can't modify an input";
break;
case EvqUniform:
message = "can't modify a uniform";
break;
case EvqVaryingIn:
message = "can't modify a varying";
break;
case EvqFragCoord:
message = "can't modify gl_FragCoord";
break;
case EvqFrontFacing:
message = "can't modify gl_FrontFacing";
break;
case EvqPointCoord:
message = "can't modify gl_PointCoord";
break;
case EvqNumWorkGroups:
message = "can't modify gl_NumWorkGroups";
break;
case EvqWorkGroupSize:
message = "can't modify gl_WorkGroupSize";
break;
case EvqWorkGroupID:
message = "can't modify gl_WorkGroupID";
break;
case EvqLocalInvocationID:
message = "can't modify gl_LocalInvocationID";
break;
case EvqGlobalInvocationID:
message = "can't modify gl_GlobalInvocationID";
break;
case EvqLocalInvocationIndex:
message = "can't modify gl_LocalInvocationIndex";
break;
case EvqViewIDOVR:
message = "can't modify gl_ViewID_OVR";
break;
case EvqComputeIn:
message = "can't modify work group size variable";
break;
case EvqPerVertexIn:
message = "can't modify any member in gl_in";
break;
case EvqPrimitiveIDIn:
message = "can't modify gl_PrimitiveIDIn";
break;
case EvqInvocationID:
message = "can't modify gl_InvocationID";
break;
case EvqPrimitiveID:
if (mShaderType == GL_FRAGMENT_SHADER)
{
message = "can't modify gl_PrimitiveID in a fragment shader";
}
break;
case EvqLayer:
if (mShaderType == GL_FRAGMENT_SHADER)
{
message = "can't modify gl_Layer in a fragment shader";
}
break;
default:
//
// Type that can't be written to?
//
if (node->getBasicType() == EbtVoid)
{
message = "can't modify void";
}
if (IsOpaqueType(node->getBasicType()))
{
message = "can't modify a variable with type ";
message += getBasicString(node->getBasicType());
}
else if (node->getMemoryQualifier().readonly)
{
message = "can't modify a readonly variable";
}
}
if (message.empty() && binaryNode == 0 && symNode == 0)
{
error(line, "l-value required", op);
return false;
}
//
// Everything else is okay, no error.
//
if (message.empty())
return true;
//
// If we get here, we have an error and a message.
//
if (symNode)
{
const char *symbol = symNode->getSymbol().c_str();
std::stringstream reasonStream;
reasonStream << "l-value required (" << message << " \"" << symbol << "\")";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
else
{
std::stringstream reasonStream;
reasonStream << "l-value required (" << message << ")";
std::string reason = reasonStream.str();
error(line, reason.c_str(), op);
}
return false;
}
// Both test, and if necessary spit out an error, to see if the node is really
// a constant.
void TParseContext::checkIsConst(TIntermTyped *node)
{
if (node->getQualifier() != EvqConst)
{
error(node->getLine(), "constant expression required", "");
}
}
// Both test, and if necessary spit out an error, to see if the node is really
// an integer.
void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token)
{
if (!node->isScalarInt())
{
error(node->getLine(), "integer expression required", token);
}
}
// Both test, and if necessary spit out an error, to see if we are currently
// globally scoped.
bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token)
{
if (!symbolTable.atGlobalLevel())
{
error(line, "only allowed at global scope", token);
return false;
}
return true;
}
// ESSL 3.00.5 sections 3.8 and 3.9.
// If it starts "gl_" or contains two consecutive underscores, it's reserved.
// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a webgl shader.
bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier)
{
static const char *reservedErrMsg = "reserved built-in name";
if (identifier.compare(0, 3, "gl_") == 0)
{
error(line, reservedErrMsg, "gl_");
return false;
}
if (sh::IsWebGLBasedSpec(mShaderSpec))
{
if (identifier.compare(0, 6, "webgl_") == 0)
{
error(line, reservedErrMsg, "webgl_");
return false;
}
if (identifier.compare(0, 7, "_webgl_") == 0)
{
error(line, reservedErrMsg, "_webgl_");
return false;
}
}
if (identifier.find("__") != TString::npos)
{
error(line,
"identifiers containing two consecutive underscores (__) are reserved as "
"possible future keywords",
identifier.c_str());
return false;
}
return true;
}
// Make sure the argument types are correct for constructing a specific type.
bool TParseContext::checkConstructorArguments(const TSourceLoc &line,
const TIntermSequence *arguments,
const TType &type)
{
if (arguments->empty())
{
error(line, "constructor does not have any arguments", "constructor");
return false;
}
for (TIntermNode *arg : *arguments)
{
const TIntermTyped *argTyped = arg->getAsTyped();
ASSERT(argTyped != nullptr);
if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType()))
{
std::string reason("cannot convert a variable with type ");
reason += getBasicString(argTyped->getBasicType());
error(line, reason.c_str(), "constructor");
return false;
}
else if (argTyped->getMemoryQualifier().writeonly)
{
error(line, "cannot convert a variable with writeonly", "constructor");
return false;
}
if (argTyped->getBasicType() == EbtVoid)
{
error(line, "cannot convert a void", "constructor");
return false;
}
}
if (type.isArray())
{
// The size of an unsized constructor should already have been determined.
ASSERT(!type.isUnsizedArray());
if (static_cast<size_t>(type.getOutermostArraySize()) != arguments->size())
{
error(line, "array constructor needs one argument per array element", "constructor");
return false;
}
// GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of
// the array.
for (TIntermNode *const &argNode : *arguments)
{
const TType &argType = argNode->getAsTyped()->getType();
if (mShaderVersion < 310 && argType.isArray())
{
error(line, "constructing from a non-dereferenced array", "constructor");
return false;
}
if (!argType.isElementTypeOf(type))
{
error(line, "Array constructor argument has an incorrect type", "constructor");
return false;
}
}
}
else if (type.getBasicType() == EbtStruct)
{
const TFieldList &fields = type.getStruct()->fields();
if (fields.size() != arguments->size())
{
error(line,
"Number of constructor parameters does not match the number of structure fields",
"constructor");
return false;
}
for (size_t i = 0; i < fields.size(); i++)
{
if (i >= arguments->size() ||
(*arguments)[i]->getAsTyped()->getType() != *fields[i]->type())
{
error(line, "Structure constructor arguments do not match structure fields",
"constructor");
return false;
}
}
}
else
{
// We're constructing a scalar, vector, or matrix.
// Note: It's okay to have too many components available, but not okay to have unused
// arguments. 'full' will go to true when enough args have been seen. If we loop again,
// there is an extra argument, so 'overFull' will become true.
size_t size = 0;
bool full = false;
bool overFull = false;
bool matrixArg = false;
for (TIntermNode *arg : *arguments)
{
const TIntermTyped *argTyped = arg->getAsTyped();
ASSERT(argTyped != nullptr);
if (argTyped->getBasicType() == EbtStruct)
{
error(line, "a struct cannot be used as a constructor argument for this type",
"constructor");
return false;
}
if (argTyped->getType().isArray())
{
error(line, "constructing from a non-dereferenced array", "constructor");
return false;
}
if (argTyped->getType().isMatrix())
{
matrixArg = true;
}
size += argTyped->getType().getObjectSize();
if (full)
{
overFull = true;
}
if (size >= type.getObjectSize())
{
full = true;
}
}
if (type.isMatrix() && matrixArg)
{
if (arguments->size() != 1)
{
error(line, "constructing matrix from matrix can only take one argument",
"constructor");
return false;
}
}
else
{
if (size != 1 && size < type.getObjectSize())
{
error(line, "not enough data provided for construction", "constructor");
return false;
}
if (overFull)
{
error(line, "too many arguments", "constructor");
return false;
}
}
}
return true;
}
// This function checks to see if a void variable has been declared and raise an error message for
// such a case
//
// returns true in case of an error
//
bool TParseContext::checkIsNonVoid(const TSourceLoc &line,
const TString &identifier,
const TBasicType &type)
{
if (type == EbtVoid)
{
error(line, "illegal use of type 'void'", identifier.c_str());
return false;
}
return true;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
bool TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type)
{
if (type->getBasicType() != EbtBool || !type->isScalar())
{
error(line, "boolean expression expected", "");
return false;
}
return true;
}
// This function checks to see if the node (for the expression) contains a scalar boolean expression
// or not.
void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType)
{
if (pType.getBasicType() != EbtBool || pType.isAggregate())
{
error(line, "boolean expression expected", "");
}
}
bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line,
const TTypeSpecifierNonArray &pType,
const char *reason)
{
if (pType.type == EbtStruct)
{
if (ContainsSampler(pType.userDef))
{
std::stringstream reasonStream;
reasonStream << reason << " (structure contains a sampler)";
std::string reasonStr = reasonStream.str();
error(line, reasonStr.c_str(), getBasicString(pType.type));
return false;
}
// only samplers need to be checked from structs, since other opaque types can't be struct
// members.
return true;
}
else if (IsOpaqueType(pType.type))
{
error(line, reason, getBasicString(pType.type));
return false;
}
return true;
}
void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line,
const TPublicType &pType)
{
if (pType.layoutQualifier.location != -1)
{
error(line, "location must only be specified for a single input or output variable",
"location");
}
}
void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
if (layoutQualifier.location != -1)
{
const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs";
if (mShaderVersion >= 310)
{
errorMsg =
"invalid layout qualifier: only valid on shader inputs, outputs, and uniforms";
}
error(location, errorMsg, "location");
}
}
void TParseContext::checkStd430IsForShaderStorageBlock(const TSourceLoc &location,
const TLayoutBlockStorage &blockStorage,
const TQualifier &qualifier)
{
if (blockStorage == EbsStd430 && qualifier != EvqBuffer)
{
error(location, "The std430 layout is supported only for shader storage blocks.", "std430");
}
}
void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line,
TQualifier qualifier,
const TType &type)
{
ASSERT(qualifier == EvqOut || qualifier == EvqInOut);
if (IsOpaqueType(type.getBasicType()))
{
error(line, "opaque types cannot be output parameters", type.getBasicString());
}
}
// Do size checking for an array type's size.
unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr)
{
TIntermConstantUnion *constant = expr->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold as array size.
if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt())
{
error(line, "array size must be a constant integer expression", "");
return 1u;
}
unsigned int size = 0u;
if (constant->getBasicType() == EbtUInt)
{
size = constant->getUConst(0);
}
else
{
int signedSize = constant->getIConst(0);
if (signedSize < 0)
{
error(line, "array size must be non-negative", "");
return 1u;
}
size = static_cast<unsigned int>(signedSize);
}
if (size == 0u)
{
error(line, "array size must be greater than zero", "");
return 1u;
}
// The size of arrays is restricted here to prevent issues further down the
// compiler/translator/driver stack. Shader Model 5 generation hardware is limited to
// 4096 registers so this should be reasonable even for aggressively optimizable code.
const unsigned int sizeLimit = 65536;
if (size > sizeLimit)
{
error(line, "array size too large", "");
return 1u;
}
return size;
}
// See if this qualifier can be an array.
bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line,
const TPublicType &elementQualifier)
{
if ((elementQualifier.qualifier == EvqAttribute) ||
(elementQualifier.qualifier == EvqVertexIn) ||
(elementQualifier.qualifier == EvqConst && mShaderVersion < 300))
{
error(line, "cannot declare arrays of this qualifier",
TType(elementQualifier).getQualifierString());
return false;
}
return true;
}
// See if this element type can be formed into an array.
bool TParseContext::checkArrayElementIsNotArray(const TSourceLoc &line,
const TPublicType &elementType)
{
if (mShaderVersion < 310 && elementType.isArray())
{
error(line, "cannot declare arrays of arrays",
TType(elementType).getCompleteString().c_str());
return false;
}
return true;
}
// Check if this qualified element type can be formed into an array. This is only called when array
// brackets are associated with an identifier in a declaration, like this:
// float a[2];
// Similar checks are done in addFullySpecifiedType for array declarations where the array brackets
// are associated with the type, like this:
// float[2] a;
bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation,
const TPublicType &elementType)
{
if (!checkArrayElementIsNotArray(indexLocation, elementType))
{
return false;
}
// In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere.
// In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section
// 4.3.4).
if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct &&
sh::IsVarying(elementType.qualifier))
{
error(indexLocation, "cannot declare arrays of structs of this qualifier",
TType(elementType).getCompleteString().c_str());
return false;
}
return checkIsValidQualifierForArray(indexLocation, elementType);
}
// Enforce non-initializer type/qualifier rules.
void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line,
const TString &identifier,
TType *type)
{
ASSERT(type != nullptr);
if (type->getQualifier() == EvqConst)
{
// Make the qualifier make sense.
type->setQualifier(EvqTemporary);
// Generate informative error messages for ESSL1.
// In ESSL3 arrays and structures containing arrays can be constant.
if (mShaderVersion < 300 && type->isStructureContainingArrays())
{
error(line,
"structures containing arrays may not be declared constant since they cannot be "
"initialized",
identifier.c_str());
}
else
{
error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
}
}
// This will make the type sized if it isn't sized yet.
checkIsNotUnsizedArray(line, "implicitly sized arrays need to be initialized",
identifier.c_str(), type);
}
// Do some simple checks that are shared between all variable declarations,
// and update the symbol table.
//
// Returns true if declaring the variable succeeded.
//
bool TParseContext::declareVariable(const TSourceLoc &line,
const TString &identifier,
const TType &type,
TVariable **variable)
{
ASSERT((*variable) == nullptr);
checkBindingIsValid(line, type);
bool needsReservedCheck = true;
// gl_LastFragData may be redeclared with a new precision qualifier
if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0)
{
const TVariable *maxDrawBuffers = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion));
if (type.isArrayOfArrays())
{
error(line, "redeclaration of gl_LastFragData as an array of arrays",
identifier.c_str());
return false;
}
else if (static_cast<int>(type.getOutermostArraySize()) ==
maxDrawBuffers->getConstPointer()->getIConst())
{
if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion))
{
needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension());
}
}
else
{
error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers",
identifier.c_str());
return false;
}
}
if (needsReservedCheck && !checkIsNotReserved(line, identifier))
return false;
(*variable) = symbolTable.declareVariable(&identifier, type);
if (!(*variable))
{
error(line, "redefinition", identifier.c_str());
return false;
}
if (!checkIsNonVoid(line, identifier, type.getBasicType()))
return false;
return true;
}
void TParseContext::checkIsParameterQualifierValid(
const TSourceLoc &line,
const TTypeQualifierBuilder &typeQualifierBuilder,
TType *type)
{
// The only parameter qualifiers a parameter can have are in, out, inout or const.
TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(mDiagnostics);
if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut)
{
checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type);
}
if (!IsImage(type->getBasicType()))
{
checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line);
}
else
{
type->setMemoryQualifier(typeQualifier.memoryQualifier);
}
type->setQualifier(typeQualifier.qualifier);
if (typeQualifier.precision != EbpUndefined)
{
type->setPrecision(typeQualifier.precision);
}
}
template <size_t size>
bool TParseContext::checkCanUseOneOfExtensions(const TSourceLoc &line,
const std::array<TExtension, size> &extensions)
{
ASSERT(!extensions.empty());
const TExtensionBehavior &extBehavior = extensionBehavior();
bool canUseWithWarning = false;
bool canUseWithoutWarning = false;
const char *errorMsgString = "";
TExtension errorMsgExtension = TExtension::UNDEFINED;
for (TExtension extension : extensions)
{
auto extIter = extBehavior.find(extension);
if (canUseWithWarning)
{
// We already have an extension that we can use, but with a warning.
// See if we can use the alternative extension without a warning.
if (extIter == extBehavior.end())
{
continue;
}
if (extIter->second == EBhEnable || extIter->second == EBhRequire)
{
canUseWithoutWarning = true;
break;
}
continue;
}
if (extIter == extBehavior.end())
{
errorMsgString = "extension is not supported";
errorMsgExtension = extension;
}
else if (extIter->second == EBhUndefined || extIter->second == EBhDisable)
{
errorMsgString = "extension is disabled";
errorMsgExtension = extension;
}
else if (extIter->second == EBhWarn)
{
errorMsgExtension = extension;
canUseWithWarning = true;
}
else
{
ASSERT(extIter->second == EBhEnable || extIter->second == EBhRequire);
canUseWithoutWarning = true;
break;
}
}
if (canUseWithoutWarning)
{
return true;
}
if (canUseWithWarning)
{
warning(line, "extension is being used", GetExtensionNameString(errorMsgExtension));
return true;
}
error(line, errorMsgString, GetExtensionNameString(errorMsgExtension));
return false;
}
template bool TParseContext::checkCanUseOneOfExtensions(
const TSourceLoc &line,
const std::array<TExtension, 1> &extensions);
template bool TParseContext::checkCanUseOneOfExtensions(
const TSourceLoc &line,
const std::array<TExtension, 2> &extensions);
template bool TParseContext::checkCanUseOneOfExtensions(
const TSourceLoc &line,
const std::array<TExtension, 3> &extensions);
bool TParseContext::checkCanUseExtension(const TSourceLoc &line, TExtension extension)
{
ASSERT(extension != TExtension::UNDEFINED);
ASSERT(extension != TExtension::EXT_geometry_shader);
if (extension == TExtension::OES_geometry_shader)
{
// OES_geometry_shader and EXT_geometry_shader are always interchangeable.
constexpr std::array<TExtension, 2u> extensions{
{TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}};
return checkCanUseOneOfExtensions(line, extensions);
}
return checkCanUseOneOfExtensions(line, std::array<TExtension, 1u>{{extension}});
}
// ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause
// compile-time or link-time errors are the same whether or not the declaration is empty".
// This function implements all the checks that are done on qualifiers regardless of if the
// declaration is empty.
void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier,
const sh::TLayoutQualifier &layoutQualifier,
const TSourceLoc &location)
{
if (qualifier == EvqShared && !layoutQualifier.isEmpty())
{
error(location, "Shared memory declarations cannot have layout specified", "layout");
}
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
error(location, "layout qualifier only valid for interface blocks",
getMatrixPackingString(layoutQualifier.matrixPacking));
return;
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
error(location, "layout qualifier only valid for interface blocks",
getBlockStorageString(layoutQualifier.blockStorage));
return;
}
if (qualifier == EvqFragmentOut)
{
if (layoutQualifier.location != -1 && layoutQualifier.yuv == true)
{
error(location, "invalid layout qualifier combination", "yuv");
return;
}
}
else
{
checkYuvIsNotSpecified(location, layoutQualifier.yuv);
}
// If multiview extension is enabled, "in" qualifier is allowed in the vertex shader in previous
// parsing steps. So it needs to be checked here.
if (isExtensionEnabled(TExtension::OVR_multiview) && mShaderVersion < 300 &&
qualifier == EvqVertexIn)
{
error(location, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
}
bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut;
if (mShaderVersion >= 310)
{
canHaveLocation = canHaveLocation || qualifier == EvqUniform || IsVarying(qualifier);
// We're not checking whether the uniform location is in range here since that depends on
// the type of the variable.
// The type can only be fully determined for non-empty declarations.
}
if (!canHaveLocation)
{
checkLocationIsNotSpecified(location, layoutQualifier);
}
}
void TParseContext::atomicCounterQualifierErrorCheck(const TPublicType &publicType,
const TSourceLoc &location)
{
if (publicType.precision != EbpHigh)
{
error(location, "Can only be highp", "atomic counter");
}
// dEQP enforces compile error if location is specified. See uniform_location.test.
if (publicType.layoutQualifier.location != -1)
{
error(location, "location must not be set for atomic_uint", "layout");
}
if (publicType.layoutQualifier.binding == -1)
{
error(location, "no binding specified", "atomic counter");
}
}
void TParseContext::emptyDeclarationErrorCheck(const TType &type, const TSourceLoc &location)
{
if (type.isUnsizedArray())
{
// ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an
// error. It is assumed that this applies to empty declarations as well.
error(location, "empty array declaration needs to specify a size", "");
}
}
// These checks are done for all declarations that are non-empty. They're done for non-empty
// declarations starting a declarator list, and declarators that follow an empty declaration.
void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType,
const TSourceLoc &identifierLocation)
{
switch (publicType.qualifier)
{
case EvqVaryingIn:
case EvqVaryingOut:
case EvqAttribute:
case EvqVertexIn:
case EvqFragmentOut:
case EvqComputeIn:
if (publicType.getBasicType() == EbtStruct)
{
error(identifierLocation, "cannot be used with a structure",
getQualifierString(publicType.qualifier));
return;
}
break;
case EvqBuffer:
if (publicType.getBasicType() != EbtInterfaceBlock)
{
error(identifierLocation,
"cannot declare buffer variables at global scope(outside a block)",
getQualifierString(publicType.qualifier));
return;
}
break;
default:
break;
}
std::string reason(getBasicString(publicType.getBasicType()));
reason += "s must be uniform";
if (publicType.qualifier != EvqUniform &&
!checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str()))
{
return;
}
if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal &&
publicType.qualifier != EvqConst) &&
publicType.getBasicType() == EbtYuvCscStandardEXT)
{
error(identifierLocation, "cannot be used with a yuvCscStandardEXT",
getQualifierString(publicType.qualifier));
return;
}
if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform)
{
// Valid uniform declarations can't be unsized arrays since uniforms can't be initialized.
// But invalid shaders may still reach here with an unsized array declaration.
TType type(publicType);
if (!type.isUnsizedArray())
{
checkUniformLocationInRange(identifierLocation, type.getLocationCount(),
publicType.layoutQualifier);
}
}
// check for layout qualifier issues
const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
if (IsImage(publicType.getBasicType()))
{
switch (layoutQualifier.imageInternalFormat)
{
case EiifRGBA32F:
case EiifRGBA16F:
case EiifR32F:
case EiifRGBA8:
case EiifRGBA8_SNORM:
if (!IsFloatImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires a floating image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifRGBA32I:
case EiifRGBA16I:
case EiifRGBA8I:
case EiifR32I:
if (!IsIntegerImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires an integer image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifRGBA32UI:
case EiifRGBA16UI:
case EiifRGBA8UI:
case EiifR32UI:
if (!IsUnsignedImage(publicType.getBasicType()))
{
error(identifierLocation,
"internal image format requires an unsigned image type",
getBasicString(publicType.getBasicType()));
return;
}
break;
case EiifUnspecified:
error(identifierLocation, "layout qualifier", "No image internal format specified");
return;
default:
error(identifierLocation, "layout qualifier", "unrecognized token");
return;
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
switch (layoutQualifier.imageInternalFormat)
{
case EiifR32F:
case EiifR32I:
case EiifR32UI:
break;
default:
if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly)
{
error(identifierLocation, "layout qualifier",
"Except for images with the r32f, r32i and r32ui format qualifiers, "
"image variables must be qualified readonly and/or writeonly");
return;
}
break;
}
}
else
{
checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat);
checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation);
}
if (IsAtomicCounter(publicType.getBasicType()))
{
atomicCounterQualifierErrorCheck(publicType, identifierLocation);
}
else
{
checkOffsetIsNotSpecified(identifierLocation, layoutQualifier.offset);
}
}
void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type)
{
TLayoutQualifier layoutQualifier = type.getLayoutQualifier();
// Note that the ESSL 3.10 section 4.4.5 is not particularly clear on how the binding qualifier
// on arrays of arrays should be handled. We interpret the spec so that the binding value is
// incremented for each element of the innermost nested arrays. This is in line with how arrays
// of arrays of blocks are specified to behave in GLSL 4.50 and a conservative interpretation
// when it comes to which shaders are accepted by the compiler.
int arrayTotalElementCount = type.getArraySizeProduct();
if (IsImage(type.getBasicType()))
{
checkImageBindingIsValid(identifierLocation, layoutQualifier.binding,
arrayTotalElementCount);
}
else if (IsSampler(type.getBasicType()))
{
checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding,
arrayTotalElementCount);
}
else if (IsAtomicCounter(type.getBasicType()))
{
checkAtomicCounterBindingIsValid(identifierLocation, layoutQualifier.binding);
}
else
{
ASSERT(!IsOpaqueType(type.getBasicType()));
checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding);
}
}
void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location,
const TString &layoutQualifierName,
int versionRequired)
{
if (mShaderVersion < versionRequired)
{
error(location, "invalid layout qualifier: not supported", layoutQualifierName.c_str());
}
}
bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location,
const TLayoutQualifier &layoutQualifier)
{
const sh::WorkGroupSize &localSize = layoutQualifier.localSize;
for (size_t i = 0u; i < localSize.size(); ++i)
{
if (localSize[i] != -1)
{
error(location,
"invalid layout qualifier: only valid when used with 'in' in a compute shader "
"global layout declaration",
getWorkGroupSizeString(i));
return false;
}
}
return true;
}
void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location,
TLayoutImageInternalFormat internalFormat)
{
if (internalFormat != EiifUnspecified)
{
error(location, "invalid layout qualifier: only valid when used with images",
getImageInternalFormatString(internalFormat));
}
}
void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding)
{
if (binding != -1)
{
error(location,
"invalid layout qualifier: only valid when used with opaque types or blocks",
"binding");
}
}
void TParseContext::checkOffsetIsNotSpecified(const TSourceLoc &location, int offset)
{
if (offset != -1)
{
error(location, "invalid layout qualifier: only valid when used with atomic counters",
"offset");
}
}
void TParseContext::checkImageBindingIsValid(const TSourceLoc &location,
int binding,
int arrayTotalElementCount)
{
// Expects arraySize to be 1 when setting binding for only a single variable.
if (binding >= 0 && binding + arrayTotalElementCount > mMaxImageUnits)
{
error(location, "image binding greater than gl_MaxImageUnits", "binding");
}
}
void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location,
int binding,
int arrayTotalElementCount)
{
// Expects arraySize to be 1 when setting binding for only a single variable.
if (binding >= 0 && binding + arrayTotalElementCount > mMaxCombinedTextureImageUnits)
{
error(location, "sampler binding greater than maximum texture units", "binding");
}
}
void TParseContext::checkBlockBindingIsValid(const TSourceLoc &location,
const TQualifier &qualifier,
int binding,
int arraySize)
{
int size = (arraySize == 0 ? 1 : arraySize);
if (qualifier == EvqUniform)
{
if (binding + size > mMaxUniformBufferBindings)
{
error(location, "uniform block binding greater than MAX_UNIFORM_BUFFER_BINDINGS",
"binding");
}
}
else if (qualifier == EvqBuffer)
{
if (binding + size > mMaxShaderStorageBufferBindings)
{
error(location,
"shader storage block binding greater than MAX_SHADER_STORAGE_BUFFER_BINDINGS",
"binding");
}
}
}
void TParseContext::checkAtomicCounterBindingIsValid(const TSourceLoc &location, int binding)
{
if (binding >= mMaxAtomicCounterBindings)
{
error(location, "atomic counter binding greater than gl_MaxAtomicCounterBindings",
"binding");
}
}
void TParseContext::checkUniformLocationInRange(const TSourceLoc &location,
int objectLocationCount,
const TLayoutQualifier &layoutQualifier)
{
int loc = layoutQualifier.location;
if (loc >= 0 && loc + objectLocationCount > mMaxUniformLocations)
{
error(location, "Uniform location out of range", "location");
}
}
void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv)
{
if (yuv != false)
{
error(location, "invalid layout qualifier: only valid on program outputs", "yuv");
}
}
void TParseContext::functionCallRValueLValueErrorCheck(const TFunction *fnCandidate,
TIntermAggregate *fnCall)
{
for (size_t i = 0; i < fnCandidate->getParamCount(); ++i)
{
TQualifier qual = fnCandidate->getParam(i).type->getQualifier();
TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped();
if (!IsImage(argument->getBasicType()) && (IsQualifierUnspecified(qual) || qual == EvqIn ||
qual == EvqInOut || qual == EvqConstReadOnly))
{
if (argument->getMemoryQualifier().writeonly)
{
error(argument->getLine(),
"Writeonly value cannot be passed for 'in' or 'inout' parameters.",
fnCall->getFunctionSymbolInfo()->getName().c_str());
return;
}
}
if (qual == EvqOut || qual == EvqInOut)
{
if (!checkCanBeLValue(argument->getLine(), "assign", argument))
{
error(argument->getLine(),
"Constant value cannot be passed for 'out' or 'inout' parameters.",
fnCall->getFunctionSymbolInfo()->getName().c_str());
return;
}
}
}
}
void TParseContext::checkInvariantVariableQualifier(bool invariant,
const TQualifier qualifier,
const TSourceLoc &invariantLocation)
{
if (!invariant)
return;
if (mShaderVersion < 300)
{
// input variables in the fragment shader can be also qualified as invariant
if (!sh::CanBeInvariantESSL1(qualifier))
{
error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
}
}
else
{
if (!sh::CanBeInvariantESSL3OrGreater(qualifier))
{
error(invariantLocation, "Cannot be qualified as invariant.", "invariant");
}
}
}
bool TParseContext::isExtensionEnabled(TExtension extension) const
{
return IsExtensionEnabled(extensionBehavior(), extension);
}
void TParseContext::handleExtensionDirective(const TSourceLoc &loc,
const char *extName,
const char *behavior)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handleExtension(srcLoc, extName, behavior);
}
void TParseContext::handlePragmaDirective(const TSourceLoc &loc,
const char *name,
const char *value,
bool stdgl)
{
pp::SourceLocation srcLoc;
srcLoc.file = loc.first_file;
srcLoc.line = loc.first_line;
mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl);
}
sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const
{
sh::WorkGroupSize result(-1);
for (size_t i = 0u; i < result.size(); ++i)
{
if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1)
{
result[i] = 1;
}
else
{
result[i] = mComputeShaderLocalSize[i];
}
}
return result;
}
TIntermConstantUnion *TParseContext::addScalarLiteral(const TConstantUnion *constantUnion,
const TSourceLoc &line)
{
TIntermConstantUnion *node = new TIntermConstantUnion(
constantUnion, TType(constantUnion->getType(), EbpUndefined, EvqConst));
node->setLine(line);
return node;
}
/////////////////////////////////////////////////////////////////////////////////
//
// Non-Errors.
//
/////////////////////////////////////////////////////////////////////////////////
const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
if (!symbol)
{
error(location, "undeclared identifier", name->c_str());
return nullptr;
}
if (!symbol->isVariable())
{
error(location, "variable expected", name->c_str());
return nullptr;
}
const TVariable *variable = static_cast<const TVariable *>(symbol);
if (variable->getExtension() != TExtension::UNDEFINED)
{
checkCanUseExtension(location, variable->getExtension());
}
// Reject shaders using both gl_FragData and gl_FragColor
TQualifier qualifier = variable->getType().getQualifier();
if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT)
{
mUsesFragData = true;
}
else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT)
{
mUsesFragColor = true;
}
if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT)
{
mUsesSecondaryOutputs = true;
}
// This validation is not quite correct - it's only an error to write to
// both FragData and FragColor. For simplicity, and because users shouldn't
// be rewarded for reading from undefined varaibles, return an error
// if they are both referenced, rather than assigned.
if (mUsesFragData && mUsesFragColor)
{
const char *errorMessage = "cannot use both gl_FragData and gl_FragColor";
if (mUsesSecondaryOutputs)
{
errorMessage =
"cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)"
" and (gl_FragColor, gl_SecondaryFragColorEXT)";
}
error(location, errorMessage, name->c_str());
}
// GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables
if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared &&
qualifier == EvqWorkGroupSize)
{
error(location,
"It is an error to use gl_WorkGroupSize before declaring the local group size",
"gl_WorkGroupSize");
}
return variable;
}
TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location,
const TString *name,
const TSymbol *symbol)
{
const TVariable *variable = getNamedVariable(location, name, symbol);
if (!variable)
{
TIntermTyped *node = CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
node->setLine(location);
return node;
}
const TType &variableType = variable->getType();
TIntermTyped *node = nullptr;
if (variable->getConstPointer())
{
const TConstantUnion *constArray = variable->getConstPointer();
node = new TIntermConstantUnion(constArray, variableType);
}
else if (variableType.getQualifier() == EvqWorkGroupSize && mComputeShaderLocalSizeDeclared)
{
// gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it
// needs to be added to the AST as a constant and not as a symbol.
sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize();
TConstantUnion *constArray = new TConstantUnion[3];
for (size_t i = 0; i < 3; ++i)
{
constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i]));
}
ASSERT(variableType.getBasicType() == EbtUInt);
ASSERT(variableType.getObjectSize() == 3);
TType type(variableType);
type.setQualifier(EvqConst);
node = new TIntermConstantUnion(constArray, type);
}
else if ((mGeometryShaderInputPrimitiveType != EptUndefined) &&
(variableType.getQualifier() == EvqPerVertexIn))
{
ASSERT(mGeometryShaderInputArraySize > 0u);
node = new TIntermSymbol(variable->getUniqueId(), variable->getName(), variableType);
node->getTypePointer()->sizeOutermostUnsizedArray(mGeometryShaderInputArraySize);
}
else
{
node = new TIntermSymbol(variable->getUniqueId(), variable->getName(), variableType);
}
ASSERT(node != nullptr);
node->setLine(location);
return node;
}
// Initializers show up in several places in the grammar. Have one set of
// code to handle them here.
//
// Returns true on success.
bool TParseContext::executeInitializer(const TSourceLoc &line,
const TString &identifier,
TType type,
TIntermTyped *initializer,
TIntermBinary **initNode)
{
ASSERT(initNode != nullptr);
ASSERT(*initNode == nullptr);
TVariable *variable = nullptr;
if (type.isUnsizedArray())
{
// In case initializer is not an array or type has more dimensions than initializer, this
// will default to setting array sizes to 1. We have not checked yet whether the initializer
// actually is an array or not. Having a non-array initializer for an unsized array will
// result in an error later, so we don't generate an error message here.
auto *arraySizes = initializer->getType().getArraySizes();
type.sizeUnsizedArrays(arraySizes);
}
if (!declareVariable(line, identifier, type, &variable))
{
return false;
}
bool globalInitWarning = false;
if (symbolTable.atGlobalLevel() &&
!ValidateGlobalInitializer(initializer, this, &globalInitWarning))
{
// Error message does not completely match behavior with ESSL 1.00, but
// we want to steer developers towards only using constant expressions.
error(line, "global variable initializers must be constant expressions", "=");
return false;
}
if (globalInitWarning)
{
warning(
line,
"global variable initializers should be constant expressions "
"(uniforms and globals are allowed in global initializers for legacy compatibility)",
"=");
}
//
// identifier must be of type constant, a global, or a temporary
//
TQualifier qualifier = variable->getType().getQualifier();
if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst))
{
error(line, " cannot initialize this type of qualifier ",
variable->getType().getQualifierString());
return false;
}
//
// test for and propagate constant
//
if (qualifier == EvqConst)
{
if (qualifier != initializer->getType().getQualifier())
{
std::stringstream reasonStream;
reasonStream << "assigning non-constant to '" << variable->getType().getCompleteString()
<< "'";
std::string reason = reasonStream.str();
error(line, reason.c_str(), "=");
variable->getType().setQualifier(EvqTemporary);
return false;
}
if (type != initializer->getType())
{
error(line, " non-matching types for const initializer ",
variable->getType().getQualifierString());
variable->getType().setQualifier(EvqTemporary);
return false;
}
// Save the constant folded value to the variable if possible. For example array
// initializers are not folded, since that way copying the array literal to multiple places
// in the shader is avoided.
// TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where
// it would be beneficial.
if (initializer->getAsConstantUnion())
{
variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
ASSERT(*initNode == nullptr);
return true;
}
else if (initializer->getAsSymbolNode())
{
const TSymbol *symbol =
symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
const TVariable *tVar = static_cast<const TVariable *>(symbol);
const TConstantUnion *constArray = tVar->getConstPointer();
if (constArray)
{
variable->shareConstPointer(constArray);
ASSERT(*initNode == nullptr);
return true;
}
}
}
TIntermSymbol *intermSymbol =
new TIntermSymbol(variable->getUniqueId(), variable->getName(), variable->getType());
intermSymbol->setLine(line);
*initNode = createAssign(EOpInitialize, intermSymbol, initializer, line);
if (*initNode == nullptr)
{
assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
return false;
}
return true;
}
TIntermNode *TParseContext::addConditionInitializer(const TPublicType &pType,
const TString &identifier,
TIntermTyped *initializer,
const TSourceLoc &loc)
{
checkIsScalarBool(loc, pType);
TIntermBinary *initNode = nullptr;
TType type(pType);
if (executeInitializer(loc, identifier, type, initializer, &initNode))
{
// The initializer is valid. The init condition needs to have a node - either the
// initializer node, or a constant node in case the initialized variable is const and won't
// be recorded in the AST.
if (initNode == nullptr)
{
return initializer;
}
else
{
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->appendDeclarator(initNode);
return declaration;
}
}
return nullptr;
}
TIntermNode *TParseContext::addLoop(TLoopType type,
TIntermNode *init,
TIntermNode *cond,
TIntermTyped *expr,
TIntermNode *body,
const TSourceLoc &line)
{
TIntermNode *node = nullptr;
TIntermTyped *typedCond = nullptr;
if (cond)
{
typedCond = cond->getAsTyped();
}
if (cond == nullptr || typedCond)
{
if (type == ELoopDoWhile)
{
checkIsScalarBool(line, typedCond);
}
// In the case of other loops, it was checked before that the condition is a scalar boolean.
ASSERT(mDiagnostics->numErrors() > 0 || typedCond == nullptr ||
(typedCond->getBasicType() == EbtBool && !typedCond->isArray() &&
!typedCond->isVector()));
node = new TIntermLoop(type, init, typedCond, expr, EnsureBlock(body));
node->setLine(line);
return node;
}
ASSERT(type != ELoopDoWhile);
TIntermDeclaration *declaration = cond->getAsDeclarationNode();
ASSERT(declaration);
TIntermBinary *declarator = declaration->getSequence()->front()->getAsBinaryNode();
ASSERT(declarator->getLeft()->getAsSymbolNode());
// The condition is a declaration. In the AST representation we don't support declarations as
// loop conditions. Wrap the loop to a block that declares the condition variable and contains
// the loop.
TIntermBlock *block = new TIntermBlock();
TIntermDeclaration *declareCondition = new TIntermDeclaration();
declareCondition->appendDeclarator(declarator->getLeft()->deepCopy());
block->appendStatement(declareCondition);
TIntermBinary *conditionInit = new TIntermBinary(EOpAssign, declarator->getLeft()->deepCopy(),
declarator->getRight()->deepCopy());
TIntermLoop *loop = new TIntermLoop(type, init, conditionInit, expr, EnsureBlock(body));
block->appendStatement(loop);
loop->setLine(line);
block->setLine(line);
return block;
}
TIntermNode *TParseContext::addIfElse(TIntermTyped *cond,
TIntermNodePair code,
const TSourceLoc &loc)
{
bool isScalarBool = checkIsScalarBool(loc, cond);
// For compile time constant conditions, prune the code now.
if (isScalarBool && cond->getAsConstantUnion())
{
if (cond->getAsConstantUnion()->getBConst(0) == true)
{
return EnsureBlock(code.node1);
}
else
{
return EnsureBlock(code.node2);
}
}
TIntermIfElse *node = new TIntermIfElse(cond, EnsureBlock(code.node1), EnsureBlock(code.node2));
node->setLine(loc);
return node;
}
void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier)
{
checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision,
typeSpecifier->getBasicType());
if (mShaderVersion < 300 && typeSpecifier->isArray())
{
error(typeSpecifier->getLine(), "not supported", "first-class array");
typeSpecifier->clearArrayness();
}
}
TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder,
const TPublicType &typeSpecifier)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
TPublicType returnType = typeSpecifier;
returnType.qualifier = typeQualifier.qualifier;
returnType.invariant = typeQualifier.invariant;
returnType.layoutQualifier = typeQualifier.layoutQualifier;
returnType.memoryQualifier = typeQualifier.memoryQualifier;
returnType.precision = typeSpecifier.precision;
if (typeQualifier.precision != EbpUndefined)
{
returnType.precision = typeQualifier.precision;
}
checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision,
typeSpecifier.getBasicType());
checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier,
typeSpecifier.getLine());
checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier);
if (mShaderVersion < 300)
{
if (typeSpecifier.isArray())
{
error(typeSpecifier.getLine(), "not supported", "first-class array");
returnType.clearArrayness();
}
if (returnType.qualifier == EvqAttribute &&
(typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
{
error(typeSpecifier.getLine(), "cannot be bool or int",
getQualifierString(returnType.qualifier));
}
if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) &&
(typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt))
{
error(typeSpecifier.getLine(), "cannot be bool or int",
getQualifierString(returnType.qualifier));
}
}
else
{
if (!returnType.layoutQualifier.isEmpty())
{
checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout");
}
if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn ||
returnType.qualifier == EvqFragmentOut)
{
checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier,
typeSpecifier.getLine());
}
if (returnType.qualifier == EvqComputeIn)
{
error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size",
"in");
}
}
return returnType;
}
void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier,
const TPublicType &type,
const TSourceLoc &qualifierLocation)
{
// An input/output variable can never be bool or a sampler. Samplers are checked elsewhere.
if (type.getBasicType() == EbtBool)
{
error(qualifierLocation, "cannot be bool", getQualifierString(qualifier));
}
// Specific restrictions apply for vertex shader inputs and fragment shader outputs.
switch (qualifier)
{
case EvqVertexIn:
// ESSL 3.00 section 4.3.4
if (type.isArray())
{
error(qualifierLocation, "cannot be array", getQualifierString(qualifier));
}
// Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck
return;
case EvqFragmentOut:
// ESSL 3.00 section 4.3.6
if (type.typeSpecifierNonArray.isMatrix())
{
error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier));
}
// Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck
return;
default:
break;
}
// Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of
// restrictions.
bool typeContainsIntegers =
(type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt ||
type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt));
if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut)
{
error(qualifierLocation, "must use 'flat' interpolation here",
getQualifierString(qualifier));
}
if (type.getBasicType() == EbtStruct)
{
// ESSL 3.00 sections 4.3.4 and 4.3.6.
// These restrictions are only implied by the ESSL 3.00 spec, but
// the ESSL 3.10 spec lists these restrictions explicitly.
if (type.isArray())
{
error(qualifierLocation, "cannot be an array of structures",
getQualifierString(qualifier));
}
if (type.isStructureContainingArrays())
{
error(qualifierLocation, "cannot be a structure containing an array",
getQualifierString(qualifier));
}
if (type.isStructureContainingType(EbtStruct))
{
error(qualifierLocation, "cannot be a structure containing a structure",
getQualifierString(qualifier));
}
if (type.isStructureContainingType(EbtBool))
{
error(qualifierLocation, "cannot be a structure containing a bool",
getQualifierString(qualifier));
}
}
}
void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier)
{
if (qualifier.getType() == QtStorage)
{
const TStorageQualifierWrapper &storageQualifier =
static_cast<const TStorageQualifierWrapper &>(qualifier);
if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst &&
!symbolTable.atGlobalLevel())
{
error(storageQualifier.getLine(),
"Local variables can only use the const storage qualifier.",
storageQualifier.getQualifierString().c_str());
}
}
}
void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier,
const TSourceLoc &location)
{
const std::string reason(
"Only allowed with shader storage blocks, variables declared within shader storage blocks "
"and variables declared as image types.");
if (memoryQualifier.readonly)
{
error(location, reason.c_str(), "readonly");
}
if (memoryQualifier.writeonly)
{
error(location, reason.c_str(), "writeonly");
}
if (memoryQualifier.coherent)
{
error(location, reason.c_str(), "coherent");
}
if (memoryQualifier.restrictQualifier)
{
error(location, reason.c_str(), "restrict");
}
if (memoryQualifier.volatileQualifier)
{
error(location, reason.c_str(), "volatile");
}
}
// Make sure there is no offset overlapping, and store the newly assigned offset to "type" in
// intermediate tree.
void TParseContext::checkAtomicCounterOffsetDoesNotOverlap(bool forceAppend,
const TSourceLoc &loc,
TType *type)
{
if (!IsAtomicCounter(type->getBasicType()))
{
return;
}
const size_t size = type->isArray() ? kAtomicCounterArrayStride * type->getArraySizeProduct()
: kAtomicCounterSize;
TLayoutQualifier layoutQualifier = type->getLayoutQualifier();
auto &bindingState = mAtomicCounterBindingStates[layoutQualifier.binding];
int offset;
if (layoutQualifier.offset == -1 || forceAppend)
{
offset = bindingState.appendSpan(size);
}
else
{
offset = bindingState.insertSpan(layoutQualifier.offset, size);
}
if (offset == -1)
{
error(loc, "Offset overlapping", "atomic counter");
return;
}
layoutQualifier.offset = offset;
type->setLayoutQualifier(layoutQualifier);
}
void TParseContext::checkGeometryShaderInputAndSetArraySize(const TSourceLoc &location,
const char *token,
TType *type)
{
if (IsGeometryShaderInput(mShaderType, type->getQualifier()))
{
if (type->isArray() && type->getOutermostArraySize() == 0u)
{
// Set size for the unsized geometry shader inputs if they are declared after a valid
// input primitive declaration.
if (mGeometryShaderInputPrimitiveType != EptUndefined)
{
ASSERT(mGeometryShaderInputArraySize > 0u);
type->sizeOutermostUnsizedArray(mGeometryShaderInputArraySize);
}
else
{
// [GLSL ES 3.2 SPEC Chapter 4.4.1.2]
// An input can be declared without an array size if there is a previous layout
// which specifies the size.
error(location,
"Missing a valid input primitive declaration before declaring an unsized "
"array input",
token);
}
}
else if (type->isArray())
{
setGeometryShaderInputArraySize(type->getOutermostArraySize(), location);
}
else
{
error(location, "Geometry shader input variable must be declared as an array", token);
}
}
}
TIntermDeclaration *TParseContext::parseSingleDeclaration(
TPublicType &publicType,
const TSourceLoc &identifierOrTypeLocation,
const TString &identifier)
{
TType type(publicType);
if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) &&
mDirectiveHandler.pragma().stdgl.invariantAll)
{
TQualifier qualifier = type.getQualifier();
// The directive handler has already taken care of rejecting invalid uses of this pragma
// (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all
// affected variable declarations:
//
// 1. Built-in special variables which are inputs to the fragment shader. (These are handled
// elsewhere, in TranslatorGLSL.)
//
// 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It
// is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but
// the way this is currently implemented we have to enable this compiler option before
// parsing the shader and determining the shading language version it uses. If this were
// implemented as a post-pass, the workaround could be more targeted.
//
// 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of
// the specification, but there are desktop OpenGL drivers that expect that this is the
// behavior of the #pragma when specified in ESSL 1.00 fragment shaders.
if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn)
{
type.setInvariant(true);
}
}
checkGeometryShaderInputAndSetArraySize(identifierOrTypeLocation, identifier.c_str(), &type);
declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier,
identifierOrTypeLocation);
bool emptyDeclaration = (identifier == "");
mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration;
TIntermSymbol *symbol = nullptr;
if (emptyDeclaration)
{
emptyDeclarationErrorCheck(type, identifierOrTypeLocation);
// In most cases we don't need to create a symbol node for an empty declaration.
// But if the empty declaration is declaring a struct type, the symbol node will store that.
if (type.getBasicType() == EbtStruct)
{
symbol = new TIntermSymbol(symbolTable.getEmptySymbolId(), "", type);
}
else if (IsAtomicCounter(publicType.getBasicType()))
{
setAtomicCounterBindingDefaultOffset(publicType, identifierOrTypeLocation);
}
}
else
{
nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation);
checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &type);
checkAtomicCounterOffsetDoesNotOverlap(false, identifierOrTypeLocation, &type);
TVariable *variable = nullptr;
declareVariable(identifierOrTypeLocation, identifier, type, &variable);
if (variable)
{
symbol = new TIntermSymbol(variable->getUniqueId(), identifier, type);
}
}
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierOrTypeLocation);
if (symbol)
{
symbol->setLine(identifierOrTypeLocation);
declaration->appendDeclarator(symbol);
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayDeclaration(
TPublicType &elementType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
const TVector<unsigned int> &arraySizes)
{
mDeferredNonEmptyDeclarationErrorCheck = false;
declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier,
identifierLocation);
nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
TType arrayType(elementType);
arrayType.makeArrays(arraySizes);
checkGeometryShaderInputAndSetArraySize(indexLocation, identifier.c_str(), &arrayType);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &arrayType);
checkAtomicCounterOffsetDoesNotOverlap(false, identifierLocation, &arrayType);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, arrayType, &variable);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
if (variable)
{
TIntermSymbol *symbol = new TIntermSymbol(variable->getUniqueId(), identifier, arrayType);
symbol->setLine(identifierLocation);
declaration->appendDeclarator(symbol);
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredNonEmptyDeclarationErrorCheck = false;
declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier,
identifierLocation);
nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
TIntermBinary *initNode = nullptr;
TType type(publicType);
if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode))
{
if (initNode)
{
declaration->appendDeclarator(initNode);
}
}
return declaration;
}
TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration(
TPublicType &elementType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
const TVector<unsigned int> &arraySizes,
const TSourceLoc &initLocation,
TIntermTyped *initializer)
{
mDeferredNonEmptyDeclarationErrorCheck = false;
declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier,
identifierLocation);
nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
TType arrayType(elementType);
arrayType.makeArrays(arraySizes);
TIntermDeclaration *declaration = new TIntermDeclaration();
declaration->setLine(identifierLocation);
// initNode will correspond to the whole of "type b[n] = initializer".
TIntermBinary *initNode = nullptr;
if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
declaration->appendDeclarator(initNode);
}
}
return declaration;
}
TIntermInvariantDeclaration *TParseContext::parseInvariantDeclaration(
const TTypeQualifierBuilder &typeQualifierBuilder,
const TSourceLoc &identifierLoc,
const TString *identifier,
const TSymbol *symbol)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
if (!typeQualifier.invariant)
{
error(identifierLoc, "Expected invariant", identifier->c_str());
return nullptr;
}
if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying"))
{
return nullptr;
}
if (!symbol)
{
error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str());
return nullptr;
}
if (!IsQualifierUnspecified(typeQualifier.qualifier))
{
error(identifierLoc, "invariant declaration specifies qualifier",
getQualifierString(typeQualifier.qualifier));
}
if (typeQualifier.precision != EbpUndefined)
{
error(identifierLoc, "invariant declaration specifies precision",
getPrecisionString(typeQualifier.precision));
}
if (!typeQualifier.layoutQualifier.isEmpty())
{
error(identifierLoc, "invariant declaration specifies layout", "'layout'");
}
const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol);
if (!variable)
{
return nullptr;
}
const TType &type = variable->getType();
checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(),
typeQualifier.line);
checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
symbolTable.addInvariantVarying(std::string(identifier->c_str()));
TIntermSymbol *intermSymbol = new TIntermSymbol(variable->getUniqueId(), *identifier, type);
intermSymbol->setLine(identifierLoc);
return new TIntermInvariantDeclaration(intermSymbol, identifierLoc);
}
void TParseContext::parseDeclarator(TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredNonEmptyDeclarationErrorCheck)
{
nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
mDeferredNonEmptyDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
TVariable *variable = nullptr;
TType type(publicType);
checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier.c_str(), &type);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &type);
checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, &type);
declareVariable(identifierLocation, identifier, type, &variable);
if (variable)
{
TIntermSymbol *symbol = new TIntermSymbol(variable->getUniqueId(), identifier, type);
symbol->setLine(identifierLocation);
declarationOut->appendDeclarator(symbol);
}
}
void TParseContext::parseArrayDeclarator(TPublicType &elementType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &arrayLocation,
const TVector<unsigned int> &arraySizes,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredNonEmptyDeclarationErrorCheck)
{
nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
mDeferredNonEmptyDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType);
if (checkIsValidTypeAndQualifierForArray(arrayLocation, elementType))
{
TType arrayType(elementType);
arrayType.makeArrays(arraySizes);
checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier.c_str(), &arrayType);
checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &arrayType);
checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, &arrayType);
TVariable *variable = nullptr;
declareVariable(identifierLocation, identifier, arrayType, &variable);
if (variable)
{
TIntermSymbol *symbol =
new TIntermSymbol(variable->getUniqueId(), identifier, arrayType);
symbol->setLine(identifierLocation);
declarationOut->appendDeclarator(symbol);
}
}
}
void TParseContext::parseInitDeclarator(const TPublicType &publicType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &initLocation,
TIntermTyped *initializer,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredNonEmptyDeclarationErrorCheck)
{
nonEmptyDeclarationErrorCheck(publicType, identifierLocation);
mDeferredNonEmptyDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType);
TIntermBinary *initNode = nullptr;
TType type(publicType);
if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode))
{
//
// build the intermediate representation
//
if (initNode)
{
declarationOut->appendDeclarator(initNode);
}
}
}
void TParseContext::parseArrayInitDeclarator(const TPublicType &elementType,
const TSourceLoc &identifierLocation,
const TString &identifier,
const TSourceLoc &indexLocation,
const TVector<unsigned int> &arraySizes,
const TSourceLoc &initLocation,
TIntermTyped *initializer,
TIntermDeclaration *declarationOut)
{
// If the declaration starting this declarator list was empty (example: int,), some checks were
// not performed.
if (mDeferredNonEmptyDeclarationErrorCheck)
{
nonEmptyDeclarationErrorCheck(elementType, identifierLocation);
mDeferredNonEmptyDeclarationErrorCheck = false;
}
checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType);
checkIsValidTypeAndQualifierForArray(indexLocation, elementType);
TType arrayType(elementType);
arrayType.makeArrays(arraySizes);
// initNode will correspond to the whole of "b[n] = initializer".
TIntermBinary *initNode = nullptr;
if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode))
{
if (initNode)
{
declarationOut->appendDeclarator(initNode);
}
}
}
TIntermNode *TParseContext::addEmptyStatement(const TSourceLoc &location)
{
// It's simpler to parse an empty statement as a constant expression rather than having a
// different type of node just for empty statements, that will be pruned from the AST anyway.
TIntermNode *node = CreateZeroNode(TType(EbtInt, EbpMedium));
node->setLine(location);
return node;
}
void TParseContext::setAtomicCounterBindingDefaultOffset(const TPublicType &publicType,
const TSourceLoc &location)
{
const TLayoutQualifier &layoutQualifier = publicType.layoutQualifier;
checkAtomicCounterBindingIsValid(location, layoutQualifier.binding);
if (layoutQualifier.binding == -1 || layoutQualifier.offset == -1)
{
error(location, "Requires both binding and offset", "layout");
return;
}
mAtomicCounterBindingStates[layoutQualifier.binding].setDefaultOffset(layoutQualifier.offset);
}
void TParseContext::parseDefaultPrecisionQualifier(const TPrecision precision,
const TPublicType &type,
const TSourceLoc &loc)
{
if ((precision == EbpHigh) && (getShaderType() == GL_FRAGMENT_SHADER) &&
!getFragmentPrecisionHigh())
{
error(loc, "precision is not supported in fragment shader", "highp");
}
if (!CanSetDefaultPrecisionOnType(type))
{
error(loc, "illegal type argument for default precision qualifier",
getBasicString(type.getBasicType()));
return;
}
symbolTable.setDefaultPrecision(type.getBasicType(), precision);
}
bool TParseContext::checkPrimitiveTypeMatchesTypeQualifier(const TTypeQualifier &typeQualifier)
{
switch (typeQualifier.layoutQualifier.primitiveType)
{
case EptLines:
case EptLinesAdjacency:
case EptTriangles:
case EptTrianglesAdjacency:
return typeQualifier.qualifier == EvqGeometryIn;
case EptLineStrip:
case EptTriangleStrip:
return typeQualifier.qualifier == EvqGeometryOut;
case EptPoints:
return true;
default:
UNREACHABLE();
return false;
}
}
void TParseContext::setGeometryShaderInputArraySize(unsigned int inputArraySize,
const TSourceLoc &line)
{
if (mGeometryShaderInputArraySize == 0u)
{
mGeometryShaderInputArraySize = inputArraySize;
}
else if (mGeometryShaderInputArraySize != inputArraySize)
{
error(line,
"Array size or input primitive declaration doesn't match the size of earlier sized "
"array inputs.",
"layout");
}
}
bool TParseContext::parseGeometryShaderInputLayoutQualifier(const TTypeQualifier &typeQualifier)
{
ASSERT(typeQualifier.qualifier == EvqGeometryIn);
const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
if (layoutQualifier.maxVertices != -1)
{
error(typeQualifier.line,
"max_vertices can only be declared in 'out' layout in a geometry shader", "layout");
return false;
}
// Set mGeometryInputPrimitiveType if exists
if (layoutQualifier.primitiveType != EptUndefined)
{
if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier))
{
error(typeQualifier.line, "invalid primitive type for 'in' layout", "layout");
return false;
}
if (mGeometryShaderInputPrimitiveType == EptUndefined)
{
mGeometryShaderInputPrimitiveType = layoutQualifier.primitiveType;
setGeometryShaderInputArraySize(
GetGeometryShaderInputArraySize(mGeometryShaderInputPrimitiveType),
typeQualifier.line);
}
else if (mGeometryShaderInputPrimitiveType != layoutQualifier.primitiveType)
{
error(typeQualifier.line, "primitive doesn't match earlier input primitive declaration",
"layout");
return false;
}
}
// Set mGeometryInvocations if exists
if (layoutQualifier.invocations > 0)
{
if (mGeometryShaderInvocations == 0)
{
mGeometryShaderInvocations = layoutQualifier.invocations;
}
else if (mGeometryShaderInvocations != layoutQualifier.invocations)
{
error(typeQualifier.line, "invocations contradicts to the earlier declaration",
"layout");
return false;
}
}
return true;
}
bool TParseContext::parseGeometryShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier)
{
ASSERT(typeQualifier.qualifier == EvqGeometryOut);
const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier;
if (layoutQualifier.invocations > 0)
{
error(typeQualifier.line,
"invocations can only be declared in 'in' layout in a geometry shader", "layout");
return false;
}
// Set mGeometryOutputPrimitiveType if exists
if (layoutQualifier.primitiveType != EptUndefined)
{
if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier))
{
error(typeQualifier.line, "invalid primitive type for 'out' layout", "layout");
return false;
}
if (mGeometryShaderOutputPrimitiveType == EptUndefined)
{
mGeometryShaderOutputPrimitiveType = layoutQualifier.primitiveType;
}
else if (mGeometryShaderOutputPrimitiveType != layoutQualifier.primitiveType)
{
error(typeQualifier.line,
"primitive doesn't match earlier output primitive declaration", "layout");
return false;
}
}
// Set mGeometryMaxVertices if exists
if (layoutQualifier.maxVertices > -1)
{
if (mGeometryShaderMaxVertices == -1)
{
mGeometryShaderMaxVertices = layoutQualifier.maxVertices;
}
else if (mGeometryShaderMaxVertices != layoutQualifier.maxVertices)
{
error(typeQualifier.line, "max_vertices contradicts to the earlier declaration",
"layout");
return false;
}
}
return true;
}
void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier,
typeQualifier.line);
// It should never be the case, but some strange parser errors can send us here.
if (layoutQualifier.isEmpty())
{
error(typeQualifier.line, "Error during layout qualifier parsing.", "?");
return;
}
if (!layoutQualifier.isCombinationValid())
{
error(typeQualifier.line, "invalid layout qualifier combination", "layout");
return;
}
checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding);
checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat);
checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv);
checkOffsetIsNotSpecified(typeQualifier.line, layoutQualifier.offset);
checkStd430IsForShaderStorageBlock(typeQualifier.line, layoutQualifier.blockStorage,
typeQualifier.qualifier);
if (typeQualifier.qualifier == EvqComputeIn)
{
if (mComputeShaderLocalSizeDeclared &&
!layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize))
{
error(typeQualifier.line, "Work group size does not match the previous declaration",
"layout");
return;
}
if (mShaderVersion < 310)
{
error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
return;
}
if (!layoutQualifier.localSize.isAnyValueSet())
{
error(typeQualifier.line, "No local work group size specified", "layout");
return;
}
const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>(
symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion));
const TConstantUnion *maxComputeWorkGroupSizeData =
maxComputeWorkGroupSize->getConstPointer();
for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i)
{
if (layoutQualifier.localSize[i] != -1)
{
mComputeShaderLocalSize[i] = layoutQualifier.localSize[i];
const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst();
if (mComputeShaderLocalSize[i] < 1 ||
mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue)
{
std::stringstream reasonStream;
reasonStream << "invalid value: Value must be at least 1 and no greater than "
<< maxComputeWorkGroupSizeValue;
const std::string &reason = reasonStream.str();
error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i));
return;
}
}
}
mComputeShaderLocalSizeDeclared = true;
}
else if (typeQualifier.qualifier == EvqGeometryIn)
{
if (mShaderVersion < 310)
{
error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout");
return;
}
if (!parseGeometryShaderInputLayoutQualifier(typeQualifier))
{
return;
}
}
else if (typeQualifier.qualifier == EvqGeometryOut)
{
if (mShaderVersion < 310)
{
error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 only",
"layout");
return;
}
if (!parseGeometryShaderOutputLayoutQualifier(typeQualifier))
{
return;
}
}
else if (isExtensionEnabled(TExtension::OVR_multiview) &&
typeQualifier.qualifier == EvqVertexIn)
{
// This error is only specified in WebGL, but tightens unspecified behavior in the native
// specification.
if (mNumViews != -1 && layoutQualifier.numViews != mNumViews)
{
error(typeQualifier.line, "Number of views does not match the previous declaration",
"layout");
return;
}
if (layoutQualifier.numViews == -1)
{
error(typeQualifier.line, "No num_views specified", "layout");
return;
}
if (layoutQualifier.numViews > mMaxNumViews)
{
error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR",
"layout");
return;
}
mNumViews = layoutQualifier.numViews;
}
else
{
if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier))
{
return;
}
if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer)
{
error(typeQualifier.line, "invalid qualifier: global layout can only be set for blocks",
getQualifierString(typeQualifier.qualifier));
return;
}
if (mShaderVersion < 300)
{
error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above",
"layout");
return;
}
checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier);
if (layoutQualifier.matrixPacking != EmpUnspecified)
{
if (typeQualifier.qualifier == EvqUniform)
{
mDefaultUniformMatrixPacking = layoutQualifier.matrixPacking;
}
else if (typeQualifier.qualifier == EvqBuffer)
{
mDefaultBufferMatrixPacking = layoutQualifier.matrixPacking;
}
}
if (layoutQualifier.blockStorage != EbsUnspecified)
{
if (typeQualifier.qualifier == EvqUniform)
{
mDefaultUniformBlockStorage = layoutQualifier.blockStorage;
}
else if (typeQualifier.qualifier == EvqBuffer)
{
mDefaultBufferBlockStorage = layoutQualifier.blockStorage;
}
}
}
}
TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction(
const TFunction &function,
const TSourceLoc &location,
bool insertParametersToSymbolTable)
{
checkIsNotReserved(location, function.getName());
TIntermFunctionPrototype *prototype =
new TIntermFunctionPrototype(function.getReturnType(), TSymbolUniqueId(function));
// TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could
// point to the data that already exists in the symbol table.
prototype->getFunctionSymbolInfo()->setFromFunction(function);
prototype->setLine(location);
for (size_t i = 0; i < function.getParamCount(); i++)
{
const TConstParameter &param = function.getParam(i);
TIntermSymbol *symbol = nullptr;
// If the parameter has no name, it's not an error, just don't add it to symbol table (could
// be used for unused args).
if (param.name != nullptr)
{
// Insert the parameter in the symbol table.
if (insertParametersToSymbolTable)
{
TVariable *variable = symbolTable.declareVariable(param.name, *param.type);
if (variable)
{
symbol = new TIntermSymbol(variable->getUniqueId(), variable->getName(),
variable->getType());
}
else
{
error(location, "redefinition", param.name->c_str());
}
}
// Unsized type of a named parameter should have already been checked and sanitized.
ASSERT(!param.type->isUnsizedArray());
}
else
{
if (param.type->isUnsizedArray())
{
error(location, "function parameter array must be sized at compile time", "[]");
// We don't need to size the arrays since the parameter is unnamed and hence
// inaccessible.
}
}
if (!symbol)
{
// The parameter had no name or declaring the symbol failed - either way, add a nameless
// symbol.
symbol = new TIntermSymbol(symbolTable.getEmptySymbolId(), "", *param.type);
}
symbol->setLine(location);
prototype->appendParameter(symbol);
}
return prototype;
}
TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration(
const TFunction &parsedFunction,
const TSourceLoc &location)
{
// Note: function found from the symbol table could be the same as parsedFunction if this is the
// first declaration. Either way the instance in the symbol table is used to track whether the
// function is declared multiple times.
TFunction *function = static_cast<TFunction *>(
symbolTable.find(parsedFunction.getMangledName(), getShaderVersion()));
if (function->hasPrototypeDeclaration() && mShaderVersion == 100)
{
// ESSL 1.00.17 section 4.2.7.
// Doesn't apply to ESSL 3.00.4: see section 4.2.3.
error(location, "duplicate function prototype declarations are not allowed", "function");
}
function->setHasPrototypeDeclaration();
// WebKit note: We currently pass true instead of false for the last parameter
// here because some compilers have an issue with nameless parameters in function
// declarations.
TIntermFunctionPrototype *prototype =
createPrototypeNodeFromFunction(*function, location, true);
symbolTable.pop();
if (!symbolTable.atGlobalLevel())
{
// ESSL 3.00.4 section 4.2.4.
error(location, "local function prototype declarations are not allowed", "function");
}
return prototype;
}
TIntermFunctionDefinition *TParseContext::addFunctionDefinition(
TIntermFunctionPrototype *functionPrototype,
TIntermBlock *functionBody,
const TSourceLoc &location)
{
// Check that non-void functions have at least one return statement.
if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue)
{
error(location, "function does not return a value:",
functionPrototype->getFunctionSymbolInfo()->getName().c_str());
}
if (functionBody == nullptr)
{
functionBody = new TIntermBlock();
functionBody->setLine(location);
}
TIntermFunctionDefinition *functionNode =
new TIntermFunctionDefinition(functionPrototype, functionBody);
functionNode->setLine(location);
symbolTable.pop();
return functionNode;
}
void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location,
TFunction **function,
TIntermFunctionPrototype **prototypeOut)
{
ASSERT(function);
ASSERT(*function);
const TSymbol *builtIn =
symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion());
if (builtIn)
{
error(location, "built-in functions cannot be redefined", (*function)->getName().c_str());
}
else
{
TFunction *prevDec = static_cast<TFunction *>(
symbolTable.find((*function)->getMangledName(), getShaderVersion()));
// Note: 'prevDec' could be 'function' if this is the first time we've seen function as it
// would have just been put in the symbol table. Otherwise, we're looking up an earlier
// occurance.
if (*function != prevDec)
{
// Swap the parameters of the previous declaration to the parameters of the function
// definition (parameter names may differ).
prevDec->swapParameters(**function);
// The function definition will share the same symbol as any previous declaration.
*function = prevDec;
}
if ((*function)->isDefined())
{
error(location, "function already has a body", (*function)->getName().c_str());
}
(*function)->setDefined();
}
// Remember the return type for later checking for return statements.
mCurrentFunctionType = &((*function)->getReturnType());
mFunctionReturnsValue = false;
*prototypeOut = createPrototypeNodeFromFunction(**function, location, true);
setLoopNestingLevel(0);
}
TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function)
{
//
// We don't know at this point whether this is a function definition or a prototype.
// The definition production code will check for redefinitions.
// In the case of ESSL 1.00 the prototype production code will also check for redeclarations.
//
// Return types and parameter qualifiers must match in all redeclarations, so those are checked
// here.
//
TFunction *prevDec =
static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion()));
for (size_t i = 0u; i < function->getParamCount(); ++i)
{
auto &param = function->getParam(i);
if (param.type->isStructSpecifier())
{
// ESSL 3.00.6 section 12.10.
error(location, "Function parameter type cannot be a structure definition",
function->getName().c_str());
}
}
if (getShaderVersion() >= 300 &&
symbolTable.hasUnmangledBuiltInForShaderVersion(function->getName().c_str(),
getShaderVersion()))
{
// With ESSL 3.00 and above, names of built-in functions cannot be redeclared as functions.
// Therefore overloading or redefining builtin functions is an error.
error(location, "Name of a built-in function cannot be redeclared as function",
function->getName().c_str());
}
else if (prevDec)
{
if (prevDec->getReturnType() != function->getReturnType())
{
error(location, "function must have the same return type in all of its declarations",
function->getReturnType().getBasicString());
}
for (size_t i = 0; i < prevDec->getParamCount(); ++i)
{
if (prevDec->getParam(i).type->getQualifier() !=
function->getParam(i).type->getQualifier())
{
error(location,
"function must have the same parameter qualifiers in all of its declarations",
function->getParam(i).type->getQualifierString());
}
}
}
//
// Check for previously declared variables using the same name.
//
TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion());
if (prevSym)
{
if (!prevSym->isFunction())
{
error(location, "redefinition of a function", function->getName().c_str());
}
}
else
{
// Insert the unmangled name to detect potential future redefinition as a variable.
symbolTable.getOuterLevel()->insertUnmangled(function);
}
// We're at the inner scope level of the function's arguments and body statement.
// Add the function prototype to the surrounding scope instead.
symbolTable.getOuterLevel()->insert(function);
// Raise error message if main function takes any parameters or return anything other than void
if (function->getName() == "main")
{
if (function->getParamCount() > 0)
{
error(location, "function cannot take any parameter(s)", "main");
}
if (function->getReturnType().getBasicType() != EbtVoid)
{
error(location, "main function cannot return a value",
function->getReturnType().getBasicString());
}
}
//
// If this is a redeclaration, it could also be a definition, in which case, we want to use the
// variable names from this one, and not the one that's
// being redeclared. So, pass back up this declaration, not the one in the symbol table.
//
return function;
}
TFunction *TParseContext::parseFunctionHeader(const TPublicType &type,
const TString *name,
const TSourceLoc &location)
{
if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary)
{
error(location, "no qualifiers allowed for function return",
getQualifierString(type.qualifier));
}
if (!type.layoutQualifier.isEmpty())
{
error(location, "no qualifiers allowed for function return", "layout");
}
// make sure an opaque type is not involved as well...
std::string reason(getBasicString(type.getBasicType()));
reason += "s can't be function return values";
checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str());
if (mShaderVersion < 300)
{
// Array return values are forbidden, but there's also no valid syntax for declaring array
// return values in ESSL 1.00.
ASSERT(!type.isArray() || mDiagnostics->numErrors() > 0);
if (type.isStructureContainingArrays())
{
// ESSL 1.00.17 section 6.1 Function Definitions
error(location, "structures containing arrays can't be function return values",
TType(type).getCompleteString().c_str());
}
}
// Add the function as a prototype after parsing it (we do not support recursion)
return new TFunction(&symbolTable, name, new TType(type));
}
TFunction *TParseContext::addNonConstructorFunc(const TString *name, const TSourceLoc &loc)
{
const TType *returnType = TCache::getType(EbtVoid, EbpUndefined);
return new TFunction(&symbolTable, name, returnType);
}
TFunction *TParseContext::addConstructorFunc(const TPublicType &publicType)
{
if (mShaderVersion < 300 && publicType.isArray())
{
error(publicType.getLine(), "array constructor supported in GLSL ES 3.00 and above only",
"[]");
}
if (publicType.isStructSpecifier())
{
error(publicType.getLine(), "constructor can't be a structure definition",
getBasicString(publicType.getBasicType()));
}
TType *type = new TType(publicType);
if (!type->canBeConstructed())
{
error(publicType.getLine(), "cannot construct this type",
getBasicString(publicType.getBasicType()));
type->setBasicType(EbtFloat);
}
return new TFunction(&symbolTable, nullptr, type, EOpConstruct);
}
void TParseContext::checkIsNotUnsizedArray(const TSourceLoc &line,
const char *errorMessage,
const char *token,
TType *arrayType)
{
if (arrayType->isUnsizedArray())
{
error(line, errorMessage, token);
arrayType->sizeUnsizedArrays(nullptr);
}
}
TParameter TParseContext::parseParameterDeclarator(TType *type,
const TString *name,
const TSourceLoc &nameLoc)
{
ASSERT(type);
checkIsNotUnsizedArray(nameLoc, "function parameter array must specify a size", name->c_str(),
type);
if (type->getBasicType() == EbtVoid)
{
error(nameLoc, "illegal use of type 'void'", name->c_str());
}
checkIsNotReserved(nameLoc, *name);
TParameter param = {name, type};
return param;
}
TParameter TParseContext::parseParameterDeclarator(const TPublicType &publicType,
const TString *name,
const TSourceLoc &nameLoc)
{
TType *type = new TType(publicType);
return parseParameterDeclarator(type, name, nameLoc);
}
TParameter TParseContext::parseParameterArrayDeclarator(const TString *name,
const TSourceLoc &nameLoc,
const TVector<unsigned int> &arraySizes,
const TSourceLoc &arrayLoc,
TPublicType *elementType)
{
checkArrayElementIsNotArray(arrayLoc, *elementType);
TType *arrayType = new TType(*elementType);
arrayType->makeArrays(arraySizes);
return parseParameterDeclarator(arrayType, name, nameLoc);
}
bool TParseContext::checkUnsizedArrayConstructorArgumentDimensionality(TIntermSequence *arguments,
TType type,
const TSourceLoc &line)
{
if (arguments->empty())
{
error(line, "implicitly sized array constructor must have at least one argument", "[]");
return false;
}
for (TIntermNode *arg : *arguments)
{
TIntermTyped *element = arg->getAsTyped();
ASSERT(element);
size_t dimensionalityFromElement = element->getType().getNumArraySizes() + 1u;
if (dimensionalityFromElement > type.getNumArraySizes())
{
error(line, "constructing from a non-dereferenced array", "constructor");
return false;
}
else if (dimensionalityFromElement < type.getNumArraySizes())
{
if (dimensionalityFromElement == 1u)
{
error(line, "implicitly sized array of arrays constructor argument is not an array",
"constructor");
}
else
{
error(line,
"implicitly sized array of arrays constructor argument dimensionality is too "
"low",
"constructor");
}
return false;
}
}
return true;
}
// This function is used to test for the correctness of the parameters passed to various constructor
// functions and also convert them to the right datatype if it is allowed and required.
//
// Returns a node to add to the tree regardless of if an error was generated or not.
//
TIntermTyped *TParseContext::addConstructor(TIntermSequence *arguments,
TType type,
const TSourceLoc &line)
{
if (type.isUnsizedArray())
{
if (!checkUnsizedArrayConstructorArgumentDimensionality(arguments, type, line))
{
type.sizeUnsizedArrays(nullptr);
return CreateZeroNode(type);
}
TIntermTyped *firstElement = arguments->at(0)->getAsTyped();
ASSERT(firstElement);
if (type.getOutermostArraySize() == 0u)
{
type.sizeOutermostUnsizedArray(static_cast<unsigned int>(arguments->size()));
}
for (size_t i = 0; i < firstElement->getType().getNumArraySizes(); ++i)
{
if ((*type.getArraySizes())[i] == 0u)
{
type.setArraySize(i, (*firstElement->getType().getArraySizes())[i]);
}
}
ASSERT(!type.isUnsizedArray());
}
if (!checkConstructorArguments(line, arguments, type))
{
return CreateZeroNode(type);
}
TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, arguments);
constructorNode->setLine(line);
// TODO(oetuaho@nvidia.com): Add support for folding array constructors.
if (!constructorNode->isArray())
{
return constructorNode->fold(mDiagnostics);
}
return constructorNode;
}
//
// Interface/uniform blocks
// TODO(jiawei.shao@intel.com): implement GL_OES_shader_io_blocks.
//
TIntermDeclaration *TParseContext::addInterfaceBlock(
const TTypeQualifierBuilder &typeQualifierBuilder,
const TSourceLoc &nameLine,
const TString &blockName,
TFieldList *fieldList,
const TString *instanceName,
const TSourceLoc &instanceLine,
TIntermTyped *arrayIndex,
const TSourceLoc &arrayIndexLine)
{
checkIsNotReserved(nameLine, blockName);
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
if (mShaderVersion < 310 && typeQualifier.qualifier != EvqUniform)
{
error(typeQualifier.line,
"invalid qualifier: interface blocks must be uniform in version lower than GLSL ES "
"3.10",
getQualifierString(typeQualifier.qualifier));
}
else if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer)
{
error(typeQualifier.line, "invalid qualifier: interface blocks must be uniform or buffer",
getQualifierString(typeQualifier.qualifier));
}
if (typeQualifier.invariant)
{
error(typeQualifier.line, "invalid qualifier on interface block member", "invariant");
}
if (typeQualifier.qualifier != EvqBuffer)
{
checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line);
}
// add array index
unsigned int arraySize = 0;
if (arrayIndex != nullptr)
{
arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex);
}
if (mShaderVersion < 310)
{
checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding);
}
else
{
checkBlockBindingIsValid(typeQualifier.line, typeQualifier.qualifier,
typeQualifier.layoutQualifier.binding, arraySize);
}
checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv);
TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier);
checkStd430IsForShaderStorageBlock(typeQualifier.line, blockLayoutQualifier.blockStorage,
typeQualifier.qualifier);
if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
{
if (typeQualifier.qualifier == EvqUniform)
{
blockLayoutQualifier.matrixPacking = mDefaultUniformMatrixPacking;
}
else if (typeQualifier.qualifier == EvqBuffer)
{
blockLayoutQualifier.matrixPacking = mDefaultBufferMatrixPacking;
}
}
if (blockLayoutQualifier.blockStorage == EbsUnspecified)
{
if (typeQualifier.qualifier == EvqUniform)
{
blockLayoutQualifier.blockStorage = mDefaultUniformBlockStorage;
}
else if (typeQualifier.qualifier == EvqBuffer)
{
blockLayoutQualifier.blockStorage = mDefaultBufferBlockStorage;
}
}
checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier);
checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat);
if (!symbolTable.declareInterfaceBlockName(&blockName))
{
error(nameLine, "redefinition of an interface block name", blockName.c_str());
}
// check for sampler types and apply layout qualifiers
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
if (IsOpaqueType(fieldType->getBasicType()))
{
std::string reason("unsupported type - ");
reason += fieldType->getBasicString();
reason += " types are not allowed in interface blocks";
error(field->line(), reason.c_str(), fieldType->getBasicString());
}
const TQualifier qualifier = fieldType->getQualifier();
switch (qualifier)
{
case EvqGlobal:
break;
case EvqUniform:
if (typeQualifier.qualifier == EvqBuffer)
{
error(field->line(), "invalid qualifier on shader storage block member",
getQualifierString(qualifier));
}
break;
case EvqBuffer:
if (typeQualifier.qualifier == EvqUniform)
{
error(field->line(), "invalid qualifier on uniform block member",
getQualifierString(qualifier));
}
break;
default:
error(field->line(), "invalid qualifier on interface block member",
getQualifierString(qualifier));
break;
}
if (fieldType->isInvariant())
{
error(field->line(), "invalid qualifier on interface block member", "invariant");
}
// check layout qualifiers
TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier);
checkBindingIsNotSpecified(field->line(), fieldLayoutQualifier.binding);
if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
{
error(field->line(), "invalid layout qualifier: cannot be used here",
getBlockStorageString(fieldLayoutQualifier.blockStorage));
}
if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
{
fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
}
else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct)
{
warning(field->line(),
"extraneous layout qualifier: only has an effect on matrix types",
getMatrixPackingString(fieldLayoutQualifier.matrixPacking));
}
fieldType->setLayoutQualifier(fieldLayoutQualifier);
if (mShaderVersion < 310 || memberIndex != fieldList->size() - 1u ||
typeQualifier.qualifier != EvqBuffer)
{
// ESSL 3.10 spec section 4.1.9 allows for runtime-sized arrays.
checkIsNotUnsizedArray(field->line(),
"array members of interface blocks must specify a size",
field->name().c_str(), field->type());
}
if (typeQualifier.qualifier == EvqBuffer)
{
// set memory qualifiers
// GLSL ES 3.10 session 4.9 [Memory Access Qualifiers]. When a block declaration is
// qualified with a memory qualifier, it is as if all of its members were declared with
// the same memory qualifier.
const TMemoryQualifier &blockMemoryQualifier = typeQualifier.memoryQualifier;
TMemoryQualifier fieldMemoryQualifier = fieldType->getMemoryQualifier();
fieldMemoryQualifier.readonly |= blockMemoryQualifier.readonly;
fieldMemoryQualifier.writeonly |= blockMemoryQualifier.writeonly;
fieldMemoryQualifier.coherent |= blockMemoryQualifier.coherent;
fieldMemoryQualifier.restrictQualifier |= blockMemoryQualifier.restrictQualifier;
fieldMemoryQualifier.volatileQualifier |= blockMemoryQualifier.volatileQualifier;
// TODO(jiajia.qin@intel.com): Decide whether if readonly and writeonly buffer variable
// is legal. See bug https://github.com/KhronosGroup/OpenGL-API/issues/7
fieldType->setMemoryQualifier(fieldMemoryQualifier);
}
}
TInterfaceBlock *interfaceBlock =
new TInterfaceBlock(&blockName, fieldList, instanceName, blockLayoutQualifier);
TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier);
if (arrayIndex != nullptr)
{
interfaceBlockType.makeArray(arraySize);
}
TString symbolName = "";
const TSymbolUniqueId *symbolId = nullptr;
if (!instanceName)
{
// define symbols for the members of the interface block
for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
{
TField *field = (*fieldList)[memberIndex];
TType *fieldType = field->type();
// set parent pointer of the field variable
fieldType->setInterfaceBlock(interfaceBlock);
TVariable *fieldVariable = symbolTable.declareVariable(&field->name(), *fieldType);
if (fieldVariable)
{
fieldVariable->setQualifier(typeQualifier.qualifier);
}
else
{
error(field->line(), "redefinition of an interface block member name",
field->name().c_str());
}
}
symbolId = &symbolTable.getEmptySymbolId();
}
else
{
checkIsNotReserved(instanceLine, *instanceName);
// add a symbol for this interface block
TVariable *instanceTypeDef = symbolTable.declareVariable(instanceName, interfaceBlockType);
if (instanceTypeDef)
{
instanceTypeDef->setQualifier(typeQualifier.qualifier);
symbolId = &instanceTypeDef->getUniqueId();
}
else
{
error(instanceLine, "redefinition of an interface block instance name",
instanceName->c_str());
}
symbolName = *instanceName;
}
TIntermDeclaration *declaration = nullptr;
if (symbolId)
{
TIntermSymbol *blockSymbol = new TIntermSymbol(*symbolId, symbolName, interfaceBlockType);
blockSymbol->setLine(typeQualifier.line);
declaration = new TIntermDeclaration();
declaration->appendDeclarator(blockSymbol);
declaration->setLine(nameLine);
}
exitStructDeclaration();
return declaration;
}
void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier)
{
++mStructNestingLevel;
// Embedded structure definitions are not supported per GLSL ES spec.
// ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11.
if (mStructNestingLevel > 1)
{
error(line, "Embedded struct definitions are not allowed", "struct");
}
}
void TParseContext::exitStructDeclaration()
{
--mStructNestingLevel;
}
void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field)
{
if (!sh::IsWebGLBasedSpec(mShaderSpec))
{
return;
}
if (field.type()->getBasicType() != EbtStruct)
{
return;
}
// We're already inside a structure definition at this point, so add
// one to the field's struct nesting.
if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting)
{
std::stringstream reasonStream;
reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str()
<< " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting;
std::string reason = reasonStream.str();
error(line, reason.c_str(), field.name().c_str());
return;
}
}
//
// Parse an array index expression
//
TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression,
const TSourceLoc &location,
TIntermTyped *indexExpression)
{
if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
{
if (baseExpression->getAsSymbolNode())
{
error(location, " left of '[' is not of type array, matrix, or vector ",
baseExpression->getAsSymbolNode()->getSymbol().c_str());
}
else
{
error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
}
return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
}
if (baseExpression->getQualifier() == EvqPerVertexIn)
{
ASSERT(mShaderType == GL_GEOMETRY_SHADER_OES);
if (mGeometryShaderInputPrimitiveType == EptUndefined)
{
error(location, "missing input primitive declaration before indexing gl_in.", "[");
return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst));
}
}
TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able
// to constant fold all constant expressions. Right now we don't allow indexing interface blocks
// or fragment outputs with expressions that ANGLE is not able to constant fold, even if the
// index is a constant expression.
if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr)
{
if (baseExpression->isInterfaceBlock())
{
// TODO(jiawei.shao@intel.com): implement GL_OES_shader_io_blocks.
switch (baseExpression->getQualifier())
{
case EvqPerVertexIn:
break;
case EvqUniform:
case EvqBuffer:
error(location,
"array indexes for uniform block arrays and shader storage block arrays "
"must be constant integral expressions",
"[");
break;
default:
// We can reach here only in error cases.
ASSERT(mDiagnostics->numErrors() > 0);
break;
}
}
else if (baseExpression->getQualifier() == EvqFragmentOut)
{
error(location,
"array indexes for fragment outputs must be constant integral expressions", "[");
}
else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData)
{
error(location, "array index for gl_FragData must be constant zero", "[");
}
}
if (indexConstantUnion)
{
// If an out-of-range index is not qualified as constant, the behavior in the spec is
// undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may
// constant fold expressions that are not constant expressions). The most compatible way to
// handle this case is to report a warning instead of an error and force the index to be in
// the correct range.
bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst;
int index = 0;
if (indexConstantUnion->getBasicType() == EbtInt)
{
index = indexConstantUnion->getIConst(0);
}
else if (indexConstantUnion->getBasicType() == EbtUInt)
{
index = static_cast<int>(indexConstantUnion->getUConst(0));
}
int safeIndex = -1;
if (index < 0)
{
outOfRangeError(outOfRangeIndexIsError, location, "index expression is negative", "[]");
safeIndex = 0;
}
if (!baseExpression->getType().isUnsizedArray())
{
if (baseExpression->isArray())
{
if (baseExpression->getQualifier() == EvqFragData && index > 0)
{
if (!isExtensionEnabled(TExtension::EXT_draw_buffers))
{
outOfRangeError(outOfRangeIndexIsError, location,
"array index for gl_FragData must be zero when "
"GL_EXT_draw_buffers is disabled",
"[]");
safeIndex = 0;
}
}
// Only do generic out-of-range check if similar error hasn't already been reported.
if (safeIndex < 0)
{
safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
baseExpression->getOutermostArraySize(),
"array index out of range");
}
}
else if (baseExpression->isMatrix())
{
safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
baseExpression->getType().getCols(),
"matrix field selection out of range");
}
else if (baseExpression->isVector())
{
safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index,
baseExpression->getType().getNominalSize(),
"vector field selection out of range");
}
ASSERT(safeIndex >= 0);
// Data of constant unions can't be changed, because it may be shared with other
// constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new
// sanitized object.
if (safeIndex != index || indexConstantUnion->getBasicType() != EbtInt)
{
TConstantUnion *safeConstantUnion = new TConstantUnion();
safeConstantUnion->setIConst(safeIndex);
indexConstantUnion->replaceConstantUnion(safeConstantUnion);
indexConstantUnion->getTypePointer()->setBasicType(EbtInt);
}
TIntermBinary *node =
new TIntermBinary(EOpIndexDirect, baseExpression, indexExpression);
node->setLine(location);
return node->fold(mDiagnostics);
}
}
TIntermBinary *node = new TIntermBinary(EOpIndexIndirect, baseExpression, indexExpression);
node->setLine(location);
// Indirect indexing can never be constant folded.
return node;
}
int TParseContext::checkIndexLessThan(bool outOfRangeIndexIsError,
const TSourceLoc &location,
int index,
int arraySize,
const char *reason)
{
// Should not reach here with an unsized / runtime-sized array.
ASSERT(arraySize > 0);
if (index >= arraySize)
{
std::stringstream reasonStream;
reasonStream << reason << " '" << index << "'";
std::string token = reasonStream.str();
outOfRangeError(outOfRangeIndexIsError, location, reason, "[]");
return arraySize - 1;
}
return index;
}
TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression,
const TSourceLoc &dotLocation,
const TString &fieldString,
const TSourceLoc &fieldLocation)
{
if (baseExpression->isArray())
{
error(fieldLocation, "cannot apply dot operator to an array", ".");
return baseExpression;
}
if (baseExpression->isVector())
{
TVector<int> fieldOffsets;
if (!parseVectorFields(fieldLocation, fieldString, baseExpression->getNominalSize(),
&fieldOffsets))
{
fieldOffsets.resize(1);
fieldOffsets[0] = 0;
}
TIntermSwizzle *node = new TIntermSwizzle(baseExpression, fieldOffsets);
node->setLine(dotLocation);
return node->fold();
}
else if (baseExpression->getBasicType() == EbtStruct)
{
const TFieldList &fields = baseExpression->getType().getStruct()->fields();
if (fields.empty())
{
error(dotLocation, "structure has no fields", "Internal Error");
return baseExpression;
}
else
{
bool fieldFound = false;
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TIntermTyped *index = CreateIndexNode(i);
index->setLine(fieldLocation);
TIntermBinary *node =
new TIntermBinary(EOpIndexDirectStruct, baseExpression, index);
node->setLine(dotLocation);
return node->fold(mDiagnostics);
}
else
{
error(dotLocation, " no such field in structure", fieldString.c_str());
return baseExpression;
}
}
}
else if (baseExpression->isInterfaceBlock())
{
const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields();
if (fields.empty())
{
error(dotLocation, "interface block has no fields", "Internal Error");
return baseExpression;
}
else
{
bool fieldFound = false;
unsigned int i;
for (i = 0; i < fields.size(); ++i)
{
if (fields[i]->name() == fieldString)
{
fieldFound = true;
break;
}
}
if (fieldFound)
{
TIntermTyped *index = CreateIndexNode(i);
index->setLine(fieldLocation);
TIntermBinary *node =
new TIntermBinary(EOpIndexDirectInterfaceBlock, baseExpression, index);
node->setLine(dotLocation);
// Indexing interface blocks can never be constant folded.
return node;
}
else
{
error(dotLocation, " no such field in interface block", fieldString.c_str());
return baseExpression;
}
}
}
else
{
if (mShaderVersion < 300)
{
error(dotLocation, " field selection requires structure or vector on left hand side",
fieldString.c_str());
}
else
{
error(dotLocation,
" field selection requires structure, vector, or interface block on left hand "
"side",
fieldString.c_str());
}
return baseExpression;
}
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine)
{
TLayoutQualifier qualifier = TLayoutQualifier::Create();
if (qualifierType == "shared")
{
if (sh::IsWebGLBasedSpec(mShaderSpec))
{
error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared");
}
qualifier.blockStorage = EbsShared;
}
else if (qualifierType == "packed")
{
if (sh::IsWebGLBasedSpec(mShaderSpec))
{
error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed");
}
qualifier.blockStorage = EbsPacked;
}
else if (qualifierType == "std430")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.blockStorage = EbsStd430;
}
else if (qualifierType == "std140")
{
qualifier.blockStorage = EbsStd140;
}
else if (qualifierType == "row_major")
{
qualifier.matrixPacking = EmpRowMajor;
}
else if (qualifierType == "column_major")
{
qualifier.matrixPacking = EmpColumnMajor;
}
else if (qualifierType == "location")
{
error(qualifierTypeLine, "invalid layout qualifier: location requires an argument",
qualifierType.c_str());
}
else if (qualifierType == "yuv" && mShaderType == GL_FRAGMENT_SHADER)
{
if (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_YUV_target))
{
qualifier.yuv = true;
}
}
else if (qualifierType == "rgba32f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32F;
}
else if (qualifierType == "rgba16f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16F;
}
else if (qualifierType == "r32f")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32F;
}
else if (qualifierType == "rgba8")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8;
}
else if (qualifierType == "rgba8_snorm")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8_SNORM;
}
else if (qualifierType == "rgba32i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32I;
}
else if (qualifierType == "rgba16i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16I;
}
else if (qualifierType == "rgba8i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8I;
}
else if (qualifierType == "r32i")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32I;
}
else if (qualifierType == "rgba32ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA32UI;
}
else if (qualifierType == "rgba16ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA16UI;
}
else if (qualifierType == "rgba8ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifRGBA8UI;
}
else if (qualifierType == "r32ui")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.imageInternalFormat = EiifR32UI;
}
else if (qualifierType == "points" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptPoints;
}
else if (qualifierType == "lines" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptLines;
}
else if (qualifierType == "lines_adjacency" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptLinesAdjacency;
}
else if (qualifierType == "triangles" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptTriangles;
}
else if (qualifierType == "triangles_adjacency" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptTrianglesAdjacency;
}
else if (qualifierType == "line_strip" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptLineStrip;
}
else if (qualifierType == "triangle_strip" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
qualifier.primitiveType = EptTriangleStrip;
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
}
return qualifier;
}
void TParseContext::parseLocalSize(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
size_t index,
sh::WorkGroupSize *localSize)
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
if (intValue < 1)
{
std::stringstream reasonStream;
reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive";
std::string reason = reasonStream.str();
error(intValueLine, reason.c_str(), intValueString.c_str());
}
(*localSize)[index] = intValue;
}
void TParseContext::parseNumViews(int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
int *numViews)
{
// This error is only specified in WebGL, but tightens unspecified behavior in the native
// specification.
if (intValue < 1)
{
error(intValueLine, "out of range: num_views must be positive", intValueString.c_str());
}
*numViews = intValue;
}
void TParseContext::parseInvocations(int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
int *numInvocations)
{
// Although SPEC isn't clear whether invocations can be less than 1, we add this limit because
// it doesn't make sense to accept invocations <= 0.
if (intValue < 1 || intValue > mMaxGeometryShaderInvocations)
{
error(intValueLine,
"out of range: invocations must be in the range of [1, "
"MAX_GEOMETRY_SHADER_INVOCATIONS_OES]",
intValueString.c_str());
}
else
{
*numInvocations = intValue;
}
}
void TParseContext::parseMaxVertices(int intValue,
const TSourceLoc &intValueLine,
const std::string &intValueString,
int *maxVertices)
{
// Although SPEC isn't clear whether max_vertices can be less than 0, we add this limit because
// it doesn't make sense to accept max_vertices < 0.
if (intValue < 0 || intValue > mMaxGeometryShaderMaxVertices)
{
error(
intValueLine,
"out of range: max_vertices must be in the range of [0, gl_MaxGeometryOutputVertices]",
intValueString.c_str());
}
else
{
*maxVertices = intValue;
}
}
TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType,
const TSourceLoc &qualifierTypeLine,
int intValue,
const TSourceLoc &intValueLine)
{
TLayoutQualifier qualifier = TLayoutQualifier::Create();
std::string intValueString = Str(intValue);
if (qualifierType == "location")
{
// must check that location is non-negative
if (intValue < 0)
{
error(intValueLine, "out of range: location must be non-negative",
intValueString.c_str());
}
else
{
qualifier.location = intValue;
qualifier.locationsSpecified = 1;
}
}
else if (qualifierType == "binding")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
if (intValue < 0)
{
error(intValueLine, "out of range: binding must be non-negative",
intValueString.c_str());
}
else
{
qualifier.binding = intValue;
}
}
else if (qualifierType == "offset")
{
checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310);
if (intValue < 0)
{
error(intValueLine, "out of range: offset must be non-negative",
intValueString.c_str());
}
else
{
qualifier.offset = intValue;
}
}
else if (qualifierType == "local_size_x")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u,
&qualifier.localSize);
}
else if (qualifierType == "local_size_y")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u,
&qualifier.localSize);
}
else if (qualifierType == "local_size_z")
{
parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u,
&qualifier.localSize);
}
else if (qualifierType == "num_views" && mShaderType == GL_VERTEX_SHADER)
{
if (checkCanUseExtension(qualifierTypeLine, TExtension::OVR_multiview))
{
parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews);
}
}
else if (qualifierType == "invocations" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
parseInvocations(intValue, intValueLine, intValueString, &qualifier.invocations);
}
else if (qualifierType == "max_vertices" && mShaderType == GL_GEOMETRY_SHADER_OES &&
checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader))
{
parseMaxVertices(intValue, intValueLine, intValueString, &qualifier.maxVertices);
}
else
{
error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
}
return qualifier;
}
TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc)
{
return new TTypeQualifierBuilder(
new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc),
mShaderVersion);
}
TStorageQualifierWrapper *TParseContext::parseGlobalStorageQualifier(TQualifier qualifier,
const TSourceLoc &loc)
{
checkIsAtGlobalLevel(loc, getQualifierString(qualifier));
return new TStorageQualifierWrapper(qualifier, loc);
}
TStorageQualifierWrapper *TParseContext::parseVaryingQualifier(const TSourceLoc &loc)
{
if (getShaderType() == GL_VERTEX_SHADER)
{
return parseGlobalStorageQualifier(EvqVaryingOut, loc);
}
return parseGlobalStorageQualifier(EvqVaryingIn, loc);
}
TStorageQualifierWrapper *TParseContext::parseInQualifier(const TSourceLoc &loc)
{
if (declaringFunction())
{
return new TStorageQualifierWrapper(EvqIn, loc);
}
switch (getShaderType())
{
case GL_VERTEX_SHADER:
{
if (mShaderVersion < 300 && !isExtensionEnabled(TExtension::OVR_multiview))
{
error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
}
return new TStorageQualifierWrapper(EvqVertexIn, loc);
}
case GL_FRAGMENT_SHADER:
{
if (mShaderVersion < 300)
{
error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in");
}
return new TStorageQualifierWrapper(EvqFragmentIn, loc);
}
case GL_COMPUTE_SHADER:
{
return new TStorageQualifierWrapper(EvqComputeIn, loc);
}
case GL_GEOMETRY_SHADER_OES:
{
return new TStorageQualifierWrapper(EvqGeometryIn, loc);
}
default:
{
UNREACHABLE();
return new TStorageQualifierWrapper(EvqLast, loc);
}
}
}
TStorageQualifierWrapper *TParseContext::parseOutQualifier(const TSourceLoc &loc)
{
if (declaringFunction())
{
return new TStorageQualifierWrapper(EvqOut, loc);
}
switch (getShaderType())
{
case GL_VERTEX_SHADER:
{
if (mShaderVersion < 300)
{
error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out");
}
return new TStorageQualifierWrapper(EvqVertexOut, loc);
}
case GL_FRAGMENT_SHADER:
{
if (mShaderVersion < 300)
{
error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out");
}
return new TStorageQualifierWrapper(EvqFragmentOut, loc);
}
case GL_COMPUTE_SHADER:
{
error(loc, "storage qualifier isn't supported in compute shaders", "out");
return new TStorageQualifierWrapper(EvqLast, loc);
}
case GL_GEOMETRY_SHADER_OES:
{
return new TStorageQualifierWrapper(EvqGeometryOut, loc);
}
default:
{
UNREACHABLE();
return new TStorageQualifierWrapper(EvqLast, loc);
}
}
}
TStorageQualifierWrapper *TParseContext::parseInOutQualifier(const TSourceLoc &loc)
{
if (!declaringFunction())
{
error(loc, "invalid qualifier: can be only used with function parameters", "inout");
}
return new TStorageQualifierWrapper(EvqInOut, loc);
}
TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier,
TLayoutQualifier rightQualifier,
const TSourceLoc &rightQualifierLocation)
{
return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation,
mDiagnostics);
}
TField *TParseContext::parseStructDeclarator(TString *identifier, const TSourceLoc &loc)
{
checkIsNotReserved(loc, *identifier);
TType *type = new TType(EbtVoid, EbpUndefined);
return new TField(type, identifier, loc);
}
TField *TParseContext::parseStructArrayDeclarator(TString *identifier,
const TSourceLoc &loc,
const TVector<unsigned int> &arraySizes,
const TSourceLoc &arraySizeLoc)
{
checkIsNotReserved(loc, *identifier);
TType *type = new TType(EbtVoid, EbpUndefined);
type->makeArrays(arraySizes);
return new TField(type, identifier, loc);
}
void TParseContext::checkDoesNotHaveDuplicateFieldName(const TFieldList::const_iterator begin,
const TFieldList::const_iterator end,
const TString &name,
const TSourceLoc &location)
{
for (auto fieldIter = begin; fieldIter != end; ++fieldIter)
{
if ((*fieldIter)->name() == name)
{
error(location, "duplicate field name in structure", name.c_str());
}
}
}
TFieldList *TParseContext::addStructFieldList(TFieldList *fields, const TSourceLoc &location)
{
for (TFieldList::const_iterator fieldIter = fields->begin(); fieldIter != fields->end();
++fieldIter)
{
checkDoesNotHaveDuplicateFieldName(fields->begin(), fieldIter, (*fieldIter)->name(),
location);
}
return fields;
}
TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields,
const TFieldList *newlyAddedFields,
const TSourceLoc &location)
{
for (TField *field : *newlyAddedFields)
{
checkDoesNotHaveDuplicateFieldName(processedFields->begin(), processedFields->end(),
field->name(), location);
processedFields->push_back(field);
}
return processedFields;
}
TFieldList *TParseContext::addStructDeclaratorListWithQualifiers(
const TTypeQualifierBuilder &typeQualifierBuilder,
TPublicType *typeSpecifier,
TFieldList *fieldList)
{
TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics);
typeSpecifier->qualifier = typeQualifier.qualifier;
typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier;
typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier;
typeSpecifier->invariant = typeQualifier.invariant;
if (typeQualifier.precision != EbpUndefined)
{
typeSpecifier->precision = typeQualifier.precision;
}
return addStructDeclaratorList(*typeSpecifier, fieldList);
}
TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier,
TFieldList *declaratorList)
{
checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision,
typeSpecifier.getBasicType());
checkIsNonVoid(typeSpecifier.getLine(), (*declaratorList)[0]->name(),
typeSpecifier.getBasicType());
checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier);
for (TField *declarator : *declaratorList)
{
// Don't allow arrays of arrays in ESSL < 3.10.
if (declarator->type()->isArray())
{
checkArrayElementIsNotArray(typeSpecifier.getLine(), typeSpecifier);
}
auto *declaratorArraySizes = declarator->type()->getArraySizes();
TType *type = declarator->type();
*type = TType(typeSpecifier);
if (declaratorArraySizes != nullptr)
{
for (unsigned int arraySize : *declaratorArraySizes)
{
type->makeArray(arraySize);
}
}
checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *declarator);
}
return declaratorList;
}
TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine,
const TSourceLoc &nameLine,
const TString *structName,
TFieldList *fieldList)
{
TStructure *structure = new TStructure(&symbolTable, structName, fieldList);
// Store a bool in the struct if we're at global scope, to allow us to
// skip the local struct scoping workaround in HLSL.
structure->setAtGlobalScope(symbolTable.atGlobalLevel());
if (!structName->empty())
{
checkIsNotReserved(nameLine, *structName);
if (!symbolTable.declareStructType(structure))
{
error(nameLine, "redefinition of a struct", structName->c_str());
}
}
// ensure we do not specify any storage qualifiers on the struct members
for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
{
TField &field = *(*fieldList)[typeListIndex];
const TQualifier qualifier = field.type()->getQualifier();
switch (qualifier)
{
case EvqGlobal:
case EvqTemporary:
break;
default:
error(field.line(), "invalid qualifier on struct member",
getQualifierString(qualifier));
break;
}
if (field.type()->isInvariant())
{
error(field.line(), "invalid qualifier on struct member", "invariant");
}
// ESSL 3.10 section 4.1.8 -- atomic_uint or images are not allowed as structure member.
if (IsImage(field.type()->getBasicType()) || IsAtomicCounter(field.type()->getBasicType()))
{
error(field.line(), "disallowed type in struct", field.type()->getBasicString());
}
checkIsNotUnsizedArray(field.line(), "array members of structs must specify a size",
field.name().c_str(), field.type());
checkMemoryQualifierIsNotSpecified(field.type()->getMemoryQualifier(), field.line());
checkBindingIsNotSpecified(field.line(), field.type()->getLayoutQualifier().binding);
checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier());
}
TTypeSpecifierNonArray typeSpecifierNonArray;
typeSpecifierNonArray.initializeStruct(structure, true, structLine);
exitStructDeclaration();
return typeSpecifierNonArray;
}
TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init,
TIntermBlock *statementList,
const TSourceLoc &loc)
{
TBasicType switchType = init->getBasicType();
if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() ||
init->isVector())
{
error(init->getLine(), "init-expression in a switch statement must be a scalar integer",
"switch");
return nullptr;
}
ASSERT(statementList);
if (!ValidateSwitchStatementList(switchType, mShaderVersion, mDiagnostics, statementList, loc))
{
ASSERT(mDiagnostics->numErrors() > 0);
return nullptr;
}
TIntermSwitch *node = new TIntermSwitch(init, statementList);
node->setLine(loc);
return node;
}
TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "case labels need to be inside switch statements", "case");
return nullptr;
}
if (condition == nullptr)
{
error(loc, "case label must have a condition", "case");
return nullptr;
}
if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) ||
condition->isMatrix() || condition->isArray() || condition->isVector())
{
error(condition->getLine(), "case label must be a scalar integer", "case");
}
TIntermConstantUnion *conditionConst = condition->getAsConstantUnion();
// TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant
// expressions can be folded. Right now we don't allow constant expressions that ANGLE can't
// fold in case labels.
if (condition->getQualifier() != EvqConst || conditionConst == nullptr)
{
error(condition->getLine(), "case label must be constant", "case");
}
TIntermCase *node = new TIntermCase(condition);
node->setLine(loc);
return node;
}
TIntermCase *TParseContext::addDefault(const TSourceLoc &loc)
{
if (mSwitchNestingLevel == 0)
{
error(loc, "default labels need to be inside switch statements", "default");
return nullptr;
}
TIntermCase *node = new TIntermCase(nullptr);
node->setLine(loc);
return node;
}
TIntermTyped *TParseContext::createUnaryMath(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc)
{
ASSERT(child != nullptr);
switch (op)
{
case EOpLogicalNot:
if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() ||
child->isVector())
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
break;
case EOpBitwiseNot:
if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) ||
child->isMatrix() || child->isArray())
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
break;
case EOpPostIncrement:
case EOpPreIncrement:
case EOpPostDecrement:
case EOpPreDecrement:
case EOpNegative:
case EOpPositive:
if (child->getBasicType() == EbtStruct || child->isInterfaceBlock() ||
child->getBasicType() == EbtBool || child->isArray() ||
IsOpaqueType(child->getBasicType()))
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
// Operators for built-ins are already type checked against their prototype.
default:
break;
}
if (child->getMemoryQualifier().writeonly)
{
unaryOpError(loc, GetOperatorString(op), child->getCompleteString());
return nullptr;
}
TIntermUnary *node = new TIntermUnary(op, child);
node->setLine(loc);
return node->fold(mDiagnostics);
}
TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc)
{
ASSERT(op != EOpNull);
TIntermTyped *node = createUnaryMath(op, child, loc);
if (node == nullptr)
{
return child;
}
return node;
}
TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op,
TIntermTyped *child,
const TSourceLoc &loc)
{
checkCanBeLValue(loc, GetOperatorString(op), child);
return addUnaryMath(op, child, loc);
}
bool TParseContext::binaryOpCommonCheck(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
// Check opaque types are not allowed to be operands in expressions other than array indexing
// and structure member selection.
if (IsOpaqueType(left->getBasicType()) || IsOpaqueType(right->getBasicType()))
{
switch (op)
{
case EOpIndexDirect:
case EOpIndexIndirect:
break;
case EOpIndexDirectStruct:
UNREACHABLE();
default:
error(loc, "Invalid operation for variables with an opaque type",
GetOperatorString(op));
return false;
}
}
if (right->getMemoryQualifier().writeonly)
{
error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op));
return false;
}
if (left->getMemoryQualifier().writeonly)
{
switch (op)
{
case EOpAssign:
case EOpInitialize:
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectStruct:
case EOpIndexDirectInterfaceBlock:
break;
default:
error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op));
return false;
}
}
if (left->getType().getStruct() || right->getType().getStruct())
{
switch (op)
{
case EOpIndexDirectStruct:
ASSERT(left->getType().getStruct());
break;
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
if (left->getType() != right->getType())
{
return false;
}
break;
default:
error(loc, "Invalid operation for structs", GetOperatorString(op));
return false;
}
}
if (left->isInterfaceBlock() || right->isInterfaceBlock())
{
switch (op)
{
case EOpIndexDirectInterfaceBlock:
ASSERT(left->getType().getInterfaceBlock());
break;
default:
error(loc, "Invalid operation for interface blocks", GetOperatorString(op));
return false;
}
}
if (left->isArray() != right->isArray())
{
error(loc, "array / non-array mismatch", GetOperatorString(op));
return false;
}
if (left->isArray())
{
ASSERT(right->isArray());
if (mShaderVersion < 300)
{
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
switch (op)
{
case EOpEqual:
case EOpNotEqual:
case EOpAssign:
case EOpInitialize:
break;
default:
error(loc, "Invalid operation for arrays", GetOperatorString(op));
return false;
}
// At this point, size of implicitly sized arrays should be resolved.
if (*left->getType().getArraySizes() != *right->getType().getArraySizes())
{
error(loc, "array size mismatch", GetOperatorString(op));
return false;
}
}
// Check ops which require integer / ivec parameters
bool isBitShift = false;
switch (op)
{
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
// Unsigned can be bit-shifted by signed and vice versa, but we need to
// check that the basic type is an integer type.
isBitShift = true;
if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType()))
{
return false;
}
break;
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
// It is enough to check the type of only one operand, since later it
// is checked that the operand types match.
if (!IsInteger(left->getBasicType()))
{
return false;
}
break;
default:
break;
}
// GLSL ES 1.00 and 3.00 do not support implicit type casting.
// So the basic type should usually match.
if (!isBitShift && left->getBasicType() != right->getBasicType())
{
return false;
}
// Check that:
// 1. Type sizes match exactly on ops that require that.
// 2. Restrictions for structs that contain arrays or samplers are respected.
// 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected.
switch (op)
{
case EOpAssign:
case EOpInitialize:
case EOpEqual:
case EOpNotEqual:
// ESSL 1.00 sections 5.7, 5.8, 5.9
if (mShaderVersion < 300 && left->getType().isStructureContainingArrays())
{
error(loc, "undefined operation for structs containing arrays",
GetOperatorString(op));
return false;
}
// Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7,
// we interpret the spec so that this extends to structs containing samplers,
// similarly to ESSL 1.00 spec.
if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) &&
left->getType().isStructureContainingSamplers())
{
error(loc, "undefined operation for structs containing samplers",
GetOperatorString(op));
return false;
}
if ((left->getNominalSize() != right->getNominalSize()) ||
(left->getSecondarySize() != right->getSecondarySize()))
{
error(loc, "dimension mismatch", GetOperatorString(op));
return false;
}
break;
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
if (!left->isScalar() || !right->isScalar())
{
error(loc, "comparison operator only defined for scalars", GetOperatorString(op));
return false;
}
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpIMod:
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpAddAssign:
case EOpSubAssign:
case EOpDivAssign:
case EOpIModAssign:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix()))
{
return false;
}
// Are the sizes compatible?
if (left->getNominalSize() != right->getNominalSize() ||
left->getSecondarySize() != right->getSecondarySize())
{
// If the nominal sizes of operands do not match:
// One of them must be a scalar.
if (!left->isScalar() && !right->isScalar())
return false;
// In the case of compound assignment other than multiply-assign,
// the right side needs to be a scalar. Otherwise a vector/matrix
// would be assigned to a scalar. A scalar can't be shifted by a
// vector either.
if (!right->isScalar() &&
(IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight))
return false;
}
break;
default:
break;
}
return true;
}
bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op,
const TType &left,
const TType &right)
{
switch (op)
{
case EOpMul:
case EOpMulAssign:
return left.getNominalSize() == right.getNominalSize() &&
left.getSecondarySize() == right.getSecondarySize();
case EOpVectorTimesScalar:
return true;
case EOpVectorTimesScalarAssign:
ASSERT(!left.isMatrix() && !right.isMatrix());
return left.isVector() && !right.isVector();
case EOpVectorTimesMatrix:
return left.getNominalSize() == right.getRows();
case EOpVectorTimesMatrixAssign:
ASSERT(!left.isMatrix() && right.isMatrix());
return left.isVector() && left.getNominalSize() == right.getRows() &&
left.getNominalSize() == right.getCols();
case EOpMatrixTimesVector:
return left.getCols() == right.getNominalSize();
case EOpMatrixTimesScalar:
return true;
case EOpMatrixTimesScalarAssign:
ASSERT(left.isMatrix() && !right.isMatrix());
return !right.isVector();
case EOpMatrixTimesMatrix:
return left.getCols() == right.getRows();
case EOpMatrixTimesMatrixAssign:
ASSERT(left.isMatrix() && right.isMatrix());
// We need to check two things:
// 1. The matrix multiplication step is valid.
// 2. The result will have the same number of columns as the lvalue.
return left.getCols() == right.getRows() && left.getCols() == right.getCols();
default:
UNREACHABLE();
return false;
}
}
TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (!binaryOpCommonCheck(op, left, right, loc))
return nullptr;
switch (op)
{
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
break;
case EOpLogicalOr:
case EOpLogicalXor:
case EOpLogicalAnd:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar())
{
return nullptr;
}
// Basic types matching should have been already checked.
ASSERT(right->getBasicType() == EbtBool);
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpMul:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
if (left->getBasicType() == EbtBool)
{
return nullptr;
}
break;
case EOpIMod:
ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() &&
!right->getType().getStruct());
// Note that this is only for the % operator, not for mod()
if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat)
{
return nullptr;
}
break;
default:
break;
}
if (op == EOpMul)
{
op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType());
if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
{
return nullptr;
}
}
TIntermBinary *node = new TIntermBinary(op, left, right);
node->setLine(loc);
// See if we can fold constants.
return node->fold(mDiagnostics);
}
TIntermTyped *TParseContext::addBinaryMath(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == 0)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
return left;
}
return node;
}
TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
TIntermTyped *node = addBinaryMathInternal(op, left, right, loc);
if (node == nullptr)
{
binaryOpError(loc, GetOperatorString(op), left->getCompleteString(),
right->getCompleteString());
node = CreateBoolNode(false);
node->setLine(loc);
}
return node;
}
TIntermBinary *TParseContext::createAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
if (binaryOpCommonCheck(op, left, right, loc))
{
if (op == EOpMulAssign)
{
op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType());
if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType()))
{
return nullptr;
}
}
TIntermBinary *node = new TIntermBinary(op, left, right);
node->setLine(loc);
return node;
}
return nullptr;
}
TIntermTyped *TParseContext::addAssign(TOperator op,
TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
checkCanBeLValue(loc, "assign", left);
TIntermTyped *node = createAssign(op, left, right, loc);
if (node == nullptr)
{
assignError(loc, "assign", left->getCompleteString(), right->getCompleteString());
return left;
}
return node;
}
TIntermTyped *TParseContext::addComma(TIntermTyped *left,
TIntermTyped *right,
const TSourceLoc &loc)
{
// WebGL2 section 5.26, the following results in an error:
// "Sequence operator applied to void, arrays, or structs containing arrays"
if (mShaderSpec == SH_WEBGL2_SPEC &&
(left->isArray() || left->getBasicType() == EbtVoid ||
left->getType().isStructureContainingArrays() || right->isArray() ||
right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays()))
{
error(loc,
"sequence operator is not allowed for void, arrays, or structs containing arrays",
",");
}
TIntermBinary *commaNode = new TIntermBinary(EOpComma, left, right);
TQualifier resultQualifier = TIntermBinary::GetCommaQualifier(mShaderVersion, left, right);
commaNode->getTypePointer()->setQualifier(resultQualifier);
return commaNode->fold(mDiagnostics);
}
TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc)
{
switch (op)
{
case EOpContinue:
if (mLoopNestingLevel <= 0)
{
error(loc, "continue statement only allowed in loops", "");
}
break;
case EOpBreak:
if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0)
{
error(loc, "break statement only allowed in loops and switch statements", "");
}
break;
case EOpReturn:
if (mCurrentFunctionType->getBasicType() != EbtVoid)
{
error(loc, "non-void function must return a value", "return");
}
break;
case EOpKill:
if (mShaderType != GL_FRAGMENT_SHADER)
{
error(loc, "discard supported in fragment shaders only", "discard");
}
break;
default:
UNREACHABLE();
break;
}
return addBranch(op, nullptr, loc);
}
TIntermBranch *TParseContext::addBranch(TOperator op,
TIntermTyped *expression,
const TSourceLoc &loc)
{
if (expression != nullptr)
{
ASSERT(op == EOpReturn);
mFunctionReturnsValue = true;
if (mCurrentFunctionType->getBasicType() == EbtVoid)
{
error(loc, "void function cannot return a value", "return");
}
else if (*mCurrentFunctionType != expression->getType())
{
error(loc, "function return is not matching type:", "return");
}
}
TIntermBranch *node = new TIntermBranch(op, expression);
node->setLine(loc);
return node;
}
void TParseContext::checkTextureGather(TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallBuiltInFunction);
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
bool isTextureGather = (name == "textureGather");
bool isTextureGatherOffset = (name == "textureGatherOffset");
if (isTextureGather || isTextureGatherOffset)
{
TIntermNode *componentNode = nullptr;
TIntermSequence *arguments = functionCall->getSequence();
ASSERT(arguments->size() >= 2u && arguments->size() <= 4u);
const TIntermTyped *sampler = arguments->front()->getAsTyped();
ASSERT(sampler != nullptr);
switch (sampler->getBasicType())
{
case EbtSampler2D:
case EbtISampler2D:
case EbtUSampler2D:
case EbtSampler2DArray:
case EbtISampler2DArray:
case EbtUSampler2DArray:
if ((isTextureGather && arguments->size() == 3u) ||
(isTextureGatherOffset && arguments->size() == 4u))
{
componentNode = arguments->back();
}
break;
case EbtSamplerCube:
case EbtISamplerCube:
case EbtUSamplerCube:
ASSERT(!isTextureGatherOffset);
if (arguments->size() == 3u)
{
componentNode = arguments->back();
}
break;
case EbtSampler2DShadow:
case EbtSampler2DArrayShadow:
case EbtSamplerCubeShadow:
break;
default:
UNREACHABLE();
break;
}
if (componentNode)
{
const TIntermConstantUnion *componentConstantUnion =
componentNode->getAsConstantUnion();
if (componentNode->getAsTyped()->getQualifier() != EvqConst || !componentConstantUnion)
{
error(functionCall->getLine(), "Texture component must be a constant expression",
name.c_str());
}
else
{
int component = componentConstantUnion->getIConst(0);
if (component < 0 || component > 3)
{
error(functionCall->getLine(), "Component must be in the range [0;3]",
name.c_str());
}
}
}
}
}
void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallBuiltInFunction);
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
TIntermNode *offset = nullptr;
TIntermSequence *arguments = functionCall->getSequence();
bool useTextureGatherOffsetConstraints = false;
if (name == "texelFetchOffset" || name == "textureLodOffset" ||
name == "textureProjLodOffset" || name == "textureGradOffset" ||
name == "textureProjGradOffset")
{
offset = arguments->back();
}
else if (name == "textureOffset" || name == "textureProjOffset")
{
// A bias parameter might follow the offset parameter.
ASSERT(arguments->size() >= 3);
offset = (*arguments)[2];
}
else if (name == "textureGatherOffset")
{
ASSERT(arguments->size() >= 3u);
const TIntermTyped *sampler = arguments->front()->getAsTyped();
ASSERT(sampler != nullptr);
switch (sampler->getBasicType())
{
case EbtSampler2D:
case EbtISampler2D:
case EbtUSampler2D:
case EbtSampler2DArray:
case EbtISampler2DArray:
case EbtUSampler2DArray:
offset = (*arguments)[2];
break;
case EbtSampler2DShadow:
case EbtSampler2DArrayShadow:
offset = (*arguments)[3];
break;
default:
UNREACHABLE();
break;
}
useTextureGatherOffsetConstraints = true;
}
if (offset != nullptr)
{
TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion();
if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion)
{
error(functionCall->getLine(), "Texture offset must be a constant expression",
name.c_str());
}
else
{
ASSERT(offsetConstantUnion->getBasicType() == EbtInt);
size_t size = offsetConstantUnion->getType().getObjectSize();
const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer();
int minOffsetValue = useTextureGatherOffsetConstraints ? mMinProgramTextureGatherOffset
: mMinProgramTexelOffset;
int maxOffsetValue = useTextureGatherOffsetConstraints ? mMaxProgramTextureGatherOffset
: mMaxProgramTexelOffset;
for (size_t i = 0u; i < size; ++i)
{
int offsetValue = values[i].getIConst();
if (offsetValue > maxOffsetValue || offsetValue < minOffsetValue)
{
std::stringstream tokenStream;
tokenStream << offsetValue;
std::string token = tokenStream.str();
error(offset->getLine(), "Texture offset value out of valid range",
token.c_str());
}
}
}
}
}
void TParseContext::checkAtomicMemoryBuiltinFunctions(TIntermAggregate *functionCall)
{
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
if (IsAtomicBuiltin(name))
{
TIntermSequence *arguments = functionCall->getSequence();
TIntermTyped *memNode = (*arguments)[0]->getAsTyped();
if (IsBufferOrSharedVariable(memNode))
{
return;
}
while (memNode->getAsBinaryNode())
{
memNode = memNode->getAsBinaryNode()->getLeft();
if (IsBufferOrSharedVariable(memNode))
{
return;
}
}
error(memNode->getLine(),
"The value passed to the mem argument of an atomic memory function does not "
"correspond to a buffer or shared variable.",
functionCall->getFunctionSymbolInfo()->getName().c_str());
}
}
// GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers
void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallBuiltInFunction);
const TString &name = functionCall->getFunctionSymbolInfo()->getName();
if (name.compare(0, 5, "image") == 0)
{
TIntermSequence *arguments = functionCall->getSequence();
TIntermTyped *imageNode = (*arguments)[0]->getAsTyped();
const TMemoryQualifier &memoryQualifier = imageNode->getMemoryQualifier();
if (name.compare(5, 5, "Store") == 0)
{
if (memoryQualifier.readonly)
{
error(imageNode->getLine(),
"'imageStore' cannot be used with images qualified as 'readonly'",
GetImageArgumentToken(imageNode));
}
}
else if (name.compare(5, 4, "Load") == 0)
{
if (memoryQualifier.writeonly)
{
error(imageNode->getLine(),
"'imageLoad' cannot be used with images qualified as 'writeonly'",
GetImageArgumentToken(imageNode));
}
}
}
}
// GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters
void TParseContext::checkImageMemoryAccessForUserDefinedFunctions(
const TFunction *functionDefinition,
const TIntermAggregate *functionCall)
{
ASSERT(functionCall->getOp() == EOpCallFunctionInAST);
const TIntermSequence &arguments = *functionCall->getSequence();
ASSERT(functionDefinition->getParamCount() == arguments.size());
for (size_t i = 0; i < arguments.size(); ++i)
{
TIntermTyped *typedArgument = arguments[i]->getAsTyped();
const TType &functionArgumentType = typedArgument->getType();
const TType &functionParameterType = *functionDefinition->getParam(i).type;
ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType());
if (IsImage(functionArgumentType.getBasicType()))
{
const TMemoryQualifier &functionArgumentMemoryQualifier =
functionArgumentType.getMemoryQualifier();
const TMemoryQualifier &functionParameterMemoryQualifier =
functionParameterType.getMemoryQualifier();
if (functionArgumentMemoryQualifier.readonly &&
!functionParameterMemoryQualifier.readonly)
{
error(functionCall->getLine(),
"Function call discards the 'readonly' qualifier from image",
GetImageArgumentToken(typedArgument));
}
if (functionArgumentMemoryQualifier.writeonly &&
!functionParameterMemoryQualifier.writeonly)
{
error(functionCall->getLine(),
"Function call discards the 'writeonly' qualifier from image",
GetImageArgumentToken(typedArgument));
}
if (functionArgumentMemoryQualifier.coherent &&
!functionParameterMemoryQualifier.coherent)
{
error(functionCall->getLine(),
"Function call discards the 'coherent' qualifier from image",
GetImageArgumentToken(typedArgument));
}
if (functionArgumentMemoryQualifier.volatileQualifier &&
!functionParameterMemoryQualifier.volatileQualifier)
{
error(functionCall->getLine(),
"Function call discards the 'volatile' qualifier from image",
GetImageArgumentToken(typedArgument));
}
}
}
}
TIntermSequence *TParseContext::createEmptyArgumentsList()
{
return new TIntermSequence();
}
TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall,
TIntermSequence *arguments,
TIntermNode *thisNode,
const TSourceLoc &loc)
{
if (thisNode != nullptr)
{
return addMethod(fnCall, arguments, thisNode, loc);
}
TOperator op = fnCall->getBuiltInOp();
if (op == EOpConstruct)
{
return addConstructor(arguments, fnCall->getReturnType(), loc);
}
else
{
ASSERT(op == EOpNull);
return addNonConstructorFunctionCall(fnCall, arguments, loc);
}
}
TIntermTyped *TParseContext::addMethod(TFunction *fnCall,
TIntermSequence *arguments,
TIntermNode *thisNode,
const TSourceLoc &loc)
{
TIntermTyped *typedThis = thisNode->getAsTyped();
// It's possible for the name pointer in the TFunction to be null in case it gets parsed as
// a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS
// mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead.
// So accessing fnCall->getName() below is safe.
if (fnCall->getName() != "length")
{
error(loc, "invalid method", fnCall->getName().c_str());
}
else if (!arguments->empty())
{
error(loc, "method takes no parameters", "length");
}
else if (typedThis == nullptr || !typedThis->isArray())
{
error(loc, "length can only be called on arrays", "length");
}
else if (typedThis->getQualifier() == EvqPerVertexIn &&
mGeometryShaderInputPrimitiveType == EptUndefined)
{
ASSERT(mShaderType == GL_GEOMETRY_SHADER_OES);
error(loc, "missing input primitive declaration before calling length on gl_in", "length");
}
else
{
TIntermUnary *node = new TIntermUnary(EOpArrayLength, typedThis);
node->setLine(loc);
return node->fold(mDiagnostics);
}
return CreateZeroNode(TType(EbtInt, EbpUndefined, EvqConst));
}
TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunction *fnCall,
TIntermSequence *arguments,
const TSourceLoc &loc)
{
// First find by unmangled name to check whether the function name has been
// hidden by a variable name or struct typename.
// If a function is found, check for one with a matching argument list.
bool builtIn;
const TSymbol *symbol = symbolTable.find(fnCall->getName(), mShaderVersion, &builtIn);
if (symbol != nullptr && !symbol->isFunction())
{
error(loc, "function name expected", fnCall->getName().c_str());
}
else
{
symbol = symbolTable.find(TFunction::GetMangledNameFromCall(fnCall->getName(), *arguments),
mShaderVersion, &builtIn);
if (symbol == nullptr)
{
error(loc, "no matching overloaded function found", fnCall->getName().c_str());
}
else
{
const TFunction *fnCandidate = static_cast<const TFunction *>(symbol);
//
// A declared function.
//
if (builtIn && fnCandidate->getExtension() != TExtension::UNDEFINED)
{
checkCanUseExtension(loc, fnCandidate->getExtension());
}
TOperator op = fnCandidate->getBuiltInOp();
if (builtIn && op != EOpNull)
{
// A function call mapped to a built-in operation.
if (fnCandidate->getParamCount() == 1)
{
// Treat it like a built-in unary operator.
TIntermNode *unaryParamNode = arguments->front();
TIntermTyped *callNode = createUnaryMath(op, unaryParamNode->getAsTyped(), loc);
ASSERT(callNode != nullptr);
return callNode;
}
else
{
TIntermAggregate *callNode =
TIntermAggregate::Create(fnCandidate->getReturnType(), op, arguments);
callNode->setLine(loc);
// Some built-in functions have out parameters too.
functionCallRValueLValueErrorCheck(fnCandidate, callNode);
if (TIntermAggregate::CanFoldAggregateBuiltInOp(callNode->getOp()))
{
// See if we can constant fold a built-in. Note that this may be possible
// even if it is not const-qualified.
return callNode->fold(mDiagnostics);
}
else
{
return callNode;
}
}
}
else
{
// This is a real function call
TIntermAggregate *callNode = nullptr;
// If builtIn == false, the function is user defined - could be an overloaded
// built-in as well.
// if builtIn == true, it's a builtIn function with no op associated with it.
// This needs to happen after the function info including name is set.
if (builtIn)
{
callNode = TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, arguments);
checkTextureOffsetConst(callNode);
checkTextureGather(callNode);
checkImageMemoryAccessForBuiltinFunctions(callNode);
checkAtomicMemoryBuiltinFunctions(callNode);
}
else
{
callNode = TIntermAggregate::CreateFunctionCall(*fnCandidate, arguments);
checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode);
}
functionCallRValueLValueErrorCheck(fnCandidate, callNode);
callNode->setLine(loc);
return callNode;
}
}
}
// Error message was already written. Put on a dummy node for error recovery.
return CreateZeroNode(TType(EbtFloat, EbpMedium, EvqConst));
}
TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond,
TIntermTyped *trueExpression,
TIntermTyped *falseExpression,
const TSourceLoc &loc)
{
if (!checkIsScalarBool(loc, cond))
{
return falseExpression;
}
if (trueExpression->getType() != falseExpression->getType())
{
std::stringstream reasonStream;
reasonStream << "mismatching ternary operator operand types '"
<< trueExpression->getCompleteString() << " and '"
<< falseExpression->getCompleteString() << "'";
std::string reason = reasonStream.str();
error(loc, reason.c_str(), "?:");
return falseExpression;
}
if (IsOpaqueType(trueExpression->getBasicType()))
{
// ESSL 1.00 section 4.1.7
// ESSL 3.00.6 section 4.1.7
// Opaque/sampler types are not allowed in most types of expressions, including ternary.
// Note that structs containing opaque types don't need to be checked as structs are
// forbidden below.
error(loc, "ternary operator is not allowed for opaque types", "?:");
return falseExpression;
}
if (cond->getMemoryQualifier().writeonly || trueExpression->getMemoryQualifier().writeonly ||
falseExpression->getMemoryQualifier().writeonly)
{
error(loc, "ternary operator is not allowed for variables with writeonly", "?:");
return falseExpression;
}
// ESSL 1.00.17 sections 5.2 and 5.7:
// Ternary operator is not among the operators allowed for structures/arrays.
// ESSL 3.00.6 section 5.7:
// Ternary operator support is optional for arrays. No certainty that it works across all
// devices with struct either, so we err on the side of caution here. TODO (oetuaho@nvidia.com):
// Would be nice to make the spec and implementation agree completely here.
if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct)
{
error(loc, "ternary operator is not allowed for structures or arrays", "?:");
return falseExpression;
}
if (trueExpression->getBasicType() == EbtInterfaceBlock)
{
error(loc, "ternary operator is not allowed for interface blocks", "?:");
return falseExpression;
}
// WebGL2 section 5.26, the following results in an error:
// "Ternary operator applied to void, arrays, or structs containing arrays"
if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid)
{
error(loc, "ternary operator is not allowed for void", "?:");
return falseExpression;
}
// Note that the node resulting from here can be a constant union without being qualified as
// constant.
TIntermTernary *node = new TIntermTernary(cond, trueExpression, falseExpression);
node->setLine(loc);
return node->fold();
}
//
// Parse an array of strings using yyparse.
//
// Returns 0 for success.
//
int PaParseStrings(size_t count,
const char *const string[],
const int length[],
TParseContext *context)
{
if ((count == 0) || (string == nullptr))
return 1;
if (glslang_initialize(context))
return 1;
int error = glslang_scan(count, string, length, context);
if (!error)
error = glslang_parse(context);
glslang_finalize(context);
return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
}
} // namespace sh