| // |
| // Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| |
| #include "compiler/translator/ParseContext.h" |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| |
| #include "common/mathutil.h" |
| #include "compiler/preprocessor/SourceLocation.h" |
| #include "compiler/translator/Cache.h" |
| #include "compiler/translator/IntermNode_util.h" |
| #include "compiler/translator/ValidateGlobalInitializer.h" |
| #include "compiler/translator/ValidateSwitch.h" |
| #include "compiler/translator/glslang.h" |
| #include "compiler/translator/util.h" |
| |
| namespace sh |
| { |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Sub- vector and matrix fields |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| namespace |
| { |
| |
| const int kWebGLMaxStructNesting = 4; |
| |
| const std::array<const char *, 8> kAtomicBuiltin = {{"atomicAdd", "atomicMin", "atomicMax", |
| "atomicAnd", "atomicOr", "atomicXor", |
| "atomicExchange", "atomicCompSwap"}}; |
| |
| bool IsAtomicBuiltin(const TString &name) |
| { |
| for (size_t i = 0; i < kAtomicBuiltin.size(); ++i) |
| { |
| if (name.compare(kAtomicBuiltin[i]) == 0) |
| { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool ContainsSampler(const TStructure *structType); |
| |
| bool ContainsSampler(const TType &type) |
| { |
| if (IsSampler(type.getBasicType())) |
| { |
| return true; |
| } |
| if (type.getBasicType() == EbtStruct) |
| { |
| return ContainsSampler(type.getStruct()); |
| } |
| |
| return false; |
| } |
| |
| bool ContainsSampler(const TStructure *structType) |
| { |
| for (const auto &field : structType->fields()) |
| { |
| if (ContainsSampler(*field->type())) |
| return true; |
| } |
| return false; |
| } |
| |
| // Get a token from an image argument to use as an error message token. |
| const char *GetImageArgumentToken(TIntermTyped *imageNode) |
| { |
| ASSERT(IsImage(imageNode->getBasicType())); |
| while (imageNode->getAsBinaryNode() && |
| (imageNode->getAsBinaryNode()->getOp() == EOpIndexIndirect || |
| imageNode->getAsBinaryNode()->getOp() == EOpIndexDirect)) |
| { |
| imageNode = imageNode->getAsBinaryNode()->getLeft(); |
| } |
| TIntermSymbol *imageSymbol = imageNode->getAsSymbolNode(); |
| if (imageSymbol) |
| { |
| return imageSymbol->getSymbol().c_str(); |
| } |
| return "image"; |
| } |
| |
| bool CanSetDefaultPrecisionOnType(const TPublicType &type) |
| { |
| if (!SupportsPrecision(type.getBasicType())) |
| { |
| return false; |
| } |
| if (type.getBasicType() == EbtUInt) |
| { |
| // ESSL 3.00.4 section 4.5.4 |
| return false; |
| } |
| if (type.isAggregate()) |
| { |
| // Not allowed to set for aggregate types |
| return false; |
| } |
| return true; |
| } |
| |
| // Map input primitive types to input array sizes in a geometry shader. |
| GLuint GetGeometryShaderInputArraySize(TLayoutPrimitiveType primitiveType) |
| { |
| switch (primitiveType) |
| { |
| case EptPoints: |
| return 1u; |
| case EptLines: |
| return 2u; |
| case EptTriangles: |
| return 3u; |
| case EptLinesAdjacency: |
| return 4u; |
| case EptTrianglesAdjacency: |
| return 6u; |
| default: |
| UNREACHABLE(); |
| return 0u; |
| } |
| } |
| |
| bool IsBufferOrSharedVariable(TIntermTyped *var) |
| { |
| if (var->isInterfaceBlock() || var->getQualifier() == EvqBuffer || |
| var->getQualifier() == EvqShared) |
| { |
| return true; |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| // This tracks each binding point's current default offset for inheritance of subsequent |
| // variables using the same binding, and keeps offsets unique and non overlapping. |
| // See GLSL ES 3.1, section 4.4.6. |
| class TParseContext::AtomicCounterBindingState |
| { |
| public: |
| AtomicCounterBindingState() : mDefaultOffset(0) {} |
| // Inserts a new span and returns -1 if overlapping, else returns the starting offset of |
| // newly inserted span. |
| int insertSpan(int start, size_t length) |
| { |
| gl::RangeI newSpan(start, start + static_cast<int>(length)); |
| for (const auto &span : mSpans) |
| { |
| if (newSpan.intersects(span)) |
| { |
| return -1; |
| } |
| } |
| mSpans.push_back(newSpan); |
| mDefaultOffset = newSpan.high(); |
| return start; |
| } |
| // Inserts a new span starting from the default offset. |
| int appendSpan(size_t length) { return insertSpan(mDefaultOffset, length); } |
| void setDefaultOffset(int offset) { mDefaultOffset = offset; } |
| |
| private: |
| int mDefaultOffset; |
| std::vector<gl::RangeI> mSpans; |
| }; |
| |
| TParseContext::TParseContext(TSymbolTable &symt, |
| TExtensionBehavior &ext, |
| sh::GLenum type, |
| ShShaderSpec spec, |
| ShCompileOptions options, |
| bool checksPrecErrors, |
| TDiagnostics *diagnostics, |
| const ShBuiltInResources &resources) |
| : symbolTable(symt), |
| mDeferredNonEmptyDeclarationErrorCheck(false), |
| mShaderType(type), |
| mShaderSpec(spec), |
| mCompileOptions(options), |
| mShaderVersion(100), |
| mTreeRoot(nullptr), |
| mLoopNestingLevel(0), |
| mStructNestingLevel(0), |
| mSwitchNestingLevel(0), |
| mCurrentFunctionType(nullptr), |
| mFunctionReturnsValue(false), |
| mChecksPrecisionErrors(checksPrecErrors), |
| mFragmentPrecisionHighOnESSL1(false), |
| mDefaultUniformMatrixPacking(EmpColumnMajor), |
| mDefaultUniformBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), |
| mDefaultBufferMatrixPacking(EmpColumnMajor), |
| mDefaultBufferBlockStorage(sh::IsWebGLBasedSpec(spec) ? EbsStd140 : EbsShared), |
| mDiagnostics(diagnostics), |
| mDirectiveHandler(ext, |
| *mDiagnostics, |
| mShaderVersion, |
| mShaderType, |
| resources.WEBGL_debug_shader_precision == 1), |
| mPreprocessor(mDiagnostics, &mDirectiveHandler, pp::PreprocessorSettings()), |
| mScanner(nullptr), |
| mUsesFragData(false), |
| mUsesFragColor(false), |
| mUsesSecondaryOutputs(false), |
| mMinProgramTexelOffset(resources.MinProgramTexelOffset), |
| mMaxProgramTexelOffset(resources.MaxProgramTexelOffset), |
| mMinProgramTextureGatherOffset(resources.MinProgramTextureGatherOffset), |
| mMaxProgramTextureGatherOffset(resources.MaxProgramTextureGatherOffset), |
| mComputeShaderLocalSizeDeclared(false), |
| mComputeShaderLocalSize(-1), |
| mNumViews(-1), |
| mMaxNumViews(resources.MaxViewsOVR), |
| mMaxImageUnits(resources.MaxImageUnits), |
| mMaxCombinedTextureImageUnits(resources.MaxCombinedTextureImageUnits), |
| mMaxUniformLocations(resources.MaxUniformLocations), |
| mMaxUniformBufferBindings(resources.MaxUniformBufferBindings), |
| mMaxAtomicCounterBindings(resources.MaxAtomicCounterBindings), |
| mMaxShaderStorageBufferBindings(resources.MaxShaderStorageBufferBindings), |
| mDeclaringFunction(false), |
| mGeometryShaderInputPrimitiveType(EptUndefined), |
| mGeometryShaderOutputPrimitiveType(EptUndefined), |
| mGeometryShaderInvocations(0), |
| mGeometryShaderMaxVertices(-1), |
| mMaxGeometryShaderInvocations(resources.MaxGeometryShaderInvocations), |
| mMaxGeometryShaderMaxVertices(resources.MaxGeometryOutputVertices), |
| mGeometryShaderInputArraySize(0u) |
| { |
| } |
| |
| TParseContext::~TParseContext() |
| { |
| } |
| |
| bool TParseContext::parseVectorFields(const TSourceLoc &line, |
| const TString &compString, |
| int vecSize, |
| TVector<int> *fieldOffsets) |
| { |
| ASSERT(fieldOffsets); |
| size_t fieldCount = compString.size(); |
| if (fieldCount > 4u) |
| { |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| fieldOffsets->resize(fieldCount); |
| |
| enum |
| { |
| exyzw, |
| ergba, |
| estpq |
| } fieldSet[4]; |
| |
| for (unsigned int i = 0u; i < fieldOffsets->size(); ++i) |
| { |
| switch (compString[i]) |
| { |
| case 'x': |
| (*fieldOffsets)[i] = 0; |
| fieldSet[i] = exyzw; |
| break; |
| case 'r': |
| (*fieldOffsets)[i] = 0; |
| fieldSet[i] = ergba; |
| break; |
| case 's': |
| (*fieldOffsets)[i] = 0; |
| fieldSet[i] = estpq; |
| break; |
| case 'y': |
| (*fieldOffsets)[i] = 1; |
| fieldSet[i] = exyzw; |
| break; |
| case 'g': |
| (*fieldOffsets)[i] = 1; |
| fieldSet[i] = ergba; |
| break; |
| case 't': |
| (*fieldOffsets)[i] = 1; |
| fieldSet[i] = estpq; |
| break; |
| case 'z': |
| (*fieldOffsets)[i] = 2; |
| fieldSet[i] = exyzw; |
| break; |
| case 'b': |
| (*fieldOffsets)[i] = 2; |
| fieldSet[i] = ergba; |
| break; |
| case 'p': |
| (*fieldOffsets)[i] = 2; |
| fieldSet[i] = estpq; |
| break; |
| |
| case 'w': |
| (*fieldOffsets)[i] = 3; |
| fieldSet[i] = exyzw; |
| break; |
| case 'a': |
| (*fieldOffsets)[i] = 3; |
| fieldSet[i] = ergba; |
| break; |
| case 'q': |
| (*fieldOffsets)[i] = 3; |
| fieldSet[i] = estpq; |
| break; |
| default: |
| error(line, "illegal vector field selection", compString.c_str()); |
| return false; |
| } |
| } |
| |
| for (unsigned int i = 0u; i < fieldOffsets->size(); ++i) |
| { |
| if ((*fieldOffsets)[i] >= vecSize) |
| { |
| error(line, "vector field selection out of range", compString.c_str()); |
| return false; |
| } |
| |
| if (i > 0) |
| { |
| if (fieldSet[i] != fieldSet[i - 1]) |
| { |
| error(line, "illegal - vector component fields not from the same set", |
| compString.c_str()); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////// |
| // |
| // Errors |
| // |
| //////////////////////////////////////////////////////////////////////// |
| |
| // |
| // Used by flex/bison to output all syntax and parsing errors. |
| // |
| void TParseContext::error(const TSourceLoc &loc, const char *reason, const char *token) |
| { |
| mDiagnostics->error(loc, reason, token); |
| } |
| |
| void TParseContext::warning(const TSourceLoc &loc, const char *reason, const char *token) |
| { |
| mDiagnostics->warning(loc, reason, token); |
| } |
| |
| void TParseContext::outOfRangeError(bool isError, |
| const TSourceLoc &loc, |
| const char *reason, |
| const char *token) |
| { |
| if (isError) |
| { |
| error(loc, reason, token); |
| } |
| else |
| { |
| warning(loc, reason, token); |
| } |
| } |
| |
| // |
| // Same error message for all places assignments don't work. |
| // |
| void TParseContext::assignError(const TSourceLoc &line, const char *op, TString left, TString right) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "cannot convert from '" << right << "' to '" << left << "'"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| // |
| // Same error message for all places unary operations don't work. |
| // |
| void TParseContext::unaryOpError(const TSourceLoc &line, const char *op, TString operand) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "wrong operand type - no operation '" << op |
| << "' exists that takes an operand of type " << operand |
| << " (or there is no acceptable conversion)"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| // |
| // Same error message for all binary operations don't work. |
| // |
| void TParseContext::binaryOpError(const TSourceLoc &line, |
| const char *op, |
| TString left, |
| TString right) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "wrong operand types - no operation '" << op |
| << "' exists that takes a left-hand operand of type '" << left |
| << "' and a right operand of type '" << right |
| << "' (or there is no acceptable conversion)"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| void TParseContext::checkPrecisionSpecified(const TSourceLoc &line, |
| TPrecision precision, |
| TBasicType type) |
| { |
| if (!mChecksPrecisionErrors) |
| return; |
| |
| if (precision != EbpUndefined && !SupportsPrecision(type)) |
| { |
| error(line, "illegal type for precision qualifier", getBasicString(type)); |
| } |
| |
| if (precision == EbpUndefined) |
| { |
| switch (type) |
| { |
| case EbtFloat: |
| error(line, "No precision specified for (float)", ""); |
| return; |
| case EbtInt: |
| case EbtUInt: |
| UNREACHABLE(); // there's always a predeclared qualifier |
| error(line, "No precision specified (int)", ""); |
| return; |
| default: |
| if (IsOpaqueType(type)) |
| { |
| error(line, "No precision specified", getBasicString(type)); |
| return; |
| } |
| } |
| } |
| } |
| |
| // Both test and if necessary, spit out an error, to see if the node is really |
| // an l-value that can be operated on this way. |
| bool TParseContext::checkCanBeLValue(const TSourceLoc &line, const char *op, TIntermTyped *node) |
| { |
| TIntermSymbol *symNode = node->getAsSymbolNode(); |
| TIntermBinary *binaryNode = node->getAsBinaryNode(); |
| TIntermSwizzle *swizzleNode = node->getAsSwizzleNode(); |
| |
| if (swizzleNode) |
| { |
| bool ok = checkCanBeLValue(line, op, swizzleNode->getOperand()); |
| if (ok && swizzleNode->hasDuplicateOffsets()) |
| { |
| error(line, " l-value of swizzle cannot have duplicate components", op); |
| return false; |
| } |
| return ok; |
| } |
| |
| if (binaryNode) |
| { |
| switch (binaryNode->getOp()) |
| { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| case EOpIndexDirectStruct: |
| case EOpIndexDirectInterfaceBlock: |
| return checkCanBeLValue(line, op, binaryNode->getLeft()); |
| default: |
| break; |
| } |
| error(line, " l-value required", op); |
| return false; |
| } |
| |
| std::string message; |
| switch (node->getQualifier()) |
| { |
| case EvqConst: |
| message = "can't modify a const"; |
| break; |
| case EvqConstReadOnly: |
| message = "can't modify a const"; |
| break; |
| case EvqAttribute: |
| message = "can't modify an attribute"; |
| break; |
| case EvqFragmentIn: |
| case EvqVertexIn: |
| case EvqGeometryIn: |
| case EvqFlatIn: |
| case EvqSmoothIn: |
| case EvqCentroidIn: |
| message = "can't modify an input"; |
| break; |
| case EvqUniform: |
| message = "can't modify a uniform"; |
| break; |
| case EvqVaryingIn: |
| message = "can't modify a varying"; |
| break; |
| case EvqFragCoord: |
| message = "can't modify gl_FragCoord"; |
| break; |
| case EvqFrontFacing: |
| message = "can't modify gl_FrontFacing"; |
| break; |
| case EvqPointCoord: |
| message = "can't modify gl_PointCoord"; |
| break; |
| case EvqNumWorkGroups: |
| message = "can't modify gl_NumWorkGroups"; |
| break; |
| case EvqWorkGroupSize: |
| message = "can't modify gl_WorkGroupSize"; |
| break; |
| case EvqWorkGroupID: |
| message = "can't modify gl_WorkGroupID"; |
| break; |
| case EvqLocalInvocationID: |
| message = "can't modify gl_LocalInvocationID"; |
| break; |
| case EvqGlobalInvocationID: |
| message = "can't modify gl_GlobalInvocationID"; |
| break; |
| case EvqLocalInvocationIndex: |
| message = "can't modify gl_LocalInvocationIndex"; |
| break; |
| case EvqViewIDOVR: |
| message = "can't modify gl_ViewID_OVR"; |
| break; |
| case EvqComputeIn: |
| message = "can't modify work group size variable"; |
| break; |
| case EvqPerVertexIn: |
| message = "can't modify any member in gl_in"; |
| break; |
| case EvqPrimitiveIDIn: |
| message = "can't modify gl_PrimitiveIDIn"; |
| break; |
| case EvqInvocationID: |
| message = "can't modify gl_InvocationID"; |
| break; |
| case EvqPrimitiveID: |
| if (mShaderType == GL_FRAGMENT_SHADER) |
| { |
| message = "can't modify gl_PrimitiveID in a fragment shader"; |
| } |
| break; |
| case EvqLayer: |
| if (mShaderType == GL_FRAGMENT_SHADER) |
| { |
| message = "can't modify gl_Layer in a fragment shader"; |
| } |
| break; |
| default: |
| // |
| // Type that can't be written to? |
| // |
| if (node->getBasicType() == EbtVoid) |
| { |
| message = "can't modify void"; |
| } |
| if (IsOpaqueType(node->getBasicType())) |
| { |
| message = "can't modify a variable with type "; |
| message += getBasicString(node->getBasicType()); |
| } |
| else if (node->getMemoryQualifier().readonly) |
| { |
| message = "can't modify a readonly variable"; |
| } |
| } |
| |
| if (message.empty() && binaryNode == 0 && symNode == 0) |
| { |
| error(line, "l-value required", op); |
| |
| return false; |
| } |
| |
| // |
| // Everything else is okay, no error. |
| // |
| if (message.empty()) |
| return true; |
| |
| // |
| // If we get here, we have an error and a message. |
| // |
| if (symNode) |
| { |
| const char *symbol = symNode->getSymbol().c_str(); |
| std::stringstream reasonStream; |
| reasonStream << "l-value required (" << message << " \"" << symbol << "\")"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| else |
| { |
| std::stringstream reasonStream; |
| reasonStream << "l-value required (" << message << ")"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), op); |
| } |
| |
| return false; |
| } |
| |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // a constant. |
| void TParseContext::checkIsConst(TIntermTyped *node) |
| { |
| if (node->getQualifier() != EvqConst) |
| { |
| error(node->getLine(), "constant expression required", ""); |
| } |
| } |
| |
| // Both test, and if necessary spit out an error, to see if the node is really |
| // an integer. |
| void TParseContext::checkIsScalarInteger(TIntermTyped *node, const char *token) |
| { |
| if (!node->isScalarInt()) |
| { |
| error(node->getLine(), "integer expression required", token); |
| } |
| } |
| |
| // Both test, and if necessary spit out an error, to see if we are currently |
| // globally scoped. |
| bool TParseContext::checkIsAtGlobalLevel(const TSourceLoc &line, const char *token) |
| { |
| if (!symbolTable.atGlobalLevel()) |
| { |
| error(line, "only allowed at global scope", token); |
| return false; |
| } |
| return true; |
| } |
| |
| // ESSL 3.00.5 sections 3.8 and 3.9. |
| // If it starts "gl_" or contains two consecutive underscores, it's reserved. |
| // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a webgl shader. |
| bool TParseContext::checkIsNotReserved(const TSourceLoc &line, const TString &identifier) |
| { |
| static const char *reservedErrMsg = "reserved built-in name"; |
| if (identifier.compare(0, 3, "gl_") == 0) |
| { |
| error(line, reservedErrMsg, "gl_"); |
| return false; |
| } |
| if (sh::IsWebGLBasedSpec(mShaderSpec)) |
| { |
| if (identifier.compare(0, 6, "webgl_") == 0) |
| { |
| error(line, reservedErrMsg, "webgl_"); |
| return false; |
| } |
| if (identifier.compare(0, 7, "_webgl_") == 0) |
| { |
| error(line, reservedErrMsg, "_webgl_"); |
| return false; |
| } |
| } |
| if (identifier.find("__") != TString::npos) |
| { |
| error(line, |
| "identifiers containing two consecutive underscores (__) are reserved as " |
| "possible future keywords", |
| identifier.c_str()); |
| return false; |
| } |
| return true; |
| } |
| |
| // Make sure the argument types are correct for constructing a specific type. |
| bool TParseContext::checkConstructorArguments(const TSourceLoc &line, |
| const TIntermSequence *arguments, |
| const TType &type) |
| { |
| if (arguments->empty()) |
| { |
| error(line, "constructor does not have any arguments", "constructor"); |
| return false; |
| } |
| |
| for (TIntermNode *arg : *arguments) |
| { |
| const TIntermTyped *argTyped = arg->getAsTyped(); |
| ASSERT(argTyped != nullptr); |
| if (type.getBasicType() != EbtStruct && IsOpaqueType(argTyped->getBasicType())) |
| { |
| std::string reason("cannot convert a variable with type "); |
| reason += getBasicString(argTyped->getBasicType()); |
| error(line, reason.c_str(), "constructor"); |
| return false; |
| } |
| else if (argTyped->getMemoryQualifier().writeonly) |
| { |
| error(line, "cannot convert a variable with writeonly", "constructor"); |
| return false; |
| } |
| if (argTyped->getBasicType() == EbtVoid) |
| { |
| error(line, "cannot convert a void", "constructor"); |
| return false; |
| } |
| } |
| |
| if (type.isArray()) |
| { |
| // The size of an unsized constructor should already have been determined. |
| ASSERT(!type.isUnsizedArray()); |
| if (static_cast<size_t>(type.getOutermostArraySize()) != arguments->size()) |
| { |
| error(line, "array constructor needs one argument per array element", "constructor"); |
| return false; |
| } |
| // GLSL ES 3.00 section 5.4.4: Each argument must be the same type as the element type of |
| // the array. |
| for (TIntermNode *const &argNode : *arguments) |
| { |
| const TType &argType = argNode->getAsTyped()->getType(); |
| if (mShaderVersion < 310 && argType.isArray()) |
| { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return false; |
| } |
| if (!argType.isElementTypeOf(type)) |
| { |
| error(line, "Array constructor argument has an incorrect type", "constructor"); |
| return false; |
| } |
| } |
| } |
| else if (type.getBasicType() == EbtStruct) |
| { |
| const TFieldList &fields = type.getStruct()->fields(); |
| if (fields.size() != arguments->size()) |
| { |
| error(line, |
| "Number of constructor parameters does not match the number of structure fields", |
| "constructor"); |
| return false; |
| } |
| |
| for (size_t i = 0; i < fields.size(); i++) |
| { |
| if (i >= arguments->size() || |
| (*arguments)[i]->getAsTyped()->getType() != *fields[i]->type()) |
| { |
| error(line, "Structure constructor arguments do not match structure fields", |
| "constructor"); |
| return false; |
| } |
| } |
| } |
| else |
| { |
| // We're constructing a scalar, vector, or matrix. |
| |
| // Note: It's okay to have too many components available, but not okay to have unused |
| // arguments. 'full' will go to true when enough args have been seen. If we loop again, |
| // there is an extra argument, so 'overFull' will become true. |
| |
| size_t size = 0; |
| bool full = false; |
| bool overFull = false; |
| bool matrixArg = false; |
| for (TIntermNode *arg : *arguments) |
| { |
| const TIntermTyped *argTyped = arg->getAsTyped(); |
| ASSERT(argTyped != nullptr); |
| |
| if (argTyped->getBasicType() == EbtStruct) |
| { |
| error(line, "a struct cannot be used as a constructor argument for this type", |
| "constructor"); |
| return false; |
| } |
| if (argTyped->getType().isArray()) |
| { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return false; |
| } |
| if (argTyped->getType().isMatrix()) |
| { |
| matrixArg = true; |
| } |
| |
| size += argTyped->getType().getObjectSize(); |
| if (full) |
| { |
| overFull = true; |
| } |
| if (size >= type.getObjectSize()) |
| { |
| full = true; |
| } |
| } |
| |
| if (type.isMatrix() && matrixArg) |
| { |
| if (arguments->size() != 1) |
| { |
| error(line, "constructing matrix from matrix can only take one argument", |
| "constructor"); |
| return false; |
| } |
| } |
| else |
| { |
| if (size != 1 && size < type.getObjectSize()) |
| { |
| error(line, "not enough data provided for construction", "constructor"); |
| return false; |
| } |
| if (overFull) |
| { |
| error(line, "too many arguments", "constructor"); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // This function checks to see if a void variable has been declared and raise an error message for |
| // such a case |
| // |
| // returns true in case of an error |
| // |
| bool TParseContext::checkIsNonVoid(const TSourceLoc &line, |
| const TString &identifier, |
| const TBasicType &type) |
| { |
| if (type == EbtVoid) |
| { |
| error(line, "illegal use of type 'void'", identifier.c_str()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression |
| // or not. |
| bool TParseContext::checkIsScalarBool(const TSourceLoc &line, const TIntermTyped *type) |
| { |
| if (type->getBasicType() != EbtBool || !type->isScalar()) |
| { |
| error(line, "boolean expression expected", ""); |
| return false; |
| } |
| return true; |
| } |
| |
| // This function checks to see if the node (for the expression) contains a scalar boolean expression |
| // or not. |
| void TParseContext::checkIsScalarBool(const TSourceLoc &line, const TPublicType &pType) |
| { |
| if (pType.getBasicType() != EbtBool || pType.isAggregate()) |
| { |
| error(line, "boolean expression expected", ""); |
| } |
| } |
| |
| bool TParseContext::checkIsNotOpaqueType(const TSourceLoc &line, |
| const TTypeSpecifierNonArray &pType, |
| const char *reason) |
| { |
| if (pType.type == EbtStruct) |
| { |
| if (ContainsSampler(pType.userDef)) |
| { |
| std::stringstream reasonStream; |
| reasonStream << reason << " (structure contains a sampler)"; |
| std::string reasonStr = reasonStream.str(); |
| error(line, reasonStr.c_str(), getBasicString(pType.type)); |
| return false; |
| } |
| // only samplers need to be checked from structs, since other opaque types can't be struct |
| // members. |
| return true; |
| } |
| else if (IsOpaqueType(pType.type)) |
| { |
| error(line, reason, getBasicString(pType.type)); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::checkDeclaratorLocationIsNotSpecified(const TSourceLoc &line, |
| const TPublicType &pType) |
| { |
| if (pType.layoutQualifier.location != -1) |
| { |
| error(line, "location must only be specified for a single input or output variable", |
| "location"); |
| } |
| } |
| |
| void TParseContext::checkLocationIsNotSpecified(const TSourceLoc &location, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| if (layoutQualifier.location != -1) |
| { |
| const char *errorMsg = "invalid layout qualifier: only valid on program inputs and outputs"; |
| if (mShaderVersion >= 310) |
| { |
| errorMsg = |
| "invalid layout qualifier: only valid on shader inputs, outputs, and uniforms"; |
| } |
| error(location, errorMsg, "location"); |
| } |
| } |
| |
| void TParseContext::checkStd430IsForShaderStorageBlock(const TSourceLoc &location, |
| const TLayoutBlockStorage &blockStorage, |
| const TQualifier &qualifier) |
| { |
| if (blockStorage == EbsStd430 && qualifier != EvqBuffer) |
| { |
| error(location, "The std430 layout is supported only for shader storage blocks.", "std430"); |
| } |
| } |
| |
| void TParseContext::checkOutParameterIsNotOpaqueType(const TSourceLoc &line, |
| TQualifier qualifier, |
| const TType &type) |
| { |
| ASSERT(qualifier == EvqOut || qualifier == EvqInOut); |
| if (IsOpaqueType(type.getBasicType())) |
| { |
| error(line, "opaque types cannot be output parameters", type.getBasicString()); |
| } |
| } |
| |
| // Do size checking for an array type's size. |
| unsigned int TParseContext::checkIsValidArraySize(const TSourceLoc &line, TIntermTyped *expr) |
| { |
| TIntermConstantUnion *constant = expr->getAsConstantUnion(); |
| |
| // TODO(oetuaho@nvidia.com): Get rid of the constant == nullptr check here once all constant |
| // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't |
| // fold as array size. |
| if (expr->getQualifier() != EvqConst || constant == nullptr || !constant->isScalarInt()) |
| { |
| error(line, "array size must be a constant integer expression", ""); |
| return 1u; |
| } |
| |
| unsigned int size = 0u; |
| |
| if (constant->getBasicType() == EbtUInt) |
| { |
| size = constant->getUConst(0); |
| } |
| else |
| { |
| int signedSize = constant->getIConst(0); |
| |
| if (signedSize < 0) |
| { |
| error(line, "array size must be non-negative", ""); |
| return 1u; |
| } |
| |
| size = static_cast<unsigned int>(signedSize); |
| } |
| |
| if (size == 0u) |
| { |
| error(line, "array size must be greater than zero", ""); |
| return 1u; |
| } |
| |
| // The size of arrays is restricted here to prevent issues further down the |
| // compiler/translator/driver stack. Shader Model 5 generation hardware is limited to |
| // 4096 registers so this should be reasonable even for aggressively optimizable code. |
| const unsigned int sizeLimit = 65536; |
| |
| if (size > sizeLimit) |
| { |
| error(line, "array size too large", ""); |
| return 1u; |
| } |
| |
| return size; |
| } |
| |
| // See if this qualifier can be an array. |
| bool TParseContext::checkIsValidQualifierForArray(const TSourceLoc &line, |
| const TPublicType &elementQualifier) |
| { |
| if ((elementQualifier.qualifier == EvqAttribute) || |
| (elementQualifier.qualifier == EvqVertexIn) || |
| (elementQualifier.qualifier == EvqConst && mShaderVersion < 300)) |
| { |
| error(line, "cannot declare arrays of this qualifier", |
| TType(elementQualifier).getQualifierString()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // See if this element type can be formed into an array. |
| bool TParseContext::checkArrayElementIsNotArray(const TSourceLoc &line, |
| const TPublicType &elementType) |
| { |
| if (mShaderVersion < 310 && elementType.isArray()) |
| { |
| error(line, "cannot declare arrays of arrays", |
| TType(elementType).getCompleteString().c_str()); |
| return false; |
| } |
| return true; |
| } |
| |
| // Check if this qualified element type can be formed into an array. This is only called when array |
| // brackets are associated with an identifier in a declaration, like this: |
| // float a[2]; |
| // Similar checks are done in addFullySpecifiedType for array declarations where the array brackets |
| // are associated with the type, like this: |
| // float[2] a; |
| bool TParseContext::checkIsValidTypeAndQualifierForArray(const TSourceLoc &indexLocation, |
| const TPublicType &elementType) |
| { |
| if (!checkArrayElementIsNotArray(indexLocation, elementType)) |
| { |
| return false; |
| } |
| // In ESSL1.00 shaders, structs cannot be varying (section 4.3.5). This is checked elsewhere. |
| // In ESSL3.00 shaders, struct inputs/outputs are allowed but not arrays of structs (section |
| // 4.3.4). |
| if (mShaderVersion >= 300 && elementType.getBasicType() == EbtStruct && |
| sh::IsVarying(elementType.qualifier)) |
| { |
| error(indexLocation, "cannot declare arrays of structs of this qualifier", |
| TType(elementType).getCompleteString().c_str()); |
| return false; |
| } |
| return checkIsValidQualifierForArray(indexLocation, elementType); |
| } |
| |
| // Enforce non-initializer type/qualifier rules. |
| void TParseContext::checkCanBeDeclaredWithoutInitializer(const TSourceLoc &line, |
| const TString &identifier, |
| TType *type) |
| { |
| ASSERT(type != nullptr); |
| if (type->getQualifier() == EvqConst) |
| { |
| // Make the qualifier make sense. |
| type->setQualifier(EvqTemporary); |
| |
| // Generate informative error messages for ESSL1. |
| // In ESSL3 arrays and structures containing arrays can be constant. |
| if (mShaderVersion < 300 && type->isStructureContainingArrays()) |
| { |
| error(line, |
| "structures containing arrays may not be declared constant since they cannot be " |
| "initialized", |
| identifier.c_str()); |
| } |
| else |
| { |
| error(line, "variables with qualifier 'const' must be initialized", identifier.c_str()); |
| } |
| } |
| // This will make the type sized if it isn't sized yet. |
| checkIsNotUnsizedArray(line, "implicitly sized arrays need to be initialized", |
| identifier.c_str(), type); |
| } |
| |
| // Do some simple checks that are shared between all variable declarations, |
| // and update the symbol table. |
| // |
| // Returns true if declaring the variable succeeded. |
| // |
| bool TParseContext::declareVariable(const TSourceLoc &line, |
| const TString &identifier, |
| const TType &type, |
| TVariable **variable) |
| { |
| ASSERT((*variable) == nullptr); |
| |
| checkBindingIsValid(line, type); |
| |
| bool needsReservedCheck = true; |
| |
| // gl_LastFragData may be redeclared with a new precision qualifier |
| if (type.isArray() && identifier.compare(0, 15, "gl_LastFragData") == 0) |
| { |
| const TVariable *maxDrawBuffers = static_cast<const TVariable *>( |
| symbolTable.findBuiltIn("gl_MaxDrawBuffers", mShaderVersion)); |
| if (type.isArrayOfArrays()) |
| { |
| error(line, "redeclaration of gl_LastFragData as an array of arrays", |
| identifier.c_str()); |
| return false; |
| } |
| else if (static_cast<int>(type.getOutermostArraySize()) == |
| maxDrawBuffers->getConstPointer()->getIConst()) |
| { |
| if (TSymbol *builtInSymbol = symbolTable.findBuiltIn(identifier, mShaderVersion)) |
| { |
| needsReservedCheck = !checkCanUseExtension(line, builtInSymbol->getExtension()); |
| } |
| } |
| else |
| { |
| error(line, "redeclaration of gl_LastFragData with size != gl_MaxDrawBuffers", |
| identifier.c_str()); |
| return false; |
| } |
| } |
| |
| if (needsReservedCheck && !checkIsNotReserved(line, identifier)) |
| return false; |
| |
| (*variable) = symbolTable.declareVariable(&identifier, type); |
| if (!(*variable)) |
| { |
| error(line, "redefinition", identifier.c_str()); |
| return false; |
| } |
| |
| if (!checkIsNonVoid(line, identifier, type.getBasicType())) |
| return false; |
| |
| return true; |
| } |
| |
| void TParseContext::checkIsParameterQualifierValid( |
| const TSourceLoc &line, |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| TType *type) |
| { |
| // The only parameter qualifiers a parameter can have are in, out, inout or const. |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getParameterTypeQualifier(mDiagnostics); |
| |
| if (typeQualifier.qualifier == EvqOut || typeQualifier.qualifier == EvqInOut) |
| { |
| checkOutParameterIsNotOpaqueType(line, typeQualifier.qualifier, *type); |
| } |
| |
| if (!IsImage(type->getBasicType())) |
| { |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, line); |
| } |
| else |
| { |
| type->setMemoryQualifier(typeQualifier.memoryQualifier); |
| } |
| |
| type->setQualifier(typeQualifier.qualifier); |
| |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| type->setPrecision(typeQualifier.precision); |
| } |
| } |
| |
| template <size_t size> |
| bool TParseContext::checkCanUseOneOfExtensions(const TSourceLoc &line, |
| const std::array<TExtension, size> &extensions) |
| { |
| ASSERT(!extensions.empty()); |
| const TExtensionBehavior &extBehavior = extensionBehavior(); |
| |
| bool canUseWithWarning = false; |
| bool canUseWithoutWarning = false; |
| |
| const char *errorMsgString = ""; |
| TExtension errorMsgExtension = TExtension::UNDEFINED; |
| |
| for (TExtension extension : extensions) |
| { |
| auto extIter = extBehavior.find(extension); |
| if (canUseWithWarning) |
| { |
| // We already have an extension that we can use, but with a warning. |
| // See if we can use the alternative extension without a warning. |
| if (extIter == extBehavior.end()) |
| { |
| continue; |
| } |
| if (extIter->second == EBhEnable || extIter->second == EBhRequire) |
| { |
| canUseWithoutWarning = true; |
| break; |
| } |
| continue; |
| } |
| if (extIter == extBehavior.end()) |
| { |
| errorMsgString = "extension is not supported"; |
| errorMsgExtension = extension; |
| } |
| else if (extIter->second == EBhUndefined || extIter->second == EBhDisable) |
| { |
| errorMsgString = "extension is disabled"; |
| errorMsgExtension = extension; |
| } |
| else if (extIter->second == EBhWarn) |
| { |
| errorMsgExtension = extension; |
| canUseWithWarning = true; |
| } |
| else |
| { |
| ASSERT(extIter->second == EBhEnable || extIter->second == EBhRequire); |
| canUseWithoutWarning = true; |
| break; |
| } |
| } |
| |
| if (canUseWithoutWarning) |
| { |
| return true; |
| } |
| if (canUseWithWarning) |
| { |
| warning(line, "extension is being used", GetExtensionNameString(errorMsgExtension)); |
| return true; |
| } |
| error(line, errorMsgString, GetExtensionNameString(errorMsgExtension)); |
| return false; |
| } |
| |
| template bool TParseContext::checkCanUseOneOfExtensions( |
| const TSourceLoc &line, |
| const std::array<TExtension, 1> &extensions); |
| template bool TParseContext::checkCanUseOneOfExtensions( |
| const TSourceLoc &line, |
| const std::array<TExtension, 2> &extensions); |
| template bool TParseContext::checkCanUseOneOfExtensions( |
| const TSourceLoc &line, |
| const std::array<TExtension, 3> &extensions); |
| |
| bool TParseContext::checkCanUseExtension(const TSourceLoc &line, TExtension extension) |
| { |
| ASSERT(extension != TExtension::UNDEFINED); |
| ASSERT(extension != TExtension::EXT_geometry_shader); |
| if (extension == TExtension::OES_geometry_shader) |
| { |
| // OES_geometry_shader and EXT_geometry_shader are always interchangeable. |
| constexpr std::array<TExtension, 2u> extensions{ |
| {TExtension::EXT_geometry_shader, TExtension::OES_geometry_shader}}; |
| return checkCanUseOneOfExtensions(line, extensions); |
| } |
| return checkCanUseOneOfExtensions(line, std::array<TExtension, 1u>{{extension}}); |
| } |
| |
| // ESSL 3.00.6 section 4.8 Empty Declarations: "The combinations of qualifiers that cause |
| // compile-time or link-time errors are the same whether or not the declaration is empty". |
| // This function implements all the checks that are done on qualifiers regardless of if the |
| // declaration is empty. |
| void TParseContext::declarationQualifierErrorCheck(const sh::TQualifier qualifier, |
| const sh::TLayoutQualifier &layoutQualifier, |
| const TSourceLoc &location) |
| { |
| if (qualifier == EvqShared && !layoutQualifier.isEmpty()) |
| { |
| error(location, "Shared memory declarations cannot have layout specified", "layout"); |
| } |
| |
| if (layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| error(location, "layout qualifier only valid for interface blocks", |
| getMatrixPackingString(layoutQualifier.matrixPacking)); |
| return; |
| } |
| |
| if (layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(location, "layout qualifier only valid for interface blocks", |
| getBlockStorageString(layoutQualifier.blockStorage)); |
| return; |
| } |
| |
| if (qualifier == EvqFragmentOut) |
| { |
| if (layoutQualifier.location != -1 && layoutQualifier.yuv == true) |
| { |
| error(location, "invalid layout qualifier combination", "yuv"); |
| return; |
| } |
| } |
| else |
| { |
| checkYuvIsNotSpecified(location, layoutQualifier.yuv); |
| } |
| |
| // If multiview extension is enabled, "in" qualifier is allowed in the vertex shader in previous |
| // parsing steps. So it needs to be checked here. |
| if (isExtensionEnabled(TExtension::OVR_multiview) && mShaderVersion < 300 && |
| qualifier == EvqVertexIn) |
| { |
| error(location, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); |
| } |
| |
| bool canHaveLocation = qualifier == EvqVertexIn || qualifier == EvqFragmentOut; |
| if (mShaderVersion >= 310) |
| { |
| canHaveLocation = canHaveLocation || qualifier == EvqUniform || IsVarying(qualifier); |
| // We're not checking whether the uniform location is in range here since that depends on |
| // the type of the variable. |
| // The type can only be fully determined for non-empty declarations. |
| } |
| if (!canHaveLocation) |
| { |
| checkLocationIsNotSpecified(location, layoutQualifier); |
| } |
| } |
| |
| void TParseContext::atomicCounterQualifierErrorCheck(const TPublicType &publicType, |
| const TSourceLoc &location) |
| { |
| if (publicType.precision != EbpHigh) |
| { |
| error(location, "Can only be highp", "atomic counter"); |
| } |
| // dEQP enforces compile error if location is specified. See uniform_location.test. |
| if (publicType.layoutQualifier.location != -1) |
| { |
| error(location, "location must not be set for atomic_uint", "layout"); |
| } |
| if (publicType.layoutQualifier.binding == -1) |
| { |
| error(location, "no binding specified", "atomic counter"); |
| } |
| } |
| |
| void TParseContext::emptyDeclarationErrorCheck(const TType &type, const TSourceLoc &location) |
| { |
| if (type.isUnsizedArray()) |
| { |
| // ESSL3 spec section 4.1.9: Array declaration which leaves the size unspecified is an |
| // error. It is assumed that this applies to empty declarations as well. |
| error(location, "empty array declaration needs to specify a size", ""); |
| } |
| } |
| |
| // These checks are done for all declarations that are non-empty. They're done for non-empty |
| // declarations starting a declarator list, and declarators that follow an empty declaration. |
| void TParseContext::nonEmptyDeclarationErrorCheck(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation) |
| { |
| switch (publicType.qualifier) |
| { |
| case EvqVaryingIn: |
| case EvqVaryingOut: |
| case EvqAttribute: |
| case EvqVertexIn: |
| case EvqFragmentOut: |
| case EvqComputeIn: |
| if (publicType.getBasicType() == EbtStruct) |
| { |
| error(identifierLocation, "cannot be used with a structure", |
| getQualifierString(publicType.qualifier)); |
| return; |
| } |
| break; |
| case EvqBuffer: |
| if (publicType.getBasicType() != EbtInterfaceBlock) |
| { |
| error(identifierLocation, |
| "cannot declare buffer variables at global scope(outside a block)", |
| getQualifierString(publicType.qualifier)); |
| return; |
| } |
| break; |
| default: |
| break; |
| } |
| std::string reason(getBasicString(publicType.getBasicType())); |
| reason += "s must be uniform"; |
| if (publicType.qualifier != EvqUniform && |
| !checkIsNotOpaqueType(identifierLocation, publicType.typeSpecifierNonArray, reason.c_str())) |
| { |
| return; |
| } |
| |
| if ((publicType.qualifier != EvqTemporary && publicType.qualifier != EvqGlobal && |
| publicType.qualifier != EvqConst) && |
| publicType.getBasicType() == EbtYuvCscStandardEXT) |
| { |
| error(identifierLocation, "cannot be used with a yuvCscStandardEXT", |
| getQualifierString(publicType.qualifier)); |
| return; |
| } |
| |
| if (mShaderVersion >= 310 && publicType.qualifier == EvqUniform) |
| { |
| // Valid uniform declarations can't be unsized arrays since uniforms can't be initialized. |
| // But invalid shaders may still reach here with an unsized array declaration. |
| TType type(publicType); |
| if (!type.isUnsizedArray()) |
| { |
| checkUniformLocationInRange(identifierLocation, type.getLocationCount(), |
| publicType.layoutQualifier); |
| } |
| } |
| |
| // check for layout qualifier issues |
| const TLayoutQualifier layoutQualifier = publicType.layoutQualifier; |
| |
| if (IsImage(publicType.getBasicType())) |
| { |
| |
| switch (layoutQualifier.imageInternalFormat) |
| { |
| case EiifRGBA32F: |
| case EiifRGBA16F: |
| case EiifR32F: |
| case EiifRGBA8: |
| case EiifRGBA8_SNORM: |
| if (!IsFloatImage(publicType.getBasicType())) |
| { |
| error(identifierLocation, |
| "internal image format requires a floating image type", |
| getBasicString(publicType.getBasicType())); |
| return; |
| } |
| break; |
| case EiifRGBA32I: |
| case EiifRGBA16I: |
| case EiifRGBA8I: |
| case EiifR32I: |
| if (!IsIntegerImage(publicType.getBasicType())) |
| { |
| error(identifierLocation, |
| "internal image format requires an integer image type", |
| getBasicString(publicType.getBasicType())); |
| return; |
| } |
| break; |
| case EiifRGBA32UI: |
| case EiifRGBA16UI: |
| case EiifRGBA8UI: |
| case EiifR32UI: |
| if (!IsUnsignedImage(publicType.getBasicType())) |
| { |
| error(identifierLocation, |
| "internal image format requires an unsigned image type", |
| getBasicString(publicType.getBasicType())); |
| return; |
| } |
| break; |
| case EiifUnspecified: |
| error(identifierLocation, "layout qualifier", "No image internal format specified"); |
| return; |
| default: |
| error(identifierLocation, "layout qualifier", "unrecognized token"); |
| return; |
| } |
| |
| // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers |
| switch (layoutQualifier.imageInternalFormat) |
| { |
| case EiifR32F: |
| case EiifR32I: |
| case EiifR32UI: |
| break; |
| default: |
| if (!publicType.memoryQualifier.readonly && !publicType.memoryQualifier.writeonly) |
| { |
| error(identifierLocation, "layout qualifier", |
| "Except for images with the r32f, r32i and r32ui format qualifiers, " |
| "image variables must be qualified readonly and/or writeonly"); |
| return; |
| } |
| break; |
| } |
| } |
| else |
| { |
| checkInternalFormatIsNotSpecified(identifierLocation, layoutQualifier.imageInternalFormat); |
| checkMemoryQualifierIsNotSpecified(publicType.memoryQualifier, identifierLocation); |
| } |
| |
| if (IsAtomicCounter(publicType.getBasicType())) |
| { |
| atomicCounterQualifierErrorCheck(publicType, identifierLocation); |
| } |
| else |
| { |
| checkOffsetIsNotSpecified(identifierLocation, layoutQualifier.offset); |
| } |
| } |
| |
| void TParseContext::checkBindingIsValid(const TSourceLoc &identifierLocation, const TType &type) |
| { |
| TLayoutQualifier layoutQualifier = type.getLayoutQualifier(); |
| // Note that the ESSL 3.10 section 4.4.5 is not particularly clear on how the binding qualifier |
| // on arrays of arrays should be handled. We interpret the spec so that the binding value is |
| // incremented for each element of the innermost nested arrays. This is in line with how arrays |
| // of arrays of blocks are specified to behave in GLSL 4.50 and a conservative interpretation |
| // when it comes to which shaders are accepted by the compiler. |
| int arrayTotalElementCount = type.getArraySizeProduct(); |
| if (IsImage(type.getBasicType())) |
| { |
| checkImageBindingIsValid(identifierLocation, layoutQualifier.binding, |
| arrayTotalElementCount); |
| } |
| else if (IsSampler(type.getBasicType())) |
| { |
| checkSamplerBindingIsValid(identifierLocation, layoutQualifier.binding, |
| arrayTotalElementCount); |
| } |
| else if (IsAtomicCounter(type.getBasicType())) |
| { |
| checkAtomicCounterBindingIsValid(identifierLocation, layoutQualifier.binding); |
| } |
| else |
| { |
| ASSERT(!IsOpaqueType(type.getBasicType())); |
| checkBindingIsNotSpecified(identifierLocation, layoutQualifier.binding); |
| } |
| } |
| |
| void TParseContext::checkLayoutQualifierSupported(const TSourceLoc &location, |
| const TString &layoutQualifierName, |
| int versionRequired) |
| { |
| |
| if (mShaderVersion < versionRequired) |
| { |
| error(location, "invalid layout qualifier: not supported", layoutQualifierName.c_str()); |
| } |
| } |
| |
| bool TParseContext::checkWorkGroupSizeIsNotSpecified(const TSourceLoc &location, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| const sh::WorkGroupSize &localSize = layoutQualifier.localSize; |
| for (size_t i = 0u; i < localSize.size(); ++i) |
| { |
| if (localSize[i] != -1) |
| { |
| error(location, |
| "invalid layout qualifier: only valid when used with 'in' in a compute shader " |
| "global layout declaration", |
| getWorkGroupSizeString(i)); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::checkInternalFormatIsNotSpecified(const TSourceLoc &location, |
| TLayoutImageInternalFormat internalFormat) |
| { |
| if (internalFormat != EiifUnspecified) |
| { |
| error(location, "invalid layout qualifier: only valid when used with images", |
| getImageInternalFormatString(internalFormat)); |
| } |
| } |
| |
| void TParseContext::checkBindingIsNotSpecified(const TSourceLoc &location, int binding) |
| { |
| if (binding != -1) |
| { |
| error(location, |
| "invalid layout qualifier: only valid when used with opaque types or blocks", |
| "binding"); |
| } |
| } |
| |
| void TParseContext::checkOffsetIsNotSpecified(const TSourceLoc &location, int offset) |
| { |
| if (offset != -1) |
| { |
| error(location, "invalid layout qualifier: only valid when used with atomic counters", |
| "offset"); |
| } |
| } |
| |
| void TParseContext::checkImageBindingIsValid(const TSourceLoc &location, |
| int binding, |
| int arrayTotalElementCount) |
| { |
| // Expects arraySize to be 1 when setting binding for only a single variable. |
| if (binding >= 0 && binding + arrayTotalElementCount > mMaxImageUnits) |
| { |
| error(location, "image binding greater than gl_MaxImageUnits", "binding"); |
| } |
| } |
| |
| void TParseContext::checkSamplerBindingIsValid(const TSourceLoc &location, |
| int binding, |
| int arrayTotalElementCount) |
| { |
| // Expects arraySize to be 1 when setting binding for only a single variable. |
| if (binding >= 0 && binding + arrayTotalElementCount > mMaxCombinedTextureImageUnits) |
| { |
| error(location, "sampler binding greater than maximum texture units", "binding"); |
| } |
| } |
| |
| void TParseContext::checkBlockBindingIsValid(const TSourceLoc &location, |
| const TQualifier &qualifier, |
| int binding, |
| int arraySize) |
| { |
| int size = (arraySize == 0 ? 1 : arraySize); |
| if (qualifier == EvqUniform) |
| { |
| if (binding + size > mMaxUniformBufferBindings) |
| { |
| error(location, "uniform block binding greater than MAX_UNIFORM_BUFFER_BINDINGS", |
| "binding"); |
| } |
| } |
| else if (qualifier == EvqBuffer) |
| { |
| if (binding + size > mMaxShaderStorageBufferBindings) |
| { |
| error(location, |
| "shader storage block binding greater than MAX_SHADER_STORAGE_BUFFER_BINDINGS", |
| "binding"); |
| } |
| } |
| } |
| void TParseContext::checkAtomicCounterBindingIsValid(const TSourceLoc &location, int binding) |
| { |
| if (binding >= mMaxAtomicCounterBindings) |
| { |
| error(location, "atomic counter binding greater than gl_MaxAtomicCounterBindings", |
| "binding"); |
| } |
| } |
| |
| void TParseContext::checkUniformLocationInRange(const TSourceLoc &location, |
| int objectLocationCount, |
| const TLayoutQualifier &layoutQualifier) |
| { |
| int loc = layoutQualifier.location; |
| if (loc >= 0 && loc + objectLocationCount > mMaxUniformLocations) |
| { |
| error(location, "Uniform location out of range", "location"); |
| } |
| } |
| |
| void TParseContext::checkYuvIsNotSpecified(const TSourceLoc &location, bool yuv) |
| { |
| if (yuv != false) |
| { |
| error(location, "invalid layout qualifier: only valid on program outputs", "yuv"); |
| } |
| } |
| |
| void TParseContext::functionCallRValueLValueErrorCheck(const TFunction *fnCandidate, |
| TIntermAggregate *fnCall) |
| { |
| for (size_t i = 0; i < fnCandidate->getParamCount(); ++i) |
| { |
| TQualifier qual = fnCandidate->getParam(i).type->getQualifier(); |
| TIntermTyped *argument = (*(fnCall->getSequence()))[i]->getAsTyped(); |
| if (!IsImage(argument->getBasicType()) && (IsQualifierUnspecified(qual) || qual == EvqIn || |
| qual == EvqInOut || qual == EvqConstReadOnly)) |
| { |
| if (argument->getMemoryQualifier().writeonly) |
| { |
| error(argument->getLine(), |
| "Writeonly value cannot be passed for 'in' or 'inout' parameters.", |
| fnCall->getFunctionSymbolInfo()->getName().c_str()); |
| return; |
| } |
| } |
| if (qual == EvqOut || qual == EvqInOut) |
| { |
| if (!checkCanBeLValue(argument->getLine(), "assign", argument)) |
| { |
| error(argument->getLine(), |
| "Constant value cannot be passed for 'out' or 'inout' parameters.", |
| fnCall->getFunctionSymbolInfo()->getName().c_str()); |
| return; |
| } |
| } |
| } |
| } |
| |
| void TParseContext::checkInvariantVariableQualifier(bool invariant, |
| const TQualifier qualifier, |
| const TSourceLoc &invariantLocation) |
| { |
| if (!invariant) |
| return; |
| |
| if (mShaderVersion < 300) |
| { |
| // input variables in the fragment shader can be also qualified as invariant |
| if (!sh::CanBeInvariantESSL1(qualifier)) |
| { |
| error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); |
| } |
| } |
| else |
| { |
| if (!sh::CanBeInvariantESSL3OrGreater(qualifier)) |
| { |
| error(invariantLocation, "Cannot be qualified as invariant.", "invariant"); |
| } |
| } |
| } |
| |
| bool TParseContext::isExtensionEnabled(TExtension extension) const |
| { |
| return IsExtensionEnabled(extensionBehavior(), extension); |
| } |
| |
| void TParseContext::handleExtensionDirective(const TSourceLoc &loc, |
| const char *extName, |
| const char *behavior) |
| { |
| pp::SourceLocation srcLoc; |
| srcLoc.file = loc.first_file; |
| srcLoc.line = loc.first_line; |
| mDirectiveHandler.handleExtension(srcLoc, extName, behavior); |
| } |
| |
| void TParseContext::handlePragmaDirective(const TSourceLoc &loc, |
| const char *name, |
| const char *value, |
| bool stdgl) |
| { |
| pp::SourceLocation srcLoc; |
| srcLoc.file = loc.first_file; |
| srcLoc.line = loc.first_line; |
| mDirectiveHandler.handlePragma(srcLoc, name, value, stdgl); |
| } |
| |
| sh::WorkGroupSize TParseContext::getComputeShaderLocalSize() const |
| { |
| sh::WorkGroupSize result(-1); |
| for (size_t i = 0u; i < result.size(); ++i) |
| { |
| if (mComputeShaderLocalSizeDeclared && mComputeShaderLocalSize[i] == -1) |
| { |
| result[i] = 1; |
| } |
| else |
| { |
| result[i] = mComputeShaderLocalSize[i]; |
| } |
| } |
| return result; |
| } |
| |
| TIntermConstantUnion *TParseContext::addScalarLiteral(const TConstantUnion *constantUnion, |
| const TSourceLoc &line) |
| { |
| TIntermConstantUnion *node = new TIntermConstantUnion( |
| constantUnion, TType(constantUnion->getType(), EbpUndefined, EvqConst)); |
| node->setLine(line); |
| return node; |
| } |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| // |
| // Non-Errors. |
| // |
| ///////////////////////////////////////////////////////////////////////////////// |
| |
| const TVariable *TParseContext::getNamedVariable(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| if (!symbol) |
| { |
| error(location, "undeclared identifier", name->c_str()); |
| return nullptr; |
| } |
| |
| if (!symbol->isVariable()) |
| { |
| error(location, "variable expected", name->c_str()); |
| return nullptr; |
| } |
| |
| const TVariable *variable = static_cast<const TVariable *>(symbol); |
| |
| if (variable->getExtension() != TExtension::UNDEFINED) |
| { |
| checkCanUseExtension(location, variable->getExtension()); |
| } |
| |
| // Reject shaders using both gl_FragData and gl_FragColor |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if (qualifier == EvqFragData || qualifier == EvqSecondaryFragDataEXT) |
| { |
| mUsesFragData = true; |
| } |
| else if (qualifier == EvqFragColor || qualifier == EvqSecondaryFragColorEXT) |
| { |
| mUsesFragColor = true; |
| } |
| if (qualifier == EvqSecondaryFragDataEXT || qualifier == EvqSecondaryFragColorEXT) |
| { |
| mUsesSecondaryOutputs = true; |
| } |
| |
| // This validation is not quite correct - it's only an error to write to |
| // both FragData and FragColor. For simplicity, and because users shouldn't |
| // be rewarded for reading from undefined varaibles, return an error |
| // if they are both referenced, rather than assigned. |
| if (mUsesFragData && mUsesFragColor) |
| { |
| const char *errorMessage = "cannot use both gl_FragData and gl_FragColor"; |
| if (mUsesSecondaryOutputs) |
| { |
| errorMessage = |
| "cannot use both output variable sets (gl_FragData, gl_SecondaryFragDataEXT)" |
| " and (gl_FragColor, gl_SecondaryFragColorEXT)"; |
| } |
| error(location, errorMessage, name->c_str()); |
| } |
| |
| // GLSL ES 3.1 Revision 4, 7.1.3 Compute Shader Special Variables |
| if (getShaderType() == GL_COMPUTE_SHADER && !mComputeShaderLocalSizeDeclared && |
| qualifier == EvqWorkGroupSize) |
| { |
| error(location, |
| "It is an error to use gl_WorkGroupSize before declaring the local group size", |
| "gl_WorkGroupSize"); |
| } |
| return variable; |
| } |
| |
| TIntermTyped *TParseContext::parseVariableIdentifier(const TSourceLoc &location, |
| const TString *name, |
| const TSymbol *symbol) |
| { |
| const TVariable *variable = getNamedVariable(location, name, symbol); |
| |
| if (!variable) |
| { |
| TIntermTyped *node = CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); |
| node->setLine(location); |
| return node; |
| } |
| |
| const TType &variableType = variable->getType(); |
| TIntermTyped *node = nullptr; |
| |
| if (variable->getConstPointer()) |
| { |
| const TConstantUnion *constArray = variable->getConstPointer(); |
| node = new TIntermConstantUnion(constArray, variableType); |
| } |
| else if (variableType.getQualifier() == EvqWorkGroupSize && mComputeShaderLocalSizeDeclared) |
| { |
| // gl_WorkGroupSize can be used to size arrays according to the ESSL 3.10.4 spec, so it |
| // needs to be added to the AST as a constant and not as a symbol. |
| sh::WorkGroupSize workGroupSize = getComputeShaderLocalSize(); |
| TConstantUnion *constArray = new TConstantUnion[3]; |
| for (size_t i = 0; i < 3; ++i) |
| { |
| constArray[i].setUConst(static_cast<unsigned int>(workGroupSize[i])); |
| } |
| |
| ASSERT(variableType.getBasicType() == EbtUInt); |
| ASSERT(variableType.getObjectSize() == 3); |
| |
| TType type(variableType); |
| type.setQualifier(EvqConst); |
| node = new TIntermConstantUnion(constArray, type); |
| } |
| else if ((mGeometryShaderInputPrimitiveType != EptUndefined) && |
| (variableType.getQualifier() == EvqPerVertexIn)) |
| { |
| ASSERT(mGeometryShaderInputArraySize > 0u); |
| |
| node = new TIntermSymbol(variable->getUniqueId(), variable->getName(), variableType); |
| node->getTypePointer()->sizeOutermostUnsizedArray(mGeometryShaderInputArraySize); |
| } |
| else |
| { |
| node = new TIntermSymbol(variable->getUniqueId(), variable->getName(), variableType); |
| } |
| ASSERT(node != nullptr); |
| node->setLine(location); |
| return node; |
| } |
| |
| // Initializers show up in several places in the grammar. Have one set of |
| // code to handle them here. |
| // |
| // Returns true on success. |
| bool TParseContext::executeInitializer(const TSourceLoc &line, |
| const TString &identifier, |
| TType type, |
| TIntermTyped *initializer, |
| TIntermBinary **initNode) |
| { |
| ASSERT(initNode != nullptr); |
| ASSERT(*initNode == nullptr); |
| |
| TVariable *variable = nullptr; |
| if (type.isUnsizedArray()) |
| { |
| // In case initializer is not an array or type has more dimensions than initializer, this |
| // will default to setting array sizes to 1. We have not checked yet whether the initializer |
| // actually is an array or not. Having a non-array initializer for an unsized array will |
| // result in an error later, so we don't generate an error message here. |
| auto *arraySizes = initializer->getType().getArraySizes(); |
| type.sizeUnsizedArrays(arraySizes); |
| } |
| if (!declareVariable(line, identifier, type, &variable)) |
| { |
| return false; |
| } |
| |
| bool globalInitWarning = false; |
| if (symbolTable.atGlobalLevel() && |
| !ValidateGlobalInitializer(initializer, this, &globalInitWarning)) |
| { |
| // Error message does not completely match behavior with ESSL 1.00, but |
| // we want to steer developers towards only using constant expressions. |
| error(line, "global variable initializers must be constant expressions", "="); |
| return false; |
| } |
| if (globalInitWarning) |
| { |
| warning( |
| line, |
| "global variable initializers should be constant expressions " |
| "(uniforms and globals are allowed in global initializers for legacy compatibility)", |
| "="); |
| } |
| |
| // |
| // identifier must be of type constant, a global, or a temporary |
| // |
| TQualifier qualifier = variable->getType().getQualifier(); |
| if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) |
| { |
| error(line, " cannot initialize this type of qualifier ", |
| variable->getType().getQualifierString()); |
| return false; |
| } |
| // |
| // test for and propagate constant |
| // |
| |
| if (qualifier == EvqConst) |
| { |
| if (qualifier != initializer->getType().getQualifier()) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "assigning non-constant to '" << variable->getType().getCompleteString() |
| << "'"; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), "="); |
| variable->getType().setQualifier(EvqTemporary); |
| return false; |
| } |
| if (type != initializer->getType()) |
| { |
| error(line, " non-matching types for const initializer ", |
| variable->getType().getQualifierString()); |
| variable->getType().setQualifier(EvqTemporary); |
| return false; |
| } |
| |
| // Save the constant folded value to the variable if possible. For example array |
| // initializers are not folded, since that way copying the array literal to multiple places |
| // in the shader is avoided. |
| // TODO(oetuaho@nvidia.com): Consider constant folding array initialization in cases where |
| // it would be beneficial. |
| if (initializer->getAsConstantUnion()) |
| { |
| variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer()); |
| ASSERT(*initNode == nullptr); |
| return true; |
| } |
| else if (initializer->getAsSymbolNode()) |
| { |
| const TSymbol *symbol = |
| symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0); |
| const TVariable *tVar = static_cast<const TVariable *>(symbol); |
| |
| const TConstantUnion *constArray = tVar->getConstPointer(); |
| if (constArray) |
| { |
| variable->shareConstPointer(constArray); |
| ASSERT(*initNode == nullptr); |
| return true; |
| } |
| } |
| } |
| |
| TIntermSymbol *intermSymbol = |
| new TIntermSymbol(variable->getUniqueId(), variable->getName(), variable->getType()); |
| intermSymbol->setLine(line); |
| *initNode = createAssign(EOpInitialize, intermSymbol, initializer, line); |
| if (*initNode == nullptr) |
| { |
| assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| TIntermNode *TParseContext::addConditionInitializer(const TPublicType &pType, |
| const TString &identifier, |
| TIntermTyped *initializer, |
| const TSourceLoc &loc) |
| { |
| checkIsScalarBool(loc, pType); |
| TIntermBinary *initNode = nullptr; |
| TType type(pType); |
| if (executeInitializer(loc, identifier, type, initializer, &initNode)) |
| { |
| // The initializer is valid. The init condition needs to have a node - either the |
| // initializer node, or a constant node in case the initialized variable is const and won't |
| // be recorded in the AST. |
| if (initNode == nullptr) |
| { |
| return initializer; |
| } |
| else |
| { |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->appendDeclarator(initNode); |
| return declaration; |
| } |
| } |
| return nullptr; |
| } |
| |
| TIntermNode *TParseContext::addLoop(TLoopType type, |
| TIntermNode *init, |
| TIntermNode *cond, |
| TIntermTyped *expr, |
| TIntermNode *body, |
| const TSourceLoc &line) |
| { |
| TIntermNode *node = nullptr; |
| TIntermTyped *typedCond = nullptr; |
| if (cond) |
| { |
| typedCond = cond->getAsTyped(); |
| } |
| if (cond == nullptr || typedCond) |
| { |
| if (type == ELoopDoWhile) |
| { |
| checkIsScalarBool(line, typedCond); |
| } |
| // In the case of other loops, it was checked before that the condition is a scalar boolean. |
| ASSERT(mDiagnostics->numErrors() > 0 || typedCond == nullptr || |
| (typedCond->getBasicType() == EbtBool && !typedCond->isArray() && |
| !typedCond->isVector())); |
| |
| node = new TIntermLoop(type, init, typedCond, expr, EnsureBlock(body)); |
| node->setLine(line); |
| return node; |
| } |
| |
| ASSERT(type != ELoopDoWhile); |
| |
| TIntermDeclaration *declaration = cond->getAsDeclarationNode(); |
| ASSERT(declaration); |
| TIntermBinary *declarator = declaration->getSequence()->front()->getAsBinaryNode(); |
| ASSERT(declarator->getLeft()->getAsSymbolNode()); |
| |
| // The condition is a declaration. In the AST representation we don't support declarations as |
| // loop conditions. Wrap the loop to a block that declares the condition variable and contains |
| // the loop. |
| TIntermBlock *block = new TIntermBlock(); |
| |
| TIntermDeclaration *declareCondition = new TIntermDeclaration(); |
| declareCondition->appendDeclarator(declarator->getLeft()->deepCopy()); |
| block->appendStatement(declareCondition); |
| |
| TIntermBinary *conditionInit = new TIntermBinary(EOpAssign, declarator->getLeft()->deepCopy(), |
| declarator->getRight()->deepCopy()); |
| TIntermLoop *loop = new TIntermLoop(type, init, conditionInit, expr, EnsureBlock(body)); |
| block->appendStatement(loop); |
| loop->setLine(line); |
| block->setLine(line); |
| return block; |
| } |
| |
| TIntermNode *TParseContext::addIfElse(TIntermTyped *cond, |
| TIntermNodePair code, |
| const TSourceLoc &loc) |
| { |
| bool isScalarBool = checkIsScalarBool(loc, cond); |
| |
| // For compile time constant conditions, prune the code now. |
| if (isScalarBool && cond->getAsConstantUnion()) |
| { |
| if (cond->getAsConstantUnion()->getBConst(0) == true) |
| { |
| return EnsureBlock(code.node1); |
| } |
| else |
| { |
| return EnsureBlock(code.node2); |
| } |
| } |
| |
| TIntermIfElse *node = new TIntermIfElse(cond, EnsureBlock(code.node1), EnsureBlock(code.node2)); |
| node->setLine(loc); |
| |
| return node; |
| } |
| |
| void TParseContext::addFullySpecifiedType(TPublicType *typeSpecifier) |
| { |
| checkPrecisionSpecified(typeSpecifier->getLine(), typeSpecifier->precision, |
| typeSpecifier->getBasicType()); |
| |
| if (mShaderVersion < 300 && typeSpecifier->isArray()) |
| { |
| error(typeSpecifier->getLine(), "not supported", "first-class array"); |
| typeSpecifier->clearArrayness(); |
| } |
| } |
| |
| TPublicType TParseContext::addFullySpecifiedType(const TTypeQualifierBuilder &typeQualifierBuilder, |
| const TPublicType &typeSpecifier) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| TPublicType returnType = typeSpecifier; |
| returnType.qualifier = typeQualifier.qualifier; |
| returnType.invariant = typeQualifier.invariant; |
| returnType.layoutQualifier = typeQualifier.layoutQualifier; |
| returnType.memoryQualifier = typeQualifier.memoryQualifier; |
| returnType.precision = typeSpecifier.precision; |
| |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| returnType.precision = typeQualifier.precision; |
| } |
| |
| checkPrecisionSpecified(typeSpecifier.getLine(), returnType.precision, |
| typeSpecifier.getBasicType()); |
| |
| checkInvariantVariableQualifier(returnType.invariant, returnType.qualifier, |
| typeSpecifier.getLine()); |
| |
| checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), returnType.layoutQualifier); |
| |
| if (mShaderVersion < 300) |
| { |
| if (typeSpecifier.isArray()) |
| { |
| error(typeSpecifier.getLine(), "not supported", "first-class array"); |
| returnType.clearArrayness(); |
| } |
| |
| if (returnType.qualifier == EvqAttribute && |
| (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) |
| { |
| error(typeSpecifier.getLine(), "cannot be bool or int", |
| getQualifierString(returnType.qualifier)); |
| } |
| |
| if ((returnType.qualifier == EvqVaryingIn || returnType.qualifier == EvqVaryingOut) && |
| (typeSpecifier.getBasicType() == EbtBool || typeSpecifier.getBasicType() == EbtInt)) |
| { |
| error(typeSpecifier.getLine(), "cannot be bool or int", |
| getQualifierString(returnType.qualifier)); |
| } |
| } |
| else |
| { |
| if (!returnType.layoutQualifier.isEmpty()) |
| { |
| checkIsAtGlobalLevel(typeSpecifier.getLine(), "layout"); |
| } |
| if (sh::IsVarying(returnType.qualifier) || returnType.qualifier == EvqVertexIn || |
| returnType.qualifier == EvqFragmentOut) |
| { |
| checkInputOutputTypeIsValidES3(returnType.qualifier, typeSpecifier, |
| typeSpecifier.getLine()); |
| } |
| if (returnType.qualifier == EvqComputeIn) |
| { |
| error(typeSpecifier.getLine(), "'in' can be only used to specify the local group size", |
| "in"); |
| } |
| } |
| |
| return returnType; |
| } |
| |
| void TParseContext::checkInputOutputTypeIsValidES3(const TQualifier qualifier, |
| const TPublicType &type, |
| const TSourceLoc &qualifierLocation) |
| { |
| // An input/output variable can never be bool or a sampler. Samplers are checked elsewhere. |
| if (type.getBasicType() == EbtBool) |
| { |
| error(qualifierLocation, "cannot be bool", getQualifierString(qualifier)); |
| } |
| |
| // Specific restrictions apply for vertex shader inputs and fragment shader outputs. |
| switch (qualifier) |
| { |
| case EvqVertexIn: |
| // ESSL 3.00 section 4.3.4 |
| if (type.isArray()) |
| { |
| error(qualifierLocation, "cannot be array", getQualifierString(qualifier)); |
| } |
| // Vertex inputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck |
| return; |
| case EvqFragmentOut: |
| // ESSL 3.00 section 4.3.6 |
| if (type.typeSpecifierNonArray.isMatrix()) |
| { |
| error(qualifierLocation, "cannot be matrix", getQualifierString(qualifier)); |
| } |
| // Fragment outputs with a struct type are disallowed in nonEmptyDeclarationErrorCheck |
| return; |
| default: |
| break; |
| } |
| |
| // Vertex shader outputs / fragment shader inputs have a different, slightly more lenient set of |
| // restrictions. |
| bool typeContainsIntegers = |
| (type.getBasicType() == EbtInt || type.getBasicType() == EbtUInt || |
| type.isStructureContainingType(EbtInt) || type.isStructureContainingType(EbtUInt)); |
| if (typeContainsIntegers && qualifier != EvqFlatIn && qualifier != EvqFlatOut) |
| { |
| error(qualifierLocation, "must use 'flat' interpolation here", |
| getQualifierString(qualifier)); |
| } |
| |
| if (type.getBasicType() == EbtStruct) |
| { |
| // ESSL 3.00 sections 4.3.4 and 4.3.6. |
| // These restrictions are only implied by the ESSL 3.00 spec, but |
| // the ESSL 3.10 spec lists these restrictions explicitly. |
| if (type.isArray()) |
| { |
| error(qualifierLocation, "cannot be an array of structures", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingArrays()) |
| { |
| error(qualifierLocation, "cannot be a structure containing an array", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingType(EbtStruct)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a structure", |
| getQualifierString(qualifier)); |
| } |
| if (type.isStructureContainingType(EbtBool)) |
| { |
| error(qualifierLocation, "cannot be a structure containing a bool", |
| getQualifierString(qualifier)); |
| } |
| } |
| } |
| |
| void TParseContext::checkLocalVariableConstStorageQualifier(const TQualifierWrapperBase &qualifier) |
| { |
| if (qualifier.getType() == QtStorage) |
| { |
| const TStorageQualifierWrapper &storageQualifier = |
| static_cast<const TStorageQualifierWrapper &>(qualifier); |
| if (!declaringFunction() && storageQualifier.getQualifier() != EvqConst && |
| !symbolTable.atGlobalLevel()) |
| { |
| error(storageQualifier.getLine(), |
| "Local variables can only use the const storage qualifier.", |
| storageQualifier.getQualifierString().c_str()); |
| } |
| } |
| } |
| |
| void TParseContext::checkMemoryQualifierIsNotSpecified(const TMemoryQualifier &memoryQualifier, |
| const TSourceLoc &location) |
| { |
| const std::string reason( |
| "Only allowed with shader storage blocks, variables declared within shader storage blocks " |
| "and variables declared as image types."); |
| if (memoryQualifier.readonly) |
| { |
| error(location, reason.c_str(), "readonly"); |
| } |
| if (memoryQualifier.writeonly) |
| { |
| error(location, reason.c_str(), "writeonly"); |
| } |
| if (memoryQualifier.coherent) |
| { |
| error(location, reason.c_str(), "coherent"); |
| } |
| if (memoryQualifier.restrictQualifier) |
| { |
| error(location, reason.c_str(), "restrict"); |
| } |
| if (memoryQualifier.volatileQualifier) |
| { |
| error(location, reason.c_str(), "volatile"); |
| } |
| } |
| |
| // Make sure there is no offset overlapping, and store the newly assigned offset to "type" in |
| // intermediate tree. |
| void TParseContext::checkAtomicCounterOffsetDoesNotOverlap(bool forceAppend, |
| const TSourceLoc &loc, |
| TType *type) |
| { |
| if (!IsAtomicCounter(type->getBasicType())) |
| { |
| return; |
| } |
| |
| const size_t size = type->isArray() ? kAtomicCounterArrayStride * type->getArraySizeProduct() |
| : kAtomicCounterSize; |
| TLayoutQualifier layoutQualifier = type->getLayoutQualifier(); |
| auto &bindingState = mAtomicCounterBindingStates[layoutQualifier.binding]; |
| int offset; |
| if (layoutQualifier.offset == -1 || forceAppend) |
| { |
| offset = bindingState.appendSpan(size); |
| } |
| else |
| { |
| offset = bindingState.insertSpan(layoutQualifier.offset, size); |
| } |
| if (offset == -1) |
| { |
| error(loc, "Offset overlapping", "atomic counter"); |
| return; |
| } |
| layoutQualifier.offset = offset; |
| type->setLayoutQualifier(layoutQualifier); |
| } |
| |
| void TParseContext::checkGeometryShaderInputAndSetArraySize(const TSourceLoc &location, |
| const char *token, |
| TType *type) |
| { |
| if (IsGeometryShaderInput(mShaderType, type->getQualifier())) |
| { |
| if (type->isArray() && type->getOutermostArraySize() == 0u) |
| { |
| // Set size for the unsized geometry shader inputs if they are declared after a valid |
| // input primitive declaration. |
| if (mGeometryShaderInputPrimitiveType != EptUndefined) |
| { |
| ASSERT(mGeometryShaderInputArraySize > 0u); |
| type->sizeOutermostUnsizedArray(mGeometryShaderInputArraySize); |
| } |
| else |
| { |
| // [GLSL ES 3.2 SPEC Chapter 4.4.1.2] |
| // An input can be declared without an array size if there is a previous layout |
| // which specifies the size. |
| error(location, |
| "Missing a valid input primitive declaration before declaring an unsized " |
| "array input", |
| token); |
| } |
| } |
| else if (type->isArray()) |
| { |
| setGeometryShaderInputArraySize(type->getOutermostArraySize(), location); |
| } |
| else |
| { |
| error(location, "Geometry shader input variable must be declared as an array", token); |
| } |
| } |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleDeclaration( |
| TPublicType &publicType, |
| const TSourceLoc &identifierOrTypeLocation, |
| const TString &identifier) |
| { |
| TType type(publicType); |
| if ((mCompileOptions & SH_FLATTEN_PRAGMA_STDGL_INVARIANT_ALL) && |
| mDirectiveHandler.pragma().stdgl.invariantAll) |
| { |
| TQualifier qualifier = type.getQualifier(); |
| |
| // The directive handler has already taken care of rejecting invalid uses of this pragma |
| // (for example, in ESSL 3.00 fragment shaders), so at this point, flatten it into all |
| // affected variable declarations: |
| // |
| // 1. Built-in special variables which are inputs to the fragment shader. (These are handled |
| // elsewhere, in TranslatorGLSL.) |
| // |
| // 2. Outputs from vertex shaders in ESSL 1.00 and 3.00 (EvqVaryingOut and EvqVertexOut). It |
| // is actually less likely that there will be bugs in the handling of ESSL 3.00 shaders, but |
| // the way this is currently implemented we have to enable this compiler option before |
| // parsing the shader and determining the shading language version it uses. If this were |
| // implemented as a post-pass, the workaround could be more targeted. |
| // |
| // 3. Inputs in ESSL 1.00 fragment shaders (EvqVaryingIn). This is somewhat in violation of |
| // the specification, but there are desktop OpenGL drivers that expect that this is the |
| // behavior of the #pragma when specified in ESSL 1.00 fragment shaders. |
| if (qualifier == EvqVaryingOut || qualifier == EvqVertexOut || qualifier == EvqVaryingIn) |
| { |
| type.setInvariant(true); |
| } |
| } |
| |
| checkGeometryShaderInputAndSetArraySize(identifierOrTypeLocation, identifier.c_str(), &type); |
| |
| declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, |
| identifierOrTypeLocation); |
| |
| bool emptyDeclaration = (identifier == ""); |
| mDeferredNonEmptyDeclarationErrorCheck = emptyDeclaration; |
| |
| TIntermSymbol *symbol = nullptr; |
| if (emptyDeclaration) |
| { |
| emptyDeclarationErrorCheck(type, identifierOrTypeLocation); |
| // In most cases we don't need to create a symbol node for an empty declaration. |
| // But if the empty declaration is declaring a struct type, the symbol node will store that. |
| if (type.getBasicType() == EbtStruct) |
| { |
| symbol = new TIntermSymbol(symbolTable.getEmptySymbolId(), "", type); |
| } |
| else if (IsAtomicCounter(publicType.getBasicType())) |
| { |
| setAtomicCounterBindingDefaultOffset(publicType, identifierOrTypeLocation); |
| } |
| } |
| else |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierOrTypeLocation); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierOrTypeLocation, identifier, &type); |
| |
| checkAtomicCounterOffsetDoesNotOverlap(false, identifierOrTypeLocation, &type); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierOrTypeLocation, identifier, type, &variable); |
| |
| if (variable) |
| { |
| symbol = new TIntermSymbol(variable->getUniqueId(), identifier, type); |
| } |
| } |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierOrTypeLocation); |
| if (symbol) |
| { |
| symbol->setLine(identifierOrTypeLocation); |
| declaration->appendDeclarator(symbol); |
| } |
| return declaration; |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleArrayDeclaration( |
| TPublicType &elementType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| const TVector<unsigned int> &arraySizes) |
| { |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| |
| declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier, |
| identifierLocation); |
| |
| nonEmptyDeclarationErrorCheck(elementType, identifierLocation); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, elementType); |
| |
| TType arrayType(elementType); |
| arrayType.makeArrays(arraySizes); |
| |
| checkGeometryShaderInputAndSetArraySize(indexLocation, identifier.c_str(), &arrayType); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &arrayType); |
| |
| checkAtomicCounterOffsetDoesNotOverlap(false, identifierLocation, &arrayType); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, arrayType, &variable); |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierLocation); |
| |
| if (variable) |
| { |
| TIntermSymbol *symbol = new TIntermSymbol(variable->getUniqueId(), identifier, arrayType); |
| symbol->setLine(identifierLocation); |
| declaration->appendDeclarator(symbol); |
| } |
| |
| return declaration; |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleInitDeclaration(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| |
| declarationQualifierErrorCheck(publicType.qualifier, publicType.layoutQualifier, |
| identifierLocation); |
| |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierLocation); |
| |
| TIntermBinary *initNode = nullptr; |
| TType type(publicType); |
| if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| declaration->appendDeclarator(initNode); |
| } |
| } |
| return declaration; |
| } |
| |
| TIntermDeclaration *TParseContext::parseSingleArrayInitDeclaration( |
| TPublicType &elementType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| const TVector<unsigned int> &arraySizes, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer) |
| { |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| |
| declarationQualifierErrorCheck(elementType.qualifier, elementType.layoutQualifier, |
| identifierLocation); |
| |
| nonEmptyDeclarationErrorCheck(elementType, identifierLocation); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, elementType); |
| |
| TType arrayType(elementType); |
| arrayType.makeArrays(arraySizes); |
| |
| TIntermDeclaration *declaration = new TIntermDeclaration(); |
| declaration->setLine(identifierLocation); |
| |
| // initNode will correspond to the whole of "type b[n] = initializer". |
| TIntermBinary *initNode = nullptr; |
| if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| declaration->appendDeclarator(initNode); |
| } |
| } |
| |
| return declaration; |
| } |
| |
| TIntermInvariantDeclaration *TParseContext::parseInvariantDeclaration( |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| const TSourceLoc &identifierLoc, |
| const TString *identifier, |
| const TSymbol *symbol) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| if (!typeQualifier.invariant) |
| { |
| error(identifierLoc, "Expected invariant", identifier->c_str()); |
| return nullptr; |
| } |
| if (!checkIsAtGlobalLevel(identifierLoc, "invariant varying")) |
| { |
| return nullptr; |
| } |
| if (!symbol) |
| { |
| error(identifierLoc, "undeclared identifier declared as invariant", identifier->c_str()); |
| return nullptr; |
| } |
| if (!IsQualifierUnspecified(typeQualifier.qualifier)) |
| { |
| error(identifierLoc, "invariant declaration specifies qualifier", |
| getQualifierString(typeQualifier.qualifier)); |
| } |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| error(identifierLoc, "invariant declaration specifies precision", |
| getPrecisionString(typeQualifier.precision)); |
| } |
| if (!typeQualifier.layoutQualifier.isEmpty()) |
| { |
| error(identifierLoc, "invariant declaration specifies layout", "'layout'"); |
| } |
| |
| const TVariable *variable = getNamedVariable(identifierLoc, identifier, symbol); |
| if (!variable) |
| { |
| return nullptr; |
| } |
| const TType &type = variable->getType(); |
| |
| checkInvariantVariableQualifier(typeQualifier.invariant, type.getQualifier(), |
| typeQualifier.line); |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); |
| |
| symbolTable.addInvariantVarying(std::string(identifier->c_str())); |
| |
| TIntermSymbol *intermSymbol = new TIntermSymbol(variable->getUniqueId(), *identifier, type); |
| intermSymbol->setLine(identifierLoc); |
| |
| return new TIntermInvariantDeclaration(intermSymbol, identifierLoc); |
| } |
| |
| void TParseContext::parseDeclarator(TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| TVariable *variable = nullptr; |
| TType type(publicType); |
| |
| checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier.c_str(), &type); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &type); |
| |
| checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, &type); |
| |
| declareVariable(identifierLocation, identifier, type, &variable); |
| |
| if (variable) |
| { |
| TIntermSymbol *symbol = new TIntermSymbol(variable->getUniqueId(), identifier, type); |
| symbol->setLine(identifierLocation); |
| declarationOut->appendDeclarator(symbol); |
| } |
| } |
| |
| void TParseContext::parseArrayDeclarator(TPublicType &elementType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &arrayLocation, |
| const TVector<unsigned int> &arraySizes, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(elementType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType); |
| |
| if (checkIsValidTypeAndQualifierForArray(arrayLocation, elementType)) |
| { |
| TType arrayType(elementType); |
| arrayType.makeArrays(arraySizes); |
| |
| checkGeometryShaderInputAndSetArraySize(identifierLocation, identifier.c_str(), &arrayType); |
| |
| checkCanBeDeclaredWithoutInitializer(identifierLocation, identifier, &arrayType); |
| |
| checkAtomicCounterOffsetDoesNotOverlap(true, identifierLocation, &arrayType); |
| |
| TVariable *variable = nullptr; |
| declareVariable(identifierLocation, identifier, arrayType, &variable); |
| |
| if (variable) |
| { |
| TIntermSymbol *symbol = |
| new TIntermSymbol(variable->getUniqueId(), identifier, arrayType); |
| symbol->setLine(identifierLocation); |
| declarationOut->appendDeclarator(symbol); |
| } |
| } |
| } |
| |
| void TParseContext::parseInitDeclarator(const TPublicType &publicType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(publicType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, publicType); |
| |
| TIntermBinary *initNode = nullptr; |
| TType type(publicType); |
| if (executeInitializer(identifierLocation, identifier, type, initializer, &initNode)) |
| { |
| // |
| // build the intermediate representation |
| // |
| if (initNode) |
| { |
| declarationOut->appendDeclarator(initNode); |
| } |
| } |
| } |
| |
| void TParseContext::parseArrayInitDeclarator(const TPublicType &elementType, |
| const TSourceLoc &identifierLocation, |
| const TString &identifier, |
| const TSourceLoc &indexLocation, |
| const TVector<unsigned int> &arraySizes, |
| const TSourceLoc &initLocation, |
| TIntermTyped *initializer, |
| TIntermDeclaration *declarationOut) |
| { |
| // If the declaration starting this declarator list was empty (example: int,), some checks were |
| // not performed. |
| if (mDeferredNonEmptyDeclarationErrorCheck) |
| { |
| nonEmptyDeclarationErrorCheck(elementType, identifierLocation); |
| mDeferredNonEmptyDeclarationErrorCheck = false; |
| } |
| |
| checkDeclaratorLocationIsNotSpecified(identifierLocation, elementType); |
| |
| checkIsValidTypeAndQualifierForArray(indexLocation, elementType); |
| |
| TType arrayType(elementType); |
| arrayType.makeArrays(arraySizes); |
| |
| // initNode will correspond to the whole of "b[n] = initializer". |
| TIntermBinary *initNode = nullptr; |
| if (executeInitializer(identifierLocation, identifier, arrayType, initializer, &initNode)) |
| { |
| if (initNode) |
| { |
| declarationOut->appendDeclarator(initNode); |
| } |
| } |
| } |
| |
| TIntermNode *TParseContext::addEmptyStatement(const TSourceLoc &location) |
| { |
| // It's simpler to parse an empty statement as a constant expression rather than having a |
| // different type of node just for empty statements, that will be pruned from the AST anyway. |
| TIntermNode *node = CreateZeroNode(TType(EbtInt, EbpMedium)); |
| node->setLine(location); |
| return node; |
| } |
| |
| void TParseContext::setAtomicCounterBindingDefaultOffset(const TPublicType &publicType, |
| const TSourceLoc &location) |
| { |
| const TLayoutQualifier &layoutQualifier = publicType.layoutQualifier; |
| checkAtomicCounterBindingIsValid(location, layoutQualifier.binding); |
| if (layoutQualifier.binding == -1 || layoutQualifier.offset == -1) |
| { |
| error(location, "Requires both binding and offset", "layout"); |
| return; |
| } |
| mAtomicCounterBindingStates[layoutQualifier.binding].setDefaultOffset(layoutQualifier.offset); |
| } |
| |
| void TParseContext::parseDefaultPrecisionQualifier(const TPrecision precision, |
| const TPublicType &type, |
| const TSourceLoc &loc) |
| { |
| if ((precision == EbpHigh) && (getShaderType() == GL_FRAGMENT_SHADER) && |
| !getFragmentPrecisionHigh()) |
| { |
| error(loc, "precision is not supported in fragment shader", "highp"); |
| } |
| |
| if (!CanSetDefaultPrecisionOnType(type)) |
| { |
| error(loc, "illegal type argument for default precision qualifier", |
| getBasicString(type.getBasicType())); |
| return; |
| } |
| symbolTable.setDefaultPrecision(type.getBasicType(), precision); |
| } |
| |
| bool TParseContext::checkPrimitiveTypeMatchesTypeQualifier(const TTypeQualifier &typeQualifier) |
| { |
| switch (typeQualifier.layoutQualifier.primitiveType) |
| { |
| case EptLines: |
| case EptLinesAdjacency: |
| case EptTriangles: |
| case EptTrianglesAdjacency: |
| return typeQualifier.qualifier == EvqGeometryIn; |
| |
| case EptLineStrip: |
| case EptTriangleStrip: |
| return typeQualifier.qualifier == EvqGeometryOut; |
| |
| case EptPoints: |
| return true; |
| |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| void TParseContext::setGeometryShaderInputArraySize(unsigned int inputArraySize, |
| const TSourceLoc &line) |
| { |
| if (mGeometryShaderInputArraySize == 0u) |
| { |
| mGeometryShaderInputArraySize = inputArraySize; |
| } |
| else if (mGeometryShaderInputArraySize != inputArraySize) |
| { |
| error(line, |
| "Array size or input primitive declaration doesn't match the size of earlier sized " |
| "array inputs.", |
| "layout"); |
| } |
| } |
| |
| bool TParseContext::parseGeometryShaderInputLayoutQualifier(const TTypeQualifier &typeQualifier) |
| { |
| ASSERT(typeQualifier.qualifier == EvqGeometryIn); |
| |
| const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; |
| |
| if (layoutQualifier.maxVertices != -1) |
| { |
| error(typeQualifier.line, |
| "max_vertices can only be declared in 'out' layout in a geometry shader", "layout"); |
| return false; |
| } |
| |
| // Set mGeometryInputPrimitiveType if exists |
| if (layoutQualifier.primitiveType != EptUndefined) |
| { |
| if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier)) |
| { |
| error(typeQualifier.line, "invalid primitive type for 'in' layout", "layout"); |
| return false; |
| } |
| |
| if (mGeometryShaderInputPrimitiveType == EptUndefined) |
| { |
| mGeometryShaderInputPrimitiveType = layoutQualifier.primitiveType; |
| setGeometryShaderInputArraySize( |
| GetGeometryShaderInputArraySize(mGeometryShaderInputPrimitiveType), |
| typeQualifier.line); |
| } |
| else if (mGeometryShaderInputPrimitiveType != layoutQualifier.primitiveType) |
| { |
| error(typeQualifier.line, "primitive doesn't match earlier input primitive declaration", |
| "layout"); |
| return false; |
| } |
| } |
| |
| // Set mGeometryInvocations if exists |
| if (layoutQualifier.invocations > 0) |
| { |
| if (mGeometryShaderInvocations == 0) |
| { |
| mGeometryShaderInvocations = layoutQualifier.invocations; |
| } |
| else if (mGeometryShaderInvocations != layoutQualifier.invocations) |
| { |
| error(typeQualifier.line, "invocations contradicts to the earlier declaration", |
| "layout"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool TParseContext::parseGeometryShaderOutputLayoutQualifier(const TTypeQualifier &typeQualifier) |
| { |
| ASSERT(typeQualifier.qualifier == EvqGeometryOut); |
| |
| const TLayoutQualifier &layoutQualifier = typeQualifier.layoutQualifier; |
| |
| if (layoutQualifier.invocations > 0) |
| { |
| error(typeQualifier.line, |
| "invocations can only be declared in 'in' layout in a geometry shader", "layout"); |
| return false; |
| } |
| |
| // Set mGeometryOutputPrimitiveType if exists |
| if (layoutQualifier.primitiveType != EptUndefined) |
| { |
| if (!checkPrimitiveTypeMatchesTypeQualifier(typeQualifier)) |
| { |
| error(typeQualifier.line, "invalid primitive type for 'out' layout", "layout"); |
| return false; |
| } |
| |
| if (mGeometryShaderOutputPrimitiveType == EptUndefined) |
| { |
| mGeometryShaderOutputPrimitiveType = layoutQualifier.primitiveType; |
| } |
| else if (mGeometryShaderOutputPrimitiveType != layoutQualifier.primitiveType) |
| { |
| error(typeQualifier.line, |
| "primitive doesn't match earlier output primitive declaration", "layout"); |
| return false; |
| } |
| } |
| |
| // Set mGeometryMaxVertices if exists |
| if (layoutQualifier.maxVertices > -1) |
| { |
| if (mGeometryShaderMaxVertices == -1) |
| { |
| mGeometryShaderMaxVertices = layoutQualifier.maxVertices; |
| } |
| else if (mGeometryShaderMaxVertices != layoutQualifier.maxVertices) |
| { |
| error(typeQualifier.line, "max_vertices contradicts to the earlier declaration", |
| "layout"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void TParseContext::parseGlobalLayoutQualifier(const TTypeQualifierBuilder &typeQualifierBuilder) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier; |
| |
| checkInvariantVariableQualifier(typeQualifier.invariant, typeQualifier.qualifier, |
| typeQualifier.line); |
| |
| // It should never be the case, but some strange parser errors can send us here. |
| if (layoutQualifier.isEmpty()) |
| { |
| error(typeQualifier.line, "Error during layout qualifier parsing.", "?"); |
| return; |
| } |
| |
| if (!layoutQualifier.isCombinationValid()) |
| { |
| error(typeQualifier.line, "invalid layout qualifier combination", "layout"); |
| return; |
| } |
| |
| checkBindingIsNotSpecified(typeQualifier.line, layoutQualifier.binding); |
| |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); |
| |
| checkInternalFormatIsNotSpecified(typeQualifier.line, layoutQualifier.imageInternalFormat); |
| |
| checkYuvIsNotSpecified(typeQualifier.line, layoutQualifier.yuv); |
| |
| checkOffsetIsNotSpecified(typeQualifier.line, layoutQualifier.offset); |
| |
| checkStd430IsForShaderStorageBlock(typeQualifier.line, layoutQualifier.blockStorage, |
| typeQualifier.qualifier); |
| |
| if (typeQualifier.qualifier == EvqComputeIn) |
| { |
| if (mComputeShaderLocalSizeDeclared && |
| !layoutQualifier.isLocalSizeEqual(mComputeShaderLocalSize)) |
| { |
| error(typeQualifier.line, "Work group size does not match the previous declaration", |
| "layout"); |
| return; |
| } |
| |
| if (mShaderVersion < 310) |
| { |
| error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); |
| return; |
| } |
| |
| if (!layoutQualifier.localSize.isAnyValueSet()) |
| { |
| error(typeQualifier.line, "No local work group size specified", "layout"); |
| return; |
| } |
| |
| const TVariable *maxComputeWorkGroupSize = static_cast<const TVariable *>( |
| symbolTable.findBuiltIn("gl_MaxComputeWorkGroupSize", mShaderVersion)); |
| |
| const TConstantUnion *maxComputeWorkGroupSizeData = |
| maxComputeWorkGroupSize->getConstPointer(); |
| |
| for (size_t i = 0u; i < layoutQualifier.localSize.size(); ++i) |
| { |
| if (layoutQualifier.localSize[i] != -1) |
| { |
| mComputeShaderLocalSize[i] = layoutQualifier.localSize[i]; |
| const int maxComputeWorkGroupSizeValue = maxComputeWorkGroupSizeData[i].getIConst(); |
| if (mComputeShaderLocalSize[i] < 1 || |
| mComputeShaderLocalSize[i] > maxComputeWorkGroupSizeValue) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "invalid value: Value must be at least 1 and no greater than " |
| << maxComputeWorkGroupSizeValue; |
| const std::string &reason = reasonStream.str(); |
| |
| error(typeQualifier.line, reason.c_str(), getWorkGroupSizeString(i)); |
| return; |
| } |
| } |
| } |
| |
| mComputeShaderLocalSizeDeclared = true; |
| } |
| else if (typeQualifier.qualifier == EvqGeometryIn) |
| { |
| if (mShaderVersion < 310) |
| { |
| error(typeQualifier.line, "in type qualifier supported in GLSL ES 3.10 only", "layout"); |
| return; |
| } |
| |
| if (!parseGeometryShaderInputLayoutQualifier(typeQualifier)) |
| { |
| return; |
| } |
| } |
| else if (typeQualifier.qualifier == EvqGeometryOut) |
| { |
| if (mShaderVersion < 310) |
| { |
| error(typeQualifier.line, "out type qualifier supported in GLSL ES 3.10 only", |
| "layout"); |
| return; |
| } |
| |
| if (!parseGeometryShaderOutputLayoutQualifier(typeQualifier)) |
| { |
| return; |
| } |
| } |
| else if (isExtensionEnabled(TExtension::OVR_multiview) && |
| typeQualifier.qualifier == EvqVertexIn) |
| { |
| // This error is only specified in WebGL, but tightens unspecified behavior in the native |
| // specification. |
| if (mNumViews != -1 && layoutQualifier.numViews != mNumViews) |
| { |
| error(typeQualifier.line, "Number of views does not match the previous declaration", |
| "layout"); |
| return; |
| } |
| |
| if (layoutQualifier.numViews == -1) |
| { |
| error(typeQualifier.line, "No num_views specified", "layout"); |
| return; |
| } |
| |
| if (layoutQualifier.numViews > mMaxNumViews) |
| { |
| error(typeQualifier.line, "num_views greater than the value of GL_MAX_VIEWS_OVR", |
| "layout"); |
| return; |
| } |
| |
| mNumViews = layoutQualifier.numViews; |
| } |
| else |
| { |
| if (!checkWorkGroupSizeIsNotSpecified(typeQualifier.line, layoutQualifier)) |
| { |
| return; |
| } |
| |
| if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer) |
| { |
| error(typeQualifier.line, "invalid qualifier: global layout can only be set for blocks", |
| getQualifierString(typeQualifier.qualifier)); |
| return; |
| } |
| |
| if (mShaderVersion < 300) |
| { |
| error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 and above", |
| "layout"); |
| return; |
| } |
| |
| checkLocationIsNotSpecified(typeQualifier.line, layoutQualifier); |
| |
| if (layoutQualifier.matrixPacking != EmpUnspecified) |
| { |
| if (typeQualifier.qualifier == EvqUniform) |
| { |
| mDefaultUniformMatrixPacking = layoutQualifier.matrixPacking; |
| } |
| else if (typeQualifier.qualifier == EvqBuffer) |
| { |
| mDefaultBufferMatrixPacking = layoutQualifier.matrixPacking; |
| } |
| } |
| |
| if (layoutQualifier.blockStorage != EbsUnspecified) |
| { |
| if (typeQualifier.qualifier == EvqUniform) |
| { |
| mDefaultUniformBlockStorage = layoutQualifier.blockStorage; |
| } |
| else if (typeQualifier.qualifier == EvqBuffer) |
| { |
| mDefaultBufferBlockStorage = layoutQualifier.blockStorage; |
| } |
| } |
| } |
| } |
| |
| TIntermFunctionPrototype *TParseContext::createPrototypeNodeFromFunction( |
| const TFunction &function, |
| const TSourceLoc &location, |
| bool insertParametersToSymbolTable) |
| { |
| checkIsNotReserved(location, function.getName()); |
| |
| TIntermFunctionPrototype *prototype = |
| new TIntermFunctionPrototype(function.getReturnType(), TSymbolUniqueId(function)); |
| // TODO(oetuaho@nvidia.com): Instead of converting the function information here, the node could |
| // point to the data that already exists in the symbol table. |
| prototype->getFunctionSymbolInfo()->setFromFunction(function); |
| prototype->setLine(location); |
| |
| for (size_t i = 0; i < function.getParamCount(); i++) |
| { |
| const TConstParameter ¶m = function.getParam(i); |
| |
| TIntermSymbol *symbol = nullptr; |
| |
| // If the parameter has no name, it's not an error, just don't add it to symbol table (could |
| // be used for unused args). |
| if (param.name != nullptr) |
| { |
| // Insert the parameter in the symbol table. |
| if (insertParametersToSymbolTable) |
| { |
| TVariable *variable = symbolTable.declareVariable(param.name, *param.type); |
| if (variable) |
| { |
| symbol = new TIntermSymbol(variable->getUniqueId(), variable->getName(), |
| variable->getType()); |
| } |
| else |
| { |
| error(location, "redefinition", param.name->c_str()); |
| } |
| } |
| // Unsized type of a named parameter should have already been checked and sanitized. |
| ASSERT(!param.type->isUnsizedArray()); |
| } |
| else |
| { |
| if (param.type->isUnsizedArray()) |
| { |
| error(location, "function parameter array must be sized at compile time", "[]"); |
| // We don't need to size the arrays since the parameter is unnamed and hence |
| // inaccessible. |
| } |
| } |
| if (!symbol) |
| { |
| // The parameter had no name or declaring the symbol failed - either way, add a nameless |
| // symbol. |
| symbol = new TIntermSymbol(symbolTable.getEmptySymbolId(), "", *param.type); |
| } |
| symbol->setLine(location); |
| prototype->appendParameter(symbol); |
| } |
| return prototype; |
| } |
| |
| TIntermFunctionPrototype *TParseContext::addFunctionPrototypeDeclaration( |
| const TFunction &parsedFunction, |
| const TSourceLoc &location) |
| { |
| // Note: function found from the symbol table could be the same as parsedFunction if this is the |
| // first declaration. Either way the instance in the symbol table is used to track whether the |
| // function is declared multiple times. |
| TFunction *function = static_cast<TFunction *>( |
| symbolTable.find(parsedFunction.getMangledName(), getShaderVersion())); |
| if (function->hasPrototypeDeclaration() && mShaderVersion == 100) |
| { |
| // ESSL 1.00.17 section 4.2.7. |
| // Doesn't apply to ESSL 3.00.4: see section 4.2.3. |
| error(location, "duplicate function prototype declarations are not allowed", "function"); |
| } |
| function->setHasPrototypeDeclaration(); |
| |
| // WebKit note: We currently pass true instead of false for the last parameter |
| // here because some compilers have an issue with nameless parameters in function |
| // declarations. |
| TIntermFunctionPrototype *prototype = |
| createPrototypeNodeFromFunction(*function, location, true); |
| |
| symbolTable.pop(); |
| |
| if (!symbolTable.atGlobalLevel()) |
| { |
| // ESSL 3.00.4 section 4.2.4. |
| error(location, "local function prototype declarations are not allowed", "function"); |
| } |
| |
| return prototype; |
| } |
| |
| TIntermFunctionDefinition *TParseContext::addFunctionDefinition( |
| TIntermFunctionPrototype *functionPrototype, |
| TIntermBlock *functionBody, |
| const TSourceLoc &location) |
| { |
| // Check that non-void functions have at least one return statement. |
| if (mCurrentFunctionType->getBasicType() != EbtVoid && !mFunctionReturnsValue) |
| { |
| error(location, "function does not return a value:", |
| functionPrototype->getFunctionSymbolInfo()->getName().c_str()); |
| } |
| |
| if (functionBody == nullptr) |
| { |
| functionBody = new TIntermBlock(); |
| functionBody->setLine(location); |
| } |
| TIntermFunctionDefinition *functionNode = |
| new TIntermFunctionDefinition(functionPrototype, functionBody); |
| functionNode->setLine(location); |
| |
| symbolTable.pop(); |
| return functionNode; |
| } |
| |
| void TParseContext::parseFunctionDefinitionHeader(const TSourceLoc &location, |
| TFunction **function, |
| TIntermFunctionPrototype **prototypeOut) |
| { |
| ASSERT(function); |
| ASSERT(*function); |
| const TSymbol *builtIn = |
| symbolTable.findBuiltIn((*function)->getMangledName(), getShaderVersion()); |
| |
| if (builtIn) |
| { |
| error(location, "built-in functions cannot be redefined", (*function)->getName().c_str()); |
| } |
| else |
| { |
| TFunction *prevDec = static_cast<TFunction *>( |
| symbolTable.find((*function)->getMangledName(), getShaderVersion())); |
| |
| // Note: 'prevDec' could be 'function' if this is the first time we've seen function as it |
| // would have just been put in the symbol table. Otherwise, we're looking up an earlier |
| // occurance. |
| if (*function != prevDec) |
| { |
| // Swap the parameters of the previous declaration to the parameters of the function |
| // definition (parameter names may differ). |
| prevDec->swapParameters(**function); |
| |
| // The function definition will share the same symbol as any previous declaration. |
| *function = prevDec; |
| } |
| |
| if ((*function)->isDefined()) |
| { |
| error(location, "function already has a body", (*function)->getName().c_str()); |
| } |
| |
| (*function)->setDefined(); |
| } |
| |
| // Remember the return type for later checking for return statements. |
| mCurrentFunctionType = &((*function)->getReturnType()); |
| mFunctionReturnsValue = false; |
| |
| *prototypeOut = createPrototypeNodeFromFunction(**function, location, true); |
| setLoopNestingLevel(0); |
| } |
| |
| TFunction *TParseContext::parseFunctionDeclarator(const TSourceLoc &location, TFunction *function) |
| { |
| // |
| // We don't know at this point whether this is a function definition or a prototype. |
| // The definition production code will check for redefinitions. |
| // In the case of ESSL 1.00 the prototype production code will also check for redeclarations. |
| // |
| // Return types and parameter qualifiers must match in all redeclarations, so those are checked |
| // here. |
| // |
| TFunction *prevDec = |
| static_cast<TFunction *>(symbolTable.find(function->getMangledName(), getShaderVersion())); |
| |
| for (size_t i = 0u; i < function->getParamCount(); ++i) |
| { |
| auto ¶m = function->getParam(i); |
| if (param.type->isStructSpecifier()) |
| { |
| // ESSL 3.00.6 section 12.10. |
| error(location, "Function parameter type cannot be a structure definition", |
| function->getName().c_str()); |
| } |
| } |
| |
| if (getShaderVersion() >= 300 && |
| symbolTable.hasUnmangledBuiltInForShaderVersion(function->getName().c_str(), |
| getShaderVersion())) |
| { |
| // With ESSL 3.00 and above, names of built-in functions cannot be redeclared as functions. |
| // Therefore overloading or redefining builtin functions is an error. |
| error(location, "Name of a built-in function cannot be redeclared as function", |
| function->getName().c_str()); |
| } |
| else if (prevDec) |
| { |
| if (prevDec->getReturnType() != function->getReturnType()) |
| { |
| error(location, "function must have the same return type in all of its declarations", |
| function->getReturnType().getBasicString()); |
| } |
| for (size_t i = 0; i < prevDec->getParamCount(); ++i) |
| { |
| if (prevDec->getParam(i).type->getQualifier() != |
| function->getParam(i).type->getQualifier()) |
| { |
| error(location, |
| "function must have the same parameter qualifiers in all of its declarations", |
| function->getParam(i).type->getQualifierString()); |
| } |
| } |
| } |
| |
| // |
| // Check for previously declared variables using the same name. |
| // |
| TSymbol *prevSym = symbolTable.find(function->getName(), getShaderVersion()); |
| if (prevSym) |
| { |
| if (!prevSym->isFunction()) |
| { |
| error(location, "redefinition of a function", function->getName().c_str()); |
| } |
| } |
| else |
| { |
| // Insert the unmangled name to detect potential future redefinition as a variable. |
| symbolTable.getOuterLevel()->insertUnmangled(function); |
| } |
| |
| // We're at the inner scope level of the function's arguments and body statement. |
| // Add the function prototype to the surrounding scope instead. |
| symbolTable.getOuterLevel()->insert(function); |
| |
| // Raise error message if main function takes any parameters or return anything other than void |
| if (function->getName() == "main") |
| { |
| if (function->getParamCount() > 0) |
| { |
| error(location, "function cannot take any parameter(s)", "main"); |
| } |
| if (function->getReturnType().getBasicType() != EbtVoid) |
| { |
| error(location, "main function cannot return a value", |
| function->getReturnType().getBasicString()); |
| } |
| } |
| |
| // |
| // If this is a redeclaration, it could also be a definition, in which case, we want to use the |
| // variable names from this one, and not the one that's |
| // being redeclared. So, pass back up this declaration, not the one in the symbol table. |
| // |
| return function; |
| } |
| |
| TFunction *TParseContext::parseFunctionHeader(const TPublicType &type, |
| const TString *name, |
| const TSourceLoc &location) |
| { |
| if (type.qualifier != EvqGlobal && type.qualifier != EvqTemporary) |
| { |
| error(location, "no qualifiers allowed for function return", |
| getQualifierString(type.qualifier)); |
| } |
| if (!type.layoutQualifier.isEmpty()) |
| { |
| error(location, "no qualifiers allowed for function return", "layout"); |
| } |
| // make sure an opaque type is not involved as well... |
| std::string reason(getBasicString(type.getBasicType())); |
| reason += "s can't be function return values"; |
| checkIsNotOpaqueType(location, type.typeSpecifierNonArray, reason.c_str()); |
| if (mShaderVersion < 300) |
| { |
| // Array return values are forbidden, but there's also no valid syntax for declaring array |
| // return values in ESSL 1.00. |
| ASSERT(!type.isArray() || mDiagnostics->numErrors() > 0); |
| |
| if (type.isStructureContainingArrays()) |
| { |
| // ESSL 1.00.17 section 6.1 Function Definitions |
| error(location, "structures containing arrays can't be function return values", |
| TType(type).getCompleteString().c_str()); |
| } |
| } |
| |
| // Add the function as a prototype after parsing it (we do not support recursion) |
| return new TFunction(&symbolTable, name, new TType(type)); |
| } |
| |
| TFunction *TParseContext::addNonConstructorFunc(const TString *name, const TSourceLoc &loc) |
| { |
| const TType *returnType = TCache::getType(EbtVoid, EbpUndefined); |
| return new TFunction(&symbolTable, name, returnType); |
| } |
| |
| TFunction *TParseContext::addConstructorFunc(const TPublicType &publicType) |
| { |
| if (mShaderVersion < 300 && publicType.isArray()) |
| { |
| error(publicType.getLine(), "array constructor supported in GLSL ES 3.00 and above only", |
| "[]"); |
| } |
| if (publicType.isStructSpecifier()) |
| { |
| error(publicType.getLine(), "constructor can't be a structure definition", |
| getBasicString(publicType.getBasicType())); |
| } |
| |
| TType *type = new TType(publicType); |
| if (!type->canBeConstructed()) |
| { |
| error(publicType.getLine(), "cannot construct this type", |
| getBasicString(publicType.getBasicType())); |
| type->setBasicType(EbtFloat); |
| } |
| |
| return new TFunction(&symbolTable, nullptr, type, EOpConstruct); |
| } |
| |
| void TParseContext::checkIsNotUnsizedArray(const TSourceLoc &line, |
| const char *errorMessage, |
| const char *token, |
| TType *arrayType) |
| { |
| if (arrayType->isUnsizedArray()) |
| { |
| error(line, errorMessage, token); |
| arrayType->sizeUnsizedArrays(nullptr); |
| } |
| } |
| |
| TParameter TParseContext::parseParameterDeclarator(TType *type, |
| const TString *name, |
| const TSourceLoc &nameLoc) |
| { |
| ASSERT(type); |
| checkIsNotUnsizedArray(nameLoc, "function parameter array must specify a size", name->c_str(), |
| type); |
| if (type->getBasicType() == EbtVoid) |
| { |
| error(nameLoc, "illegal use of type 'void'", name->c_str()); |
| } |
| checkIsNotReserved(nameLoc, *name); |
| TParameter param = {name, type}; |
| return param; |
| } |
| |
| TParameter TParseContext::parseParameterDeclarator(const TPublicType &publicType, |
| const TString *name, |
| const TSourceLoc &nameLoc) |
| { |
| TType *type = new TType(publicType); |
| return parseParameterDeclarator(type, name, nameLoc); |
| } |
| |
| TParameter TParseContext::parseParameterArrayDeclarator(const TString *name, |
| const TSourceLoc &nameLoc, |
| const TVector<unsigned int> &arraySizes, |
| const TSourceLoc &arrayLoc, |
| TPublicType *elementType) |
| { |
| checkArrayElementIsNotArray(arrayLoc, *elementType); |
| TType *arrayType = new TType(*elementType); |
| arrayType->makeArrays(arraySizes); |
| return parseParameterDeclarator(arrayType, name, nameLoc); |
| } |
| |
| bool TParseContext::checkUnsizedArrayConstructorArgumentDimensionality(TIntermSequence *arguments, |
| TType type, |
| const TSourceLoc &line) |
| { |
| if (arguments->empty()) |
| { |
| error(line, "implicitly sized array constructor must have at least one argument", "[]"); |
| return false; |
| } |
| for (TIntermNode *arg : *arguments) |
| { |
| TIntermTyped *element = arg->getAsTyped(); |
| ASSERT(element); |
| size_t dimensionalityFromElement = element->getType().getNumArraySizes() + 1u; |
| if (dimensionalityFromElement > type.getNumArraySizes()) |
| { |
| error(line, "constructing from a non-dereferenced array", "constructor"); |
| return false; |
| } |
| else if (dimensionalityFromElement < type.getNumArraySizes()) |
| { |
| if (dimensionalityFromElement == 1u) |
| { |
| error(line, "implicitly sized array of arrays constructor argument is not an array", |
| "constructor"); |
| } |
| else |
| { |
| error(line, |
| "implicitly sized array of arrays constructor argument dimensionality is too " |
| "low", |
| "constructor"); |
| } |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // This function is used to test for the correctness of the parameters passed to various constructor |
| // functions and also convert them to the right datatype if it is allowed and required. |
| // |
| // Returns a node to add to the tree regardless of if an error was generated or not. |
| // |
| TIntermTyped *TParseContext::addConstructor(TIntermSequence *arguments, |
| TType type, |
| const TSourceLoc &line) |
| { |
| if (type.isUnsizedArray()) |
| { |
| if (!checkUnsizedArrayConstructorArgumentDimensionality(arguments, type, line)) |
| { |
| type.sizeUnsizedArrays(nullptr); |
| return CreateZeroNode(type); |
| } |
| TIntermTyped *firstElement = arguments->at(0)->getAsTyped(); |
| ASSERT(firstElement); |
| if (type.getOutermostArraySize() == 0u) |
| { |
| type.sizeOutermostUnsizedArray(static_cast<unsigned int>(arguments->size())); |
| } |
| for (size_t i = 0; i < firstElement->getType().getNumArraySizes(); ++i) |
| { |
| if ((*type.getArraySizes())[i] == 0u) |
| { |
| type.setArraySize(i, (*firstElement->getType().getArraySizes())[i]); |
| } |
| } |
| ASSERT(!type.isUnsizedArray()); |
| } |
| |
| if (!checkConstructorArguments(line, arguments, type)) |
| { |
| return CreateZeroNode(type); |
| } |
| |
| TIntermAggregate *constructorNode = TIntermAggregate::CreateConstructor(type, arguments); |
| constructorNode->setLine(line); |
| |
| // TODO(oetuaho@nvidia.com): Add support for folding array constructors. |
| if (!constructorNode->isArray()) |
| { |
| return constructorNode->fold(mDiagnostics); |
| } |
| return constructorNode; |
| } |
| |
| // |
| // Interface/uniform blocks |
| // TODO(jiawei.shao@intel.com): implement GL_OES_shader_io_blocks. |
| // |
| TIntermDeclaration *TParseContext::addInterfaceBlock( |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| const TSourceLoc &nameLine, |
| const TString &blockName, |
| TFieldList *fieldList, |
| const TString *instanceName, |
| const TSourceLoc &instanceLine, |
| TIntermTyped *arrayIndex, |
| const TSourceLoc &arrayIndexLine) |
| { |
| checkIsNotReserved(nameLine, blockName); |
| |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| if (mShaderVersion < 310 && typeQualifier.qualifier != EvqUniform) |
| { |
| error(typeQualifier.line, |
| "invalid qualifier: interface blocks must be uniform in version lower than GLSL ES " |
| "3.10", |
| getQualifierString(typeQualifier.qualifier)); |
| } |
| else if (typeQualifier.qualifier != EvqUniform && typeQualifier.qualifier != EvqBuffer) |
| { |
| error(typeQualifier.line, "invalid qualifier: interface blocks must be uniform or buffer", |
| getQualifierString(typeQualifier.qualifier)); |
| } |
| |
| if (typeQualifier.invariant) |
| { |
| error(typeQualifier.line, "invalid qualifier on interface block member", "invariant"); |
| } |
| |
| if (typeQualifier.qualifier != EvqBuffer) |
| { |
| checkMemoryQualifierIsNotSpecified(typeQualifier.memoryQualifier, typeQualifier.line); |
| } |
| |
| // add array index |
| unsigned int arraySize = 0; |
| if (arrayIndex != nullptr) |
| { |
| arraySize = checkIsValidArraySize(arrayIndexLine, arrayIndex); |
| } |
| |
| if (mShaderVersion < 310) |
| { |
| checkBindingIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.binding); |
| } |
| else |
| { |
| checkBlockBindingIsValid(typeQualifier.line, typeQualifier.qualifier, |
| typeQualifier.layoutQualifier.binding, arraySize); |
| } |
| |
| checkYuvIsNotSpecified(typeQualifier.line, typeQualifier.layoutQualifier.yuv); |
| |
| TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier; |
| checkLocationIsNotSpecified(typeQualifier.line, blockLayoutQualifier); |
| checkStd430IsForShaderStorageBlock(typeQualifier.line, blockLayoutQualifier.blockStorage, |
| typeQualifier.qualifier); |
| |
| if (blockLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| if (typeQualifier.qualifier == EvqUniform) |
| { |
| blockLayoutQualifier.matrixPacking = mDefaultUniformMatrixPacking; |
| } |
| else if (typeQualifier.qualifier == EvqBuffer) |
| { |
| blockLayoutQualifier.matrixPacking = mDefaultBufferMatrixPacking; |
| } |
| } |
| |
| if (blockLayoutQualifier.blockStorage == EbsUnspecified) |
| { |
| if (typeQualifier.qualifier == EvqUniform) |
| { |
| blockLayoutQualifier.blockStorage = mDefaultUniformBlockStorage; |
| } |
| else if (typeQualifier.qualifier == EvqBuffer) |
| { |
| blockLayoutQualifier.blockStorage = mDefaultBufferBlockStorage; |
| } |
| } |
| |
| checkWorkGroupSizeIsNotSpecified(nameLine, blockLayoutQualifier); |
| |
| checkInternalFormatIsNotSpecified(nameLine, blockLayoutQualifier.imageInternalFormat); |
| |
| if (!symbolTable.declareInterfaceBlockName(&blockName)) |
| { |
| error(nameLine, "redefinition of an interface block name", blockName.c_str()); |
| } |
| |
| // check for sampler types and apply layout qualifiers |
| for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField *field = (*fieldList)[memberIndex]; |
| TType *fieldType = field->type(); |
| if (IsOpaqueType(fieldType->getBasicType())) |
| { |
| std::string reason("unsupported type - "); |
| reason += fieldType->getBasicString(); |
| reason += " types are not allowed in interface blocks"; |
| error(field->line(), reason.c_str(), fieldType->getBasicString()); |
| } |
| |
| const TQualifier qualifier = fieldType->getQualifier(); |
| switch (qualifier) |
| { |
| case EvqGlobal: |
| break; |
| case EvqUniform: |
| if (typeQualifier.qualifier == EvqBuffer) |
| { |
| error(field->line(), "invalid qualifier on shader storage block member", |
| getQualifierString(qualifier)); |
| } |
| break; |
| case EvqBuffer: |
| if (typeQualifier.qualifier == EvqUniform) |
| { |
| error(field->line(), "invalid qualifier on uniform block member", |
| getQualifierString(qualifier)); |
| } |
| break; |
| default: |
| error(field->line(), "invalid qualifier on interface block member", |
| getQualifierString(qualifier)); |
| break; |
| } |
| |
| if (fieldType->isInvariant()) |
| { |
| error(field->line(), "invalid qualifier on interface block member", "invariant"); |
| } |
| |
| // check layout qualifiers |
| TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier(); |
| checkLocationIsNotSpecified(field->line(), fieldLayoutQualifier); |
| checkBindingIsNotSpecified(field->line(), fieldLayoutQualifier.binding); |
| |
| if (fieldLayoutQualifier.blockStorage != EbsUnspecified) |
| { |
| error(field->line(), "invalid layout qualifier: cannot be used here", |
| getBlockStorageString(fieldLayoutQualifier.blockStorage)); |
| } |
| |
| if (fieldLayoutQualifier.matrixPacking == EmpUnspecified) |
| { |
| fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking; |
| } |
| else if (!fieldType->isMatrix() && fieldType->getBasicType() != EbtStruct) |
| { |
| warning(field->line(), |
| "extraneous layout qualifier: only has an effect on matrix types", |
| getMatrixPackingString(fieldLayoutQualifier.matrixPacking)); |
| } |
| |
| fieldType->setLayoutQualifier(fieldLayoutQualifier); |
| |
| if (mShaderVersion < 310 || memberIndex != fieldList->size() - 1u || |
| typeQualifier.qualifier != EvqBuffer) |
| { |
| // ESSL 3.10 spec section 4.1.9 allows for runtime-sized arrays. |
| checkIsNotUnsizedArray(field->line(), |
| "array members of interface blocks must specify a size", |
| field->name().c_str(), field->type()); |
| } |
| |
| if (typeQualifier.qualifier == EvqBuffer) |
| { |
| // set memory qualifiers |
| // GLSL ES 3.10 session 4.9 [Memory Access Qualifiers]. When a block declaration is |
| // qualified with a memory qualifier, it is as if all of its members were declared with |
| // the same memory qualifier. |
| const TMemoryQualifier &blockMemoryQualifier = typeQualifier.memoryQualifier; |
| TMemoryQualifier fieldMemoryQualifier = fieldType->getMemoryQualifier(); |
| fieldMemoryQualifier.readonly |= blockMemoryQualifier.readonly; |
| fieldMemoryQualifier.writeonly |= blockMemoryQualifier.writeonly; |
| fieldMemoryQualifier.coherent |= blockMemoryQualifier.coherent; |
| fieldMemoryQualifier.restrictQualifier |= blockMemoryQualifier.restrictQualifier; |
| fieldMemoryQualifier.volatileQualifier |= blockMemoryQualifier.volatileQualifier; |
| // TODO(jiajia.qin@intel.com): Decide whether if readonly and writeonly buffer variable |
| // is legal. See bug https://github.com/KhronosGroup/OpenGL-API/issues/7 |
| fieldType->setMemoryQualifier(fieldMemoryQualifier); |
| } |
| } |
| |
| TInterfaceBlock *interfaceBlock = |
| new TInterfaceBlock(&blockName, fieldList, instanceName, blockLayoutQualifier); |
| TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier); |
| if (arrayIndex != nullptr) |
| { |
| interfaceBlockType.makeArray(arraySize); |
| } |
| |
| TString symbolName = ""; |
| const TSymbolUniqueId *symbolId = nullptr; |
| |
| if (!instanceName) |
| { |
| // define symbols for the members of the interface block |
| for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) |
| { |
| TField *field = (*fieldList)[memberIndex]; |
| TType *fieldType = field->type(); |
| |
| // set parent pointer of the field variable |
| fieldType->setInterfaceBlock(interfaceBlock); |
| |
| TVariable *fieldVariable = symbolTable.declareVariable(&field->name(), *fieldType); |
| |
| if (fieldVariable) |
| { |
| fieldVariable->setQualifier(typeQualifier.qualifier); |
| } |
| else |
| { |
| error(field->line(), "redefinition of an interface block member name", |
| field->name().c_str()); |
| } |
| } |
| symbolId = &symbolTable.getEmptySymbolId(); |
| } |
| else |
| { |
| checkIsNotReserved(instanceLine, *instanceName); |
| |
| // add a symbol for this interface block |
| TVariable *instanceTypeDef = symbolTable.declareVariable(instanceName, interfaceBlockType); |
| if (instanceTypeDef) |
| { |
| instanceTypeDef->setQualifier(typeQualifier.qualifier); |
| symbolId = &instanceTypeDef->getUniqueId(); |
| } |
| else |
| { |
| error(instanceLine, "redefinition of an interface block instance name", |
| instanceName->c_str()); |
| } |
| symbolName = *instanceName; |
| } |
| |
| TIntermDeclaration *declaration = nullptr; |
| |
| if (symbolId) |
| { |
| TIntermSymbol *blockSymbol = new TIntermSymbol(*symbolId, symbolName, interfaceBlockType); |
| blockSymbol->setLine(typeQualifier.line); |
| declaration = new TIntermDeclaration(); |
| declaration->appendDeclarator(blockSymbol); |
| declaration->setLine(nameLine); |
| } |
| |
| exitStructDeclaration(); |
| return declaration; |
| } |
| |
| void TParseContext::enterStructDeclaration(const TSourceLoc &line, const TString &identifier) |
| { |
| ++mStructNestingLevel; |
| |
| // Embedded structure definitions are not supported per GLSL ES spec. |
| // ESSL 1.00.17 section 10.9. ESSL 3.00.6 section 12.11. |
| if (mStructNestingLevel > 1) |
| { |
| error(line, "Embedded struct definitions are not allowed", "struct"); |
| } |
| } |
| |
| void TParseContext::exitStructDeclaration() |
| { |
| --mStructNestingLevel; |
| } |
| |
| void TParseContext::checkIsBelowStructNestingLimit(const TSourceLoc &line, const TField &field) |
| { |
| if (!sh::IsWebGLBasedSpec(mShaderSpec)) |
| { |
| return; |
| } |
| |
| if (field.type()->getBasicType() != EbtStruct) |
| { |
| return; |
| } |
| |
| // We're already inside a structure definition at this point, so add |
| // one to the field's struct nesting. |
| if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "Reference of struct type " << field.type()->getStruct()->name().c_str() |
| << " exceeds maximum allowed nesting level of " << kWebGLMaxStructNesting; |
| std::string reason = reasonStream.str(); |
| error(line, reason.c_str(), field.name().c_str()); |
| return; |
| } |
| } |
| |
| // |
| // Parse an array index expression |
| // |
| TIntermTyped *TParseContext::addIndexExpression(TIntermTyped *baseExpression, |
| const TSourceLoc &location, |
| TIntermTyped *indexExpression) |
| { |
| if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector()) |
| { |
| if (baseExpression->getAsSymbolNode()) |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", |
| baseExpression->getAsSymbolNode()->getSymbol().c_str()); |
| } |
| else |
| { |
| error(location, " left of '[' is not of type array, matrix, or vector ", "expression"); |
| } |
| |
| return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); |
| } |
| |
| if (baseExpression->getQualifier() == EvqPerVertexIn) |
| { |
| ASSERT(mShaderType == GL_GEOMETRY_SHADER_OES); |
| if (mGeometryShaderInputPrimitiveType == EptUndefined) |
| { |
| error(location, "missing input primitive declaration before indexing gl_in.", "["); |
| return CreateZeroNode(TType(EbtFloat, EbpHigh, EvqConst)); |
| } |
| } |
| |
| TIntermConstantUnion *indexConstantUnion = indexExpression->getAsConstantUnion(); |
| |
| // TODO(oetuaho@nvidia.com): Get rid of indexConstantUnion == nullptr below once ANGLE is able |
| // to constant fold all constant expressions. Right now we don't allow indexing interface blocks |
| // or fragment outputs with expressions that ANGLE is not able to constant fold, even if the |
| // index is a constant expression. |
| if (indexExpression->getQualifier() != EvqConst || indexConstantUnion == nullptr) |
| { |
| if (baseExpression->isInterfaceBlock()) |
| { |
| // TODO(jiawei.shao@intel.com): implement GL_OES_shader_io_blocks. |
| switch (baseExpression->getQualifier()) |
| { |
| case EvqPerVertexIn: |
| break; |
| case EvqUniform: |
| case EvqBuffer: |
| error(location, |
| "array indexes for uniform block arrays and shader storage block arrays " |
| "must be constant integral expressions", |
| "["); |
| break; |
| default: |
| // We can reach here only in error cases. |
| ASSERT(mDiagnostics->numErrors() > 0); |
| break; |
| } |
| } |
| else if (baseExpression->getQualifier() == EvqFragmentOut) |
| { |
| error(location, |
| "array indexes for fragment outputs must be constant integral expressions", "["); |
| } |
| else if (mShaderSpec == SH_WEBGL2_SPEC && baseExpression->getQualifier() == EvqFragData) |
| { |
| error(location, "array index for gl_FragData must be constant zero", "["); |
| } |
| } |
| |
| if (indexConstantUnion) |
| { |
| // If an out-of-range index is not qualified as constant, the behavior in the spec is |
| // undefined. This applies even if ANGLE has been able to constant fold it (ANGLE may |
| // constant fold expressions that are not constant expressions). The most compatible way to |
| // handle this case is to report a warning instead of an error and force the index to be in |
| // the correct range. |
| bool outOfRangeIndexIsError = indexExpression->getQualifier() == EvqConst; |
| int index = 0; |
| if (indexConstantUnion->getBasicType() == EbtInt) |
| { |
| index = indexConstantUnion->getIConst(0); |
| } |
| else if (indexConstantUnion->getBasicType() == EbtUInt) |
| { |
| index = static_cast<int>(indexConstantUnion->getUConst(0)); |
| } |
| |
| int safeIndex = -1; |
| |
| if (index < 0) |
| { |
| outOfRangeError(outOfRangeIndexIsError, location, "index expression is negative", "[]"); |
| safeIndex = 0; |
| } |
| |
| if (!baseExpression->getType().isUnsizedArray()) |
| { |
| if (baseExpression->isArray()) |
| { |
| if (baseExpression->getQualifier() == EvqFragData && index > 0) |
| { |
| if (!isExtensionEnabled(TExtension::EXT_draw_buffers)) |
| { |
| outOfRangeError(outOfRangeIndexIsError, location, |
| "array index for gl_FragData must be zero when " |
| "GL_EXT_draw_buffers is disabled", |
| "[]"); |
| safeIndex = 0; |
| } |
| } |
| // Only do generic out-of-range check if similar error hasn't already been reported. |
| if (safeIndex < 0) |
| { |
| safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, |
| baseExpression->getOutermostArraySize(), |
| "array index out of range"); |
| } |
| } |
| else if (baseExpression->isMatrix()) |
| { |
| safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, |
| baseExpression->getType().getCols(), |
| "matrix field selection out of range"); |
| } |
| else if (baseExpression->isVector()) |
| { |
| safeIndex = checkIndexLessThan(outOfRangeIndexIsError, location, index, |
| baseExpression->getType().getNominalSize(), |
| "vector field selection out of range"); |
| } |
| |
| ASSERT(safeIndex >= 0); |
| // Data of constant unions can't be changed, because it may be shared with other |
| // constant unions or even builtins, like gl_MaxDrawBuffers. Instead use a new |
| // sanitized object. |
| if (safeIndex != index || indexConstantUnion->getBasicType() != EbtInt) |
| { |
| TConstantUnion *safeConstantUnion = new TConstantUnion(); |
| safeConstantUnion->setIConst(safeIndex); |
| indexConstantUnion->replaceConstantUnion(safeConstantUnion); |
| indexConstantUnion->getTypePointer()->setBasicType(EbtInt); |
| } |
| |
| TIntermBinary *node = |
| new TIntermBinary(EOpIndexDirect, baseExpression, indexExpression); |
| node->setLine(location); |
| return node->fold(mDiagnostics); |
| } |
| } |
| |
| TIntermBinary *node = new TIntermBinary(EOpIndexIndirect, baseExpression, indexExpression); |
| node->setLine(location); |
| // Indirect indexing can never be constant folded. |
| return node; |
| } |
| |
| int TParseContext::checkIndexLessThan(bool outOfRangeIndexIsError, |
| const TSourceLoc &location, |
| int index, |
| int arraySize, |
| const char *reason) |
| { |
| // Should not reach here with an unsized / runtime-sized array. |
| ASSERT(arraySize > 0); |
| if (index >= arraySize) |
| { |
| std::stringstream reasonStream; |
| reasonStream << reason << " '" << index << "'"; |
| std::string token = reasonStream.str(); |
| outOfRangeError(outOfRangeIndexIsError, location, reason, "[]"); |
| return arraySize - 1; |
| } |
| return index; |
| } |
| |
| TIntermTyped *TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, |
| const TSourceLoc &dotLocation, |
| const TString &fieldString, |
| const TSourceLoc &fieldLocation) |
| { |
| if (baseExpression->isArray()) |
| { |
| error(fieldLocation, "cannot apply dot operator to an array", "."); |
| return baseExpression; |
| } |
| |
| if (baseExpression->isVector()) |
| { |
| TVector<int> fieldOffsets; |
| if (!parseVectorFields(fieldLocation, fieldString, baseExpression->getNominalSize(), |
| &fieldOffsets)) |
| { |
| fieldOffsets.resize(1); |
| fieldOffsets[0] = 0; |
| } |
| TIntermSwizzle *node = new TIntermSwizzle(baseExpression, fieldOffsets); |
| node->setLine(dotLocation); |
| |
| return node->fold(); |
| } |
| else if (baseExpression->getBasicType() == EbtStruct) |
| { |
| const TFieldList &fields = baseExpression->getType().getStruct()->fields(); |
| if (fields.empty()) |
| { |
| error(dotLocation, "structure has no fields", "Internal Error"); |
| return baseExpression; |
| } |
| else |
| { |
| bool fieldFound = false; |
| unsigned int i; |
| for (i = 0; i < fields.size(); ++i) |
| { |
| if (fields[i]->name() == fieldString) |
| { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) |
| { |
| TIntermTyped *index = CreateIndexNode(i); |
| index->setLine(fieldLocation); |
| TIntermBinary *node = |
| new TIntermBinary(EOpIndexDirectStruct, baseExpression, index); |
| node->setLine(dotLocation); |
| return node->fold(mDiagnostics); |
| } |
| else |
| { |
| error(dotLocation, " no such field in structure", fieldString.c_str()); |
| return baseExpression; |
| } |
| } |
| } |
| else if (baseExpression->isInterfaceBlock()) |
| { |
| const TFieldList &fields = baseExpression->getType().getInterfaceBlock()->fields(); |
| if (fields.empty()) |
| { |
| error(dotLocation, "interface block has no fields", "Internal Error"); |
| return baseExpression; |
| } |
| else |
| { |
| bool fieldFound = false; |
| unsigned int i; |
| for (i = 0; i < fields.size(); ++i) |
| { |
| if (fields[i]->name() == fieldString) |
| { |
| fieldFound = true; |
| break; |
| } |
| } |
| if (fieldFound) |
| { |
| TIntermTyped *index = CreateIndexNode(i); |
| index->setLine(fieldLocation); |
| TIntermBinary *node = |
| new TIntermBinary(EOpIndexDirectInterfaceBlock, baseExpression, index); |
| node->setLine(dotLocation); |
| // Indexing interface blocks can never be constant folded. |
| return node; |
| } |
| else |
| { |
| error(dotLocation, " no such field in interface block", fieldString.c_str()); |
| return baseExpression; |
| } |
| } |
| } |
| else |
| { |
| if (mShaderVersion < 300) |
| { |
| error(dotLocation, " field selection requires structure or vector on left hand side", |
| fieldString.c_str()); |
| } |
| else |
| { |
| error(dotLocation, |
| " field selection requires structure, vector, or interface block on left hand " |
| "side", |
| fieldString.c_str()); |
| } |
| return baseExpression; |
| } |
| } |
| |
| TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, |
| const TSourceLoc &qualifierTypeLine) |
| { |
| TLayoutQualifier qualifier = TLayoutQualifier::Create(); |
| |
| if (qualifierType == "shared") |
| { |
| if (sh::IsWebGLBasedSpec(mShaderSpec)) |
| { |
| error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "shared"); |
| } |
| qualifier.blockStorage = EbsShared; |
| } |
| else if (qualifierType == "packed") |
| { |
| if (sh::IsWebGLBasedSpec(mShaderSpec)) |
| { |
| error(qualifierTypeLine, "Only std140 layout is allowed in WebGL", "packed"); |
| } |
| qualifier.blockStorage = EbsPacked; |
| } |
| else if (qualifierType == "std430") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.blockStorage = EbsStd430; |
| } |
| else if (qualifierType == "std140") |
| { |
| qualifier.blockStorage = EbsStd140; |
| } |
| else if (qualifierType == "row_major") |
| { |
| qualifier.matrixPacking = EmpRowMajor; |
| } |
| else if (qualifierType == "column_major") |
| { |
| qualifier.matrixPacking = EmpColumnMajor; |
| } |
| else if (qualifierType == "location") |
| { |
| error(qualifierTypeLine, "invalid layout qualifier: location requires an argument", |
| qualifierType.c_str()); |
| } |
| else if (qualifierType == "yuv" && mShaderType == GL_FRAGMENT_SHADER) |
| { |
| if (checkCanUseExtension(qualifierTypeLine, TExtension::EXT_YUV_target)) |
| { |
| qualifier.yuv = true; |
| } |
| } |
| else if (qualifierType == "rgba32f") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA32F; |
| } |
| else if (qualifierType == "rgba16f") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA16F; |
| } |
| else if (qualifierType == "r32f") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifR32F; |
| } |
| else if (qualifierType == "rgba8") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA8; |
| } |
| else if (qualifierType == "rgba8_snorm") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA8_SNORM; |
| } |
| else if (qualifierType == "rgba32i") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA32I; |
| } |
| else if (qualifierType == "rgba16i") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA16I; |
| } |
| else if (qualifierType == "rgba8i") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA8I; |
| } |
| else if (qualifierType == "r32i") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifR32I; |
| } |
| else if (qualifierType == "rgba32ui") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA32UI; |
| } |
| else if (qualifierType == "rgba16ui") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA16UI; |
| } |
| else if (qualifierType == "rgba8ui") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifRGBA8UI; |
| } |
| else if (qualifierType == "r32ui") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.imageInternalFormat = EiifR32UI; |
| } |
| else if (qualifierType == "points" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptPoints; |
| } |
| else if (qualifierType == "lines" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptLines; |
| } |
| else if (qualifierType == "lines_adjacency" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptLinesAdjacency; |
| } |
| else if (qualifierType == "triangles" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptTriangles; |
| } |
| else if (qualifierType == "triangles_adjacency" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptTrianglesAdjacency; |
| } |
| else if (qualifierType == "line_strip" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptLineStrip; |
| } |
| else if (qualifierType == "triangle_strip" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| qualifier.primitiveType = EptTriangleStrip; |
| } |
| |
| else |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); |
| } |
| |
| return qualifier; |
| } |
| |
| void TParseContext::parseLocalSize(const TString &qualifierType, |
| const TSourceLoc &qualifierTypeLine, |
| int intValue, |
| const TSourceLoc &intValueLine, |
| const std::string &intValueString, |
| size_t index, |
| sh::WorkGroupSize *localSize) |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| if (intValue < 1) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "out of range: " << getWorkGroupSizeString(index) << " must be positive"; |
| std::string reason = reasonStream.str(); |
| error(intValueLine, reason.c_str(), intValueString.c_str()); |
| } |
| (*localSize)[index] = intValue; |
| } |
| |
| void TParseContext::parseNumViews(int intValue, |
| const TSourceLoc &intValueLine, |
| const std::string &intValueString, |
| int *numViews) |
| { |
| // This error is only specified in WebGL, but tightens unspecified behavior in the native |
| // specification. |
| if (intValue < 1) |
| { |
| error(intValueLine, "out of range: num_views must be positive", intValueString.c_str()); |
| } |
| *numViews = intValue; |
| } |
| |
| void TParseContext::parseInvocations(int intValue, |
| const TSourceLoc &intValueLine, |
| const std::string &intValueString, |
| int *numInvocations) |
| { |
| // Although SPEC isn't clear whether invocations can be less than 1, we add this limit because |
| // it doesn't make sense to accept invocations <= 0. |
| if (intValue < 1 || intValue > mMaxGeometryShaderInvocations) |
| { |
| error(intValueLine, |
| "out of range: invocations must be in the range of [1, " |
| "MAX_GEOMETRY_SHADER_INVOCATIONS_OES]", |
| intValueString.c_str()); |
| } |
| else |
| { |
| *numInvocations = intValue; |
| } |
| } |
| |
| void TParseContext::parseMaxVertices(int intValue, |
| const TSourceLoc &intValueLine, |
| const std::string &intValueString, |
| int *maxVertices) |
| { |
| // Although SPEC isn't clear whether max_vertices can be less than 0, we add this limit because |
| // it doesn't make sense to accept max_vertices < 0. |
| if (intValue < 0 || intValue > mMaxGeometryShaderMaxVertices) |
| { |
| error( |
| intValueLine, |
| "out of range: max_vertices must be in the range of [0, gl_MaxGeometryOutputVertices]", |
| intValueString.c_str()); |
| } |
| else |
| { |
| *maxVertices = intValue; |
| } |
| } |
| |
| TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, |
| const TSourceLoc &qualifierTypeLine, |
| int intValue, |
| const TSourceLoc &intValueLine) |
| { |
| TLayoutQualifier qualifier = TLayoutQualifier::Create(); |
| |
| std::string intValueString = Str(intValue); |
| |
| if (qualifierType == "location") |
| { |
| // must check that location is non-negative |
| if (intValue < 0) |
| { |
| error(intValueLine, "out of range: location must be non-negative", |
| intValueString.c_str()); |
| } |
| else |
| { |
| qualifier.location = intValue; |
| qualifier.locationsSpecified = 1; |
| } |
| } |
| else if (qualifierType == "binding") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| if (intValue < 0) |
| { |
| error(intValueLine, "out of range: binding must be non-negative", |
| intValueString.c_str()); |
| } |
| else |
| { |
| qualifier.binding = intValue; |
| } |
| } |
| else if (qualifierType == "offset") |
| { |
| checkLayoutQualifierSupported(qualifierTypeLine, qualifierType, 310); |
| if (intValue < 0) |
| { |
| error(intValueLine, "out of range: offset must be non-negative", |
| intValueString.c_str()); |
| } |
| else |
| { |
| qualifier.offset = intValue; |
| } |
| } |
| else if (qualifierType == "local_size_x") |
| { |
| parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 0u, |
| &qualifier.localSize); |
| } |
| else if (qualifierType == "local_size_y") |
| { |
| parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 1u, |
| &qualifier.localSize); |
| } |
| else if (qualifierType == "local_size_z") |
| { |
| parseLocalSize(qualifierType, qualifierTypeLine, intValue, intValueLine, intValueString, 2u, |
| &qualifier.localSize); |
| } |
| else if (qualifierType == "num_views" && mShaderType == GL_VERTEX_SHADER) |
| { |
| if (checkCanUseExtension(qualifierTypeLine, TExtension::OVR_multiview)) |
| { |
| parseNumViews(intValue, intValueLine, intValueString, &qualifier.numViews); |
| } |
| } |
| else if (qualifierType == "invocations" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| parseInvocations(intValue, intValueLine, intValueString, &qualifier.invocations); |
| } |
| else if (qualifierType == "max_vertices" && mShaderType == GL_GEOMETRY_SHADER_OES && |
| checkCanUseExtension(qualifierTypeLine, TExtension::OES_geometry_shader)) |
| { |
| parseMaxVertices(intValue, intValueLine, intValueString, &qualifier.maxVertices); |
| } |
| |
| else |
| { |
| error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str()); |
| } |
| |
| return qualifier; |
| } |
| |
| TTypeQualifierBuilder *TParseContext::createTypeQualifierBuilder(const TSourceLoc &loc) |
| { |
| return new TTypeQualifierBuilder( |
| new TStorageQualifierWrapper(symbolTable.atGlobalLevel() ? EvqGlobal : EvqTemporary, loc), |
| mShaderVersion); |
| } |
| |
| TStorageQualifierWrapper *TParseContext::parseGlobalStorageQualifier(TQualifier qualifier, |
| const TSourceLoc &loc) |
| { |
| checkIsAtGlobalLevel(loc, getQualifierString(qualifier)); |
| return new TStorageQualifierWrapper(qualifier, loc); |
| } |
| |
| TStorageQualifierWrapper *TParseContext::parseVaryingQualifier(const TSourceLoc &loc) |
| { |
| if (getShaderType() == GL_VERTEX_SHADER) |
| { |
| return parseGlobalStorageQualifier(EvqVaryingOut, loc); |
| } |
| return parseGlobalStorageQualifier(EvqVaryingIn, loc); |
| } |
| |
| TStorageQualifierWrapper *TParseContext::parseInQualifier(const TSourceLoc &loc) |
| { |
| if (declaringFunction()) |
| { |
| return new TStorageQualifierWrapper(EvqIn, loc); |
| } |
| |
| switch (getShaderType()) |
| { |
| case GL_VERTEX_SHADER: |
| { |
| if (mShaderVersion < 300 && !isExtensionEnabled(TExtension::OVR_multiview)) |
| { |
| error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); |
| } |
| return new TStorageQualifierWrapper(EvqVertexIn, loc); |
| } |
| case GL_FRAGMENT_SHADER: |
| { |
| if (mShaderVersion < 300) |
| { |
| error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "in"); |
| } |
| return new TStorageQualifierWrapper(EvqFragmentIn, loc); |
| } |
| case GL_COMPUTE_SHADER: |
| { |
| return new TStorageQualifierWrapper(EvqComputeIn, loc); |
| } |
| case GL_GEOMETRY_SHADER_OES: |
| { |
| return new TStorageQualifierWrapper(EvqGeometryIn, loc); |
| } |
| default: |
| { |
| UNREACHABLE(); |
| return new TStorageQualifierWrapper(EvqLast, loc); |
| } |
| } |
| } |
| |
| TStorageQualifierWrapper *TParseContext::parseOutQualifier(const TSourceLoc &loc) |
| { |
| if (declaringFunction()) |
| { |
| return new TStorageQualifierWrapper(EvqOut, loc); |
| } |
| switch (getShaderType()) |
| { |
| case GL_VERTEX_SHADER: |
| { |
| if (mShaderVersion < 300) |
| { |
| error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out"); |
| } |
| return new TStorageQualifierWrapper(EvqVertexOut, loc); |
| } |
| case GL_FRAGMENT_SHADER: |
| { |
| if (mShaderVersion < 300) |
| { |
| error(loc, "storage qualifier supported in GLSL ES 3.00 and above only", "out"); |
| } |
| return new TStorageQualifierWrapper(EvqFragmentOut, loc); |
| } |
| case GL_COMPUTE_SHADER: |
| { |
| error(loc, "storage qualifier isn't supported in compute shaders", "out"); |
| return new TStorageQualifierWrapper(EvqLast, loc); |
| } |
| case GL_GEOMETRY_SHADER_OES: |
| { |
| return new TStorageQualifierWrapper(EvqGeometryOut, loc); |
| } |
| default: |
| { |
| UNREACHABLE(); |
| return new TStorageQualifierWrapper(EvqLast, loc); |
| } |
| } |
| } |
| |
| TStorageQualifierWrapper *TParseContext::parseInOutQualifier(const TSourceLoc &loc) |
| { |
| if (!declaringFunction()) |
| { |
| error(loc, "invalid qualifier: can be only used with function parameters", "inout"); |
| } |
| return new TStorageQualifierWrapper(EvqInOut, loc); |
| } |
| |
| TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, |
| TLayoutQualifier rightQualifier, |
| const TSourceLoc &rightQualifierLocation) |
| { |
| return sh::JoinLayoutQualifiers(leftQualifier, rightQualifier, rightQualifierLocation, |
| mDiagnostics); |
| } |
| |
| TField *TParseContext::parseStructDeclarator(TString *identifier, const TSourceLoc &loc) |
| { |
| checkIsNotReserved(loc, *identifier); |
| TType *type = new TType(EbtVoid, EbpUndefined); |
| return new TField(type, identifier, loc); |
| } |
| |
| TField *TParseContext::parseStructArrayDeclarator(TString *identifier, |
| const TSourceLoc &loc, |
| const TVector<unsigned int> &arraySizes, |
| const TSourceLoc &arraySizeLoc) |
| { |
| checkIsNotReserved(loc, *identifier); |
| |
| TType *type = new TType(EbtVoid, EbpUndefined); |
| type->makeArrays(arraySizes); |
| |
| return new TField(type, identifier, loc); |
| } |
| |
| void TParseContext::checkDoesNotHaveDuplicateFieldName(const TFieldList::const_iterator begin, |
| const TFieldList::const_iterator end, |
| const TString &name, |
| const TSourceLoc &location) |
| { |
| for (auto fieldIter = begin; fieldIter != end; ++fieldIter) |
| { |
| if ((*fieldIter)->name() == name) |
| { |
| error(location, "duplicate field name in structure", name.c_str()); |
| } |
| } |
| } |
| |
| TFieldList *TParseContext::addStructFieldList(TFieldList *fields, const TSourceLoc &location) |
| { |
| for (TFieldList::const_iterator fieldIter = fields->begin(); fieldIter != fields->end(); |
| ++fieldIter) |
| { |
| checkDoesNotHaveDuplicateFieldName(fields->begin(), fieldIter, (*fieldIter)->name(), |
| location); |
| } |
| return fields; |
| } |
| |
| TFieldList *TParseContext::combineStructFieldLists(TFieldList *processedFields, |
| const TFieldList *newlyAddedFields, |
| const TSourceLoc &location) |
| { |
| for (TField *field : *newlyAddedFields) |
| { |
| checkDoesNotHaveDuplicateFieldName(processedFields->begin(), processedFields->end(), |
| field->name(), location); |
| processedFields->push_back(field); |
| } |
| return processedFields; |
| } |
| |
| TFieldList *TParseContext::addStructDeclaratorListWithQualifiers( |
| const TTypeQualifierBuilder &typeQualifierBuilder, |
| TPublicType *typeSpecifier, |
| TFieldList *fieldList) |
| { |
| TTypeQualifier typeQualifier = typeQualifierBuilder.getVariableTypeQualifier(mDiagnostics); |
| |
| typeSpecifier->qualifier = typeQualifier.qualifier; |
| typeSpecifier->layoutQualifier = typeQualifier.layoutQualifier; |
| typeSpecifier->memoryQualifier = typeQualifier.memoryQualifier; |
| typeSpecifier->invariant = typeQualifier.invariant; |
| if (typeQualifier.precision != EbpUndefined) |
| { |
| typeSpecifier->precision = typeQualifier.precision; |
| } |
| return addStructDeclaratorList(*typeSpecifier, fieldList); |
| } |
| |
| TFieldList *TParseContext::addStructDeclaratorList(const TPublicType &typeSpecifier, |
| TFieldList *declaratorList) |
| { |
| checkPrecisionSpecified(typeSpecifier.getLine(), typeSpecifier.precision, |
| typeSpecifier.getBasicType()); |
| |
| checkIsNonVoid(typeSpecifier.getLine(), (*declaratorList)[0]->name(), |
| typeSpecifier.getBasicType()); |
| |
| checkWorkGroupSizeIsNotSpecified(typeSpecifier.getLine(), typeSpecifier.layoutQualifier); |
| |
| for (TField *declarator : *declaratorList) |
| { |
| // Don't allow arrays of arrays in ESSL < 3.10. |
| if (declarator->type()->isArray()) |
| { |
| checkArrayElementIsNotArray(typeSpecifier.getLine(), typeSpecifier); |
| } |
| |
| auto *declaratorArraySizes = declarator->type()->getArraySizes(); |
| |
| TType *type = declarator->type(); |
| *type = TType(typeSpecifier); |
| if (declaratorArraySizes != nullptr) |
| { |
| for (unsigned int arraySize : *declaratorArraySizes) |
| { |
| type->makeArray(arraySize); |
| } |
| } |
| |
| checkIsBelowStructNestingLimit(typeSpecifier.getLine(), *declarator); |
| } |
| |
| return declaratorList; |
| } |
| |
| TTypeSpecifierNonArray TParseContext::addStructure(const TSourceLoc &structLine, |
| const TSourceLoc &nameLine, |
| const TString *structName, |
| TFieldList *fieldList) |
| { |
| TStructure *structure = new TStructure(&symbolTable, structName, fieldList); |
| |
| // Store a bool in the struct if we're at global scope, to allow us to |
| // skip the local struct scoping workaround in HLSL. |
| structure->setAtGlobalScope(symbolTable.atGlobalLevel()); |
| |
| if (!structName->empty()) |
| { |
| checkIsNotReserved(nameLine, *structName); |
| if (!symbolTable.declareStructType(structure)) |
| { |
| error(nameLine, "redefinition of a struct", structName->c_str()); |
| } |
| } |
| |
| // ensure we do not specify any storage qualifiers on the struct members |
| for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++) |
| { |
| TField &field = *(*fieldList)[typeListIndex]; |
| const TQualifier qualifier = field.type()->getQualifier(); |
| switch (qualifier) |
| { |
| case EvqGlobal: |
| case EvqTemporary: |
| break; |
| default: |
| error(field.line(), "invalid qualifier on struct member", |
| getQualifierString(qualifier)); |
| break; |
| } |
| if (field.type()->isInvariant()) |
| { |
| error(field.line(), "invalid qualifier on struct member", "invariant"); |
| } |
| // ESSL 3.10 section 4.1.8 -- atomic_uint or images are not allowed as structure member. |
| if (IsImage(field.type()->getBasicType()) || IsAtomicCounter(field.type()->getBasicType())) |
| { |
| error(field.line(), "disallowed type in struct", field.type()->getBasicString()); |
| } |
| |
| checkIsNotUnsizedArray(field.line(), "array members of structs must specify a size", |
| field.name().c_str(), field.type()); |
| |
| checkMemoryQualifierIsNotSpecified(field.type()->getMemoryQualifier(), field.line()); |
| |
| checkBindingIsNotSpecified(field.line(), field.type()->getLayoutQualifier().binding); |
| |
| checkLocationIsNotSpecified(field.line(), field.type()->getLayoutQualifier()); |
| } |
| |
| TTypeSpecifierNonArray typeSpecifierNonArray; |
| typeSpecifierNonArray.initializeStruct(structure, true, structLine); |
| exitStructDeclaration(); |
| |
| return typeSpecifierNonArray; |
| } |
| |
| TIntermSwitch *TParseContext::addSwitch(TIntermTyped *init, |
| TIntermBlock *statementList, |
| const TSourceLoc &loc) |
| { |
| TBasicType switchType = init->getBasicType(); |
| if ((switchType != EbtInt && switchType != EbtUInt) || init->isMatrix() || init->isArray() || |
| init->isVector()) |
| { |
| error(init->getLine(), "init-expression in a switch statement must be a scalar integer", |
| "switch"); |
| return nullptr; |
| } |
| |
| ASSERT(statementList); |
| if (!ValidateSwitchStatementList(switchType, mShaderVersion, mDiagnostics, statementList, loc)) |
| { |
| ASSERT(mDiagnostics->numErrors() > 0); |
| return nullptr; |
| } |
| |
| TIntermSwitch *node = new TIntermSwitch(init, statementList); |
| node->setLine(loc); |
| return node; |
| } |
| |
| TIntermCase *TParseContext::addCase(TIntermTyped *condition, const TSourceLoc &loc) |
| { |
| if (mSwitchNestingLevel == 0) |
| { |
| error(loc, "case labels need to be inside switch statements", "case"); |
| return nullptr; |
| } |
| if (condition == nullptr) |
| { |
| error(loc, "case label must have a condition", "case"); |
| return nullptr; |
| } |
| if ((condition->getBasicType() != EbtInt && condition->getBasicType() != EbtUInt) || |
| condition->isMatrix() || condition->isArray() || condition->isVector()) |
| { |
| error(condition->getLine(), "case label must be a scalar integer", "case"); |
| } |
| TIntermConstantUnion *conditionConst = condition->getAsConstantUnion(); |
| // TODO(oetuaho@nvidia.com): Get rid of the conditionConst == nullptr check once all constant |
| // expressions can be folded. Right now we don't allow constant expressions that ANGLE can't |
| // fold in case labels. |
| if (condition->getQualifier() != EvqConst || conditionConst == nullptr) |
| { |
| error(condition->getLine(), "case label must be constant", "case"); |
| } |
| TIntermCase *node = new TIntermCase(condition); |
| node->setLine(loc); |
| return node; |
| } |
| |
| TIntermCase *TParseContext::addDefault(const TSourceLoc &loc) |
| { |
| if (mSwitchNestingLevel == 0) |
| { |
| error(loc, "default labels need to be inside switch statements", "default"); |
| return nullptr; |
| } |
| TIntermCase *node = new TIntermCase(nullptr); |
| node->setLine(loc); |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::createUnaryMath(TOperator op, |
| TIntermTyped *child, |
| const TSourceLoc &loc) |
| { |
| ASSERT(child != nullptr); |
| |
| switch (op) |
| { |
| case EOpLogicalNot: |
| if (child->getBasicType() != EbtBool || child->isMatrix() || child->isArray() || |
| child->isVector()) |
| { |
| unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); |
| return nullptr; |
| } |
| break; |
| case EOpBitwiseNot: |
| if ((child->getBasicType() != EbtInt && child->getBasicType() != EbtUInt) || |
| child->isMatrix() || child->isArray()) |
| { |
| unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); |
| return nullptr; |
| } |
| break; |
| case EOpPostIncrement: |
| case EOpPreIncrement: |
| case EOpPostDecrement: |
| case EOpPreDecrement: |
| case EOpNegative: |
| case EOpPositive: |
| if (child->getBasicType() == EbtStruct || child->isInterfaceBlock() || |
| child->getBasicType() == EbtBool || child->isArray() || |
| IsOpaqueType(child->getBasicType())) |
| { |
| unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); |
| return nullptr; |
| } |
| // Operators for built-ins are already type checked against their prototype. |
| default: |
| break; |
| } |
| |
| if (child->getMemoryQualifier().writeonly) |
| { |
| unaryOpError(loc, GetOperatorString(op), child->getCompleteString()); |
| return nullptr; |
| } |
| |
| TIntermUnary *node = new TIntermUnary(op, child); |
| node->setLine(loc); |
| |
| return node->fold(mDiagnostics); |
| } |
| |
| TIntermTyped *TParseContext::addUnaryMath(TOperator op, TIntermTyped *child, const TSourceLoc &loc) |
| { |
| ASSERT(op != EOpNull); |
| TIntermTyped *node = createUnaryMath(op, child, loc); |
| if (node == nullptr) |
| { |
| return child; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addUnaryMathLValue(TOperator op, |
| TIntermTyped *child, |
| const TSourceLoc &loc) |
| { |
| checkCanBeLValue(loc, GetOperatorString(op), child); |
| return addUnaryMath(op, child, loc); |
| } |
| |
| bool TParseContext::binaryOpCommonCheck(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| // Check opaque types are not allowed to be operands in expressions other than array indexing |
| // and structure member selection. |
| if (IsOpaqueType(left->getBasicType()) || IsOpaqueType(right->getBasicType())) |
| { |
| switch (op) |
| { |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| break; |
| case EOpIndexDirectStruct: |
| UNREACHABLE(); |
| |
| default: |
| error(loc, "Invalid operation for variables with an opaque type", |
| GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| if (right->getMemoryQualifier().writeonly) |
| { |
| error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op)); |
| return false; |
| } |
| |
| if (left->getMemoryQualifier().writeonly) |
| { |
| switch (op) |
| { |
| case EOpAssign: |
| case EOpInitialize: |
| case EOpIndexDirect: |
| case EOpIndexIndirect: |
| case EOpIndexDirectStruct: |
| case EOpIndexDirectInterfaceBlock: |
| break; |
| default: |
| error(loc, "Invalid operation for variables with writeonly", GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| if (left->getType().getStruct() || right->getType().getStruct()) |
| { |
| switch (op) |
| { |
| case EOpIndexDirectStruct: |
| ASSERT(left->getType().getStruct()); |
| break; |
| case EOpEqual: |
| case EOpNotEqual: |
| case EOpAssign: |
| case EOpInitialize: |
| if (left->getType() != right->getType()) |
| { |
| return false; |
| } |
| break; |
| default: |
| error(loc, "Invalid operation for structs", GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| if (left->isInterfaceBlock() || right->isInterfaceBlock()) |
| { |
| switch (op) |
| { |
| case EOpIndexDirectInterfaceBlock: |
| ASSERT(left->getType().getInterfaceBlock()); |
| break; |
| default: |
| error(loc, "Invalid operation for interface blocks", GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| if (left->isArray() != right->isArray()) |
| { |
| error(loc, "array / non-array mismatch", GetOperatorString(op)); |
| return false; |
| } |
| |
| if (left->isArray()) |
| { |
| ASSERT(right->isArray()); |
| if (mShaderVersion < 300) |
| { |
| error(loc, "Invalid operation for arrays", GetOperatorString(op)); |
| return false; |
| } |
| |
| switch (op) |
| { |
| case EOpEqual: |
| case EOpNotEqual: |
| case EOpAssign: |
| case EOpInitialize: |
| break; |
| default: |
| error(loc, "Invalid operation for arrays", GetOperatorString(op)); |
| return false; |
| } |
| // At this point, size of implicitly sized arrays should be resolved. |
| if (*left->getType().getArraySizes() != *right->getType().getArraySizes()) |
| { |
| error(loc, "array size mismatch", GetOperatorString(op)); |
| return false; |
| } |
| } |
| |
| // Check ops which require integer / ivec parameters |
| bool isBitShift = false; |
| switch (op) |
| { |
| case EOpBitShiftLeft: |
| case EOpBitShiftRight: |
| case EOpBitShiftLeftAssign: |
| case EOpBitShiftRightAssign: |
| // Unsigned can be bit-shifted by signed and vice versa, but we need to |
| // check that the basic type is an integer type. |
| isBitShift = true; |
| if (!IsInteger(left->getBasicType()) || !IsInteger(right->getBasicType())) |
| { |
| return false; |
| } |
| break; |
| case EOpBitwiseAnd: |
| case EOpBitwiseXor: |
| case EOpBitwiseOr: |
| case EOpBitwiseAndAssign: |
| case EOpBitwiseXorAssign: |
| case EOpBitwiseOrAssign: |
| // It is enough to check the type of only one operand, since later it |
| // is checked that the operand types match. |
| if (!IsInteger(left->getBasicType())) |
| { |
| return false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| // GLSL ES 1.00 and 3.00 do not support implicit type casting. |
| // So the basic type should usually match. |
| if (!isBitShift && left->getBasicType() != right->getBasicType()) |
| { |
| return false; |
| } |
| |
| // Check that: |
| // 1. Type sizes match exactly on ops that require that. |
| // 2. Restrictions for structs that contain arrays or samplers are respected. |
| // 3. Arithmetic op type dimensionality restrictions for ops other than multiply are respected. |
| switch (op) |
| { |
| case EOpAssign: |
| case EOpInitialize: |
| case EOpEqual: |
| case EOpNotEqual: |
| // ESSL 1.00 sections 5.7, 5.8, 5.9 |
| if (mShaderVersion < 300 && left->getType().isStructureContainingArrays()) |
| { |
| error(loc, "undefined operation for structs containing arrays", |
| GetOperatorString(op)); |
| return false; |
| } |
| // Samplers as l-values are disallowed also in ESSL 3.00, see section 4.1.7, |
| // we interpret the spec so that this extends to structs containing samplers, |
| // similarly to ESSL 1.00 spec. |
| if ((mShaderVersion < 300 || op == EOpAssign || op == EOpInitialize) && |
| left->getType().isStructureContainingSamplers()) |
| { |
| error(loc, "undefined operation for structs containing samplers", |
| GetOperatorString(op)); |
| return false; |
| } |
| |
| if ((left->getNominalSize() != right->getNominalSize()) || |
| (left->getSecondarySize() != right->getSecondarySize())) |
| { |
| error(loc, "dimension mismatch", GetOperatorString(op)); |
| return false; |
| } |
| break; |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| if (!left->isScalar() || !right->isScalar()) |
| { |
| error(loc, "comparison operator only defined for scalars", GetOperatorString(op)); |
| return false; |
| } |
| break; |
| case EOpAdd: |
| case EOpSub: |
| case EOpDiv: |
| case EOpIMod: |
| case EOpBitShiftLeft: |
| case EOpBitShiftRight: |
| case EOpBitwiseAnd: |
| case EOpBitwiseXor: |
| case EOpBitwiseOr: |
| case EOpAddAssign: |
| case EOpSubAssign: |
| case EOpDivAssign: |
| case EOpIModAssign: |
| case EOpBitShiftLeftAssign: |
| case EOpBitShiftRightAssign: |
| case EOpBitwiseAndAssign: |
| case EOpBitwiseXorAssign: |
| case EOpBitwiseOrAssign: |
| if ((left->isMatrix() && right->isVector()) || (left->isVector() && right->isMatrix())) |
| { |
| return false; |
| } |
| |
| // Are the sizes compatible? |
| if (left->getNominalSize() != right->getNominalSize() || |
| left->getSecondarySize() != right->getSecondarySize()) |
| { |
| // If the nominal sizes of operands do not match: |
| // One of them must be a scalar. |
| if (!left->isScalar() && !right->isScalar()) |
| return false; |
| |
| // In the case of compound assignment other than multiply-assign, |
| // the right side needs to be a scalar. Otherwise a vector/matrix |
| // would be assigned to a scalar. A scalar can't be shifted by a |
| // vector either. |
| if (!right->isScalar() && |
| (IsAssignment(op) || op == EOpBitShiftLeft || op == EOpBitShiftRight)) |
| return false; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool TParseContext::isMultiplicationTypeCombinationValid(TOperator op, |
| const TType &left, |
| const TType &right) |
| { |
| switch (op) |
| { |
| case EOpMul: |
| case EOpMulAssign: |
| return left.getNominalSize() == right.getNominalSize() && |
| left.getSecondarySize() == right.getSecondarySize(); |
| case EOpVectorTimesScalar: |
| return true; |
| case EOpVectorTimesScalarAssign: |
| ASSERT(!left.isMatrix() && !right.isMatrix()); |
| return left.isVector() && !right.isVector(); |
| case EOpVectorTimesMatrix: |
| return left.getNominalSize() == right.getRows(); |
| case EOpVectorTimesMatrixAssign: |
| ASSERT(!left.isMatrix() && right.isMatrix()); |
| return left.isVector() && left.getNominalSize() == right.getRows() && |
| left.getNominalSize() == right.getCols(); |
| case EOpMatrixTimesVector: |
| return left.getCols() == right.getNominalSize(); |
| case EOpMatrixTimesScalar: |
| return true; |
| case EOpMatrixTimesScalarAssign: |
| ASSERT(left.isMatrix() && !right.isMatrix()); |
| return !right.isVector(); |
| case EOpMatrixTimesMatrix: |
| return left.getCols() == right.getRows(); |
| case EOpMatrixTimesMatrixAssign: |
| ASSERT(left.isMatrix() && right.isMatrix()); |
| // We need to check two things: |
| // 1. The matrix multiplication step is valid. |
| // 2. The result will have the same number of columns as the lvalue. |
| return left.getCols() == right.getRows() && left.getCols() == right.getCols(); |
| |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMathInternal(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| if (!binaryOpCommonCheck(op, left, right, loc)) |
| return nullptr; |
| |
| switch (op) |
| { |
| case EOpEqual: |
| case EOpNotEqual: |
| case EOpLessThan: |
| case EOpGreaterThan: |
| case EOpLessThanEqual: |
| case EOpGreaterThanEqual: |
| break; |
| case EOpLogicalOr: |
| case EOpLogicalXor: |
| case EOpLogicalAnd: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| if (left->getBasicType() != EbtBool || !left->isScalar() || !right->isScalar()) |
| { |
| return nullptr; |
| } |
| // Basic types matching should have been already checked. |
| ASSERT(right->getBasicType() == EbtBool); |
| break; |
| case EOpAdd: |
| case EOpSub: |
| case EOpDiv: |
| case EOpMul: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| if (left->getBasicType() == EbtBool) |
| { |
| return nullptr; |
| } |
| break; |
| case EOpIMod: |
| ASSERT(!left->isArray() && !right->isArray() && !left->getType().getStruct() && |
| !right->getType().getStruct()); |
| // Note that this is only for the % operator, not for mod() |
| if (left->getBasicType() == EbtBool || left->getBasicType() == EbtFloat) |
| { |
| return nullptr; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if (op == EOpMul) |
| { |
| op = TIntermBinary::GetMulOpBasedOnOperands(left->getType(), right->getType()); |
| if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) |
| { |
| return nullptr; |
| } |
| } |
| |
| TIntermBinary *node = new TIntermBinary(op, left, right); |
| node->setLine(loc); |
| |
| // See if we can fold constants. |
| return node->fold(mDiagnostics); |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMath(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); |
| if (node == 0) |
| { |
| binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), |
| right->getCompleteString()); |
| return left; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addBinaryMathBooleanResult(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| TIntermTyped *node = addBinaryMathInternal(op, left, right, loc); |
| if (node == nullptr) |
| { |
| binaryOpError(loc, GetOperatorString(op), left->getCompleteString(), |
| right->getCompleteString()); |
| node = CreateBoolNode(false); |
| node->setLine(loc); |
| } |
| return node; |
| } |
| |
| TIntermBinary *TParseContext::createAssign(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| if (binaryOpCommonCheck(op, left, right, loc)) |
| { |
| if (op == EOpMulAssign) |
| { |
| op = TIntermBinary::GetMulAssignOpBasedOnOperands(left->getType(), right->getType()); |
| if (!isMultiplicationTypeCombinationValid(op, left->getType(), right->getType())) |
| { |
| return nullptr; |
| } |
| } |
| TIntermBinary *node = new TIntermBinary(op, left, right); |
| node->setLine(loc); |
| |
| return node; |
| } |
| return nullptr; |
| } |
| |
| TIntermTyped *TParseContext::addAssign(TOperator op, |
| TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| checkCanBeLValue(loc, "assign", left); |
| TIntermTyped *node = createAssign(op, left, right, loc); |
| if (node == nullptr) |
| { |
| assignError(loc, "assign", left->getCompleteString(), right->getCompleteString()); |
| return left; |
| } |
| return node; |
| } |
| |
| TIntermTyped *TParseContext::addComma(TIntermTyped *left, |
| TIntermTyped *right, |
| const TSourceLoc &loc) |
| { |
| // WebGL2 section 5.26, the following results in an error: |
| // "Sequence operator applied to void, arrays, or structs containing arrays" |
| if (mShaderSpec == SH_WEBGL2_SPEC && |
| (left->isArray() || left->getBasicType() == EbtVoid || |
| left->getType().isStructureContainingArrays() || right->isArray() || |
| right->getBasicType() == EbtVoid || right->getType().isStructureContainingArrays())) |
| { |
| error(loc, |
| "sequence operator is not allowed for void, arrays, or structs containing arrays", |
| ","); |
| } |
| |
| TIntermBinary *commaNode = new TIntermBinary(EOpComma, left, right); |
| TQualifier resultQualifier = TIntermBinary::GetCommaQualifier(mShaderVersion, left, right); |
| commaNode->getTypePointer()->setQualifier(resultQualifier); |
| return commaNode->fold(mDiagnostics); |
| } |
| |
| TIntermBranch *TParseContext::addBranch(TOperator op, const TSourceLoc &loc) |
| { |
| switch (op) |
| { |
| case EOpContinue: |
| if (mLoopNestingLevel <= 0) |
| { |
| error(loc, "continue statement only allowed in loops", ""); |
| } |
| break; |
| case EOpBreak: |
| if (mLoopNestingLevel <= 0 && mSwitchNestingLevel <= 0) |
| { |
| error(loc, "break statement only allowed in loops and switch statements", ""); |
| } |
| break; |
| case EOpReturn: |
| if (mCurrentFunctionType->getBasicType() != EbtVoid) |
| { |
| error(loc, "non-void function must return a value", "return"); |
| } |
| break; |
| case EOpKill: |
| if (mShaderType != GL_FRAGMENT_SHADER) |
| { |
| error(loc, "discard supported in fragment shaders only", "discard"); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return addBranch(op, nullptr, loc); |
| } |
| |
| TIntermBranch *TParseContext::addBranch(TOperator op, |
| TIntermTyped *expression, |
| const TSourceLoc &loc) |
| { |
| if (expression != nullptr) |
| { |
| ASSERT(op == EOpReturn); |
| mFunctionReturnsValue = true; |
| if (mCurrentFunctionType->getBasicType() == EbtVoid) |
| { |
| error(loc, "void function cannot return a value", "return"); |
| } |
| else if (*mCurrentFunctionType != expression->getType()) |
| { |
| error(loc, "function return is not matching type:", "return"); |
| } |
| } |
| TIntermBranch *node = new TIntermBranch(op, expression); |
| node->setLine(loc); |
| return node; |
| } |
| |
| void TParseContext::checkTextureGather(TIntermAggregate *functionCall) |
| { |
| ASSERT(functionCall->getOp() == EOpCallBuiltInFunction); |
| const TString &name = functionCall->getFunctionSymbolInfo()->getName(); |
| bool isTextureGather = (name == "textureGather"); |
| bool isTextureGatherOffset = (name == "textureGatherOffset"); |
| if (isTextureGather || isTextureGatherOffset) |
| { |
| TIntermNode *componentNode = nullptr; |
| TIntermSequence *arguments = functionCall->getSequence(); |
| ASSERT(arguments->size() >= 2u && arguments->size() <= 4u); |
| const TIntermTyped *sampler = arguments->front()->getAsTyped(); |
| ASSERT(sampler != nullptr); |
| switch (sampler->getBasicType()) |
| { |
| case EbtSampler2D: |
| case EbtISampler2D: |
| case EbtUSampler2D: |
| case EbtSampler2DArray: |
| case EbtISampler2DArray: |
| case EbtUSampler2DArray: |
| if ((isTextureGather && arguments->size() == 3u) || |
| (isTextureGatherOffset && arguments->size() == 4u)) |
| { |
| componentNode = arguments->back(); |
| } |
| break; |
| case EbtSamplerCube: |
| case EbtISamplerCube: |
| case EbtUSamplerCube: |
| ASSERT(!isTextureGatherOffset); |
| if (arguments->size() == 3u) |
| { |
| componentNode = arguments->back(); |
| } |
| break; |
| case EbtSampler2DShadow: |
| case EbtSampler2DArrayShadow: |
| case EbtSamplerCubeShadow: |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (componentNode) |
| { |
| const TIntermConstantUnion *componentConstantUnion = |
| componentNode->getAsConstantUnion(); |
| if (componentNode->getAsTyped()->getQualifier() != EvqConst || !componentConstantUnion) |
| { |
| error(functionCall->getLine(), "Texture component must be a constant expression", |
| name.c_str()); |
| } |
| else |
| { |
| int component = componentConstantUnion->getIConst(0); |
| if (component < 0 || component > 3) |
| { |
| error(functionCall->getLine(), "Component must be in the range [0;3]", |
| name.c_str()); |
| } |
| } |
| } |
| } |
| } |
| |
| void TParseContext::checkTextureOffsetConst(TIntermAggregate *functionCall) |
| { |
| ASSERT(functionCall->getOp() == EOpCallBuiltInFunction); |
| const TString &name = functionCall->getFunctionSymbolInfo()->getName(); |
| TIntermNode *offset = nullptr; |
| TIntermSequence *arguments = functionCall->getSequence(); |
| bool useTextureGatherOffsetConstraints = false; |
| if (name == "texelFetchOffset" || name == "textureLodOffset" || |
| name == "textureProjLodOffset" || name == "textureGradOffset" || |
| name == "textureProjGradOffset") |
| { |
| offset = arguments->back(); |
| } |
| else if (name == "textureOffset" || name == "textureProjOffset") |
| { |
| // A bias parameter might follow the offset parameter. |
| ASSERT(arguments->size() >= 3); |
| offset = (*arguments)[2]; |
| } |
| else if (name == "textureGatherOffset") |
| { |
| ASSERT(arguments->size() >= 3u); |
| const TIntermTyped *sampler = arguments->front()->getAsTyped(); |
| ASSERT(sampler != nullptr); |
| switch (sampler->getBasicType()) |
| { |
| case EbtSampler2D: |
| case EbtISampler2D: |
| case EbtUSampler2D: |
| case EbtSampler2DArray: |
| case EbtISampler2DArray: |
| case EbtUSampler2DArray: |
| offset = (*arguments)[2]; |
| break; |
| case EbtSampler2DShadow: |
| case EbtSampler2DArrayShadow: |
| offset = (*arguments)[3]; |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| useTextureGatherOffsetConstraints = true; |
| } |
| if (offset != nullptr) |
| { |
| TIntermConstantUnion *offsetConstantUnion = offset->getAsConstantUnion(); |
| if (offset->getAsTyped()->getQualifier() != EvqConst || !offsetConstantUnion) |
| { |
| error(functionCall->getLine(), "Texture offset must be a constant expression", |
| name.c_str()); |
| } |
| else |
| { |
| ASSERT(offsetConstantUnion->getBasicType() == EbtInt); |
| size_t size = offsetConstantUnion->getType().getObjectSize(); |
| const TConstantUnion *values = offsetConstantUnion->getUnionArrayPointer(); |
| int minOffsetValue = useTextureGatherOffsetConstraints ? mMinProgramTextureGatherOffset |
| : mMinProgramTexelOffset; |
| int maxOffsetValue = useTextureGatherOffsetConstraints ? mMaxProgramTextureGatherOffset |
| : mMaxProgramTexelOffset; |
| for (size_t i = 0u; i < size; ++i) |
| { |
| int offsetValue = values[i].getIConst(); |
| if (offsetValue > maxOffsetValue || offsetValue < minOffsetValue) |
| { |
| std::stringstream tokenStream; |
| tokenStream << offsetValue; |
| std::string token = tokenStream.str(); |
| error(offset->getLine(), "Texture offset value out of valid range", |
| token.c_str()); |
| } |
| } |
| } |
| } |
| } |
| |
| void TParseContext::checkAtomicMemoryBuiltinFunctions(TIntermAggregate *functionCall) |
| { |
| const TString &name = functionCall->getFunctionSymbolInfo()->getName(); |
| if (IsAtomicBuiltin(name)) |
| { |
| TIntermSequence *arguments = functionCall->getSequence(); |
| TIntermTyped *memNode = (*arguments)[0]->getAsTyped(); |
| |
| if (IsBufferOrSharedVariable(memNode)) |
| { |
| return; |
| } |
| |
| while (memNode->getAsBinaryNode()) |
| { |
| memNode = memNode->getAsBinaryNode()->getLeft(); |
| if (IsBufferOrSharedVariable(memNode)) |
| { |
| return; |
| } |
| } |
| |
| error(memNode->getLine(), |
| "The value passed to the mem argument of an atomic memory function does not " |
| "correspond to a buffer or shared variable.", |
| functionCall->getFunctionSymbolInfo()->getName().c_str()); |
| } |
| } |
| |
| // GLSL ES 3.10 Revision 4, 4.9 Memory Access Qualifiers |
| void TParseContext::checkImageMemoryAccessForBuiltinFunctions(TIntermAggregate *functionCall) |
| { |
| ASSERT(functionCall->getOp() == EOpCallBuiltInFunction); |
| const TString &name = functionCall->getFunctionSymbolInfo()->getName(); |
| |
| if (name.compare(0, 5, "image") == 0) |
| { |
| TIntermSequence *arguments = functionCall->getSequence(); |
| TIntermTyped *imageNode = (*arguments)[0]->getAsTyped(); |
| |
| const TMemoryQualifier &memoryQualifier = imageNode->getMemoryQualifier(); |
| |
| if (name.compare(5, 5, "Store") == 0) |
| { |
| if (memoryQualifier.readonly) |
| { |
| error(imageNode->getLine(), |
| "'imageStore' cannot be used with images qualified as 'readonly'", |
| GetImageArgumentToken(imageNode)); |
| } |
| } |
| else if (name.compare(5, 4, "Load") == 0) |
| { |
| if (memoryQualifier.writeonly) |
| { |
| error(imageNode->getLine(), |
| "'imageLoad' cannot be used with images qualified as 'writeonly'", |
| GetImageArgumentToken(imageNode)); |
| } |
| } |
| } |
| } |
| |
| // GLSL ES 3.10 Revision 4, 13.51 Matching of Memory Qualifiers in Function Parameters |
| void TParseContext::checkImageMemoryAccessForUserDefinedFunctions( |
| const TFunction *functionDefinition, |
| const TIntermAggregate *functionCall) |
| { |
| ASSERT(functionCall->getOp() == EOpCallFunctionInAST); |
| |
| const TIntermSequence &arguments = *functionCall->getSequence(); |
| |
| ASSERT(functionDefinition->getParamCount() == arguments.size()); |
| |
| for (size_t i = 0; i < arguments.size(); ++i) |
| { |
| TIntermTyped *typedArgument = arguments[i]->getAsTyped(); |
| const TType &functionArgumentType = typedArgument->getType(); |
| const TType &functionParameterType = *functionDefinition->getParam(i).type; |
| ASSERT(functionArgumentType.getBasicType() == functionParameterType.getBasicType()); |
| |
| if (IsImage(functionArgumentType.getBasicType())) |
| { |
| const TMemoryQualifier &functionArgumentMemoryQualifier = |
| functionArgumentType.getMemoryQualifier(); |
| const TMemoryQualifier &functionParameterMemoryQualifier = |
| functionParameterType.getMemoryQualifier(); |
| if (functionArgumentMemoryQualifier.readonly && |
| !functionParameterMemoryQualifier.readonly) |
| { |
| error(functionCall->getLine(), |
| "Function call discards the 'readonly' qualifier from image", |
| GetImageArgumentToken(typedArgument)); |
| } |
| |
| if (functionArgumentMemoryQualifier.writeonly && |
| !functionParameterMemoryQualifier.writeonly) |
| { |
| error(functionCall->getLine(), |
| "Function call discards the 'writeonly' qualifier from image", |
| GetImageArgumentToken(typedArgument)); |
| } |
| |
| if (functionArgumentMemoryQualifier.coherent && |
| !functionParameterMemoryQualifier.coherent) |
| { |
| error(functionCall->getLine(), |
| "Function call discards the 'coherent' qualifier from image", |
| GetImageArgumentToken(typedArgument)); |
| } |
| |
| if (functionArgumentMemoryQualifier.volatileQualifier && |
| !functionParameterMemoryQualifier.volatileQualifier) |
| { |
| error(functionCall->getLine(), |
| "Function call discards the 'volatile' qualifier from image", |
| GetImageArgumentToken(typedArgument)); |
| } |
| } |
| } |
| } |
| |
| TIntermSequence *TParseContext::createEmptyArgumentsList() |
| { |
| return new TIntermSequence(); |
| } |
| |
| TIntermTyped *TParseContext::addFunctionCallOrMethod(TFunction *fnCall, |
| TIntermSequence *arguments, |
| TIntermNode *thisNode, |
| const TSourceLoc &loc) |
| { |
| if (thisNode != nullptr) |
| { |
| return addMethod(fnCall, arguments, thisNode, loc); |
| } |
| |
| TOperator op = fnCall->getBuiltInOp(); |
| if (op == EOpConstruct) |
| { |
| return addConstructor(arguments, fnCall->getReturnType(), loc); |
| } |
| else |
| { |
| ASSERT(op == EOpNull); |
| return addNonConstructorFunctionCall(fnCall, arguments, loc); |
| } |
| } |
| |
| TIntermTyped *TParseContext::addMethod(TFunction *fnCall, |
| TIntermSequence *arguments, |
| TIntermNode *thisNode, |
| const TSourceLoc &loc) |
| { |
| TIntermTyped *typedThis = thisNode->getAsTyped(); |
| // It's possible for the name pointer in the TFunction to be null in case it gets parsed as |
| // a constructor. But such a TFunction can't reach here, since the lexer goes into FIELDS |
| // mode after a dot, which makes type identifiers to be parsed as FIELD_SELECTION instead. |
| // So accessing fnCall->getName() below is safe. |
| if (fnCall->getName() != "length") |
| { |
| error(loc, "invalid method", fnCall->getName().c_str()); |
| } |
| else if (!arguments->empty()) |
| { |
| error(loc, "method takes no parameters", "length"); |
| } |
| else if (typedThis == nullptr || !typedThis->isArray()) |
| { |
| error(loc, "length can only be called on arrays", "length"); |
| } |
| else if (typedThis->getQualifier() == EvqPerVertexIn && |
| mGeometryShaderInputPrimitiveType == EptUndefined) |
| { |
| ASSERT(mShaderType == GL_GEOMETRY_SHADER_OES); |
| error(loc, "missing input primitive declaration before calling length on gl_in", "length"); |
| } |
| else |
| { |
| TIntermUnary *node = new TIntermUnary(EOpArrayLength, typedThis); |
| node->setLine(loc); |
| return node->fold(mDiagnostics); |
| } |
| return CreateZeroNode(TType(EbtInt, EbpUndefined, EvqConst)); |
| } |
| |
| TIntermTyped *TParseContext::addNonConstructorFunctionCall(TFunction *fnCall, |
| TIntermSequence *arguments, |
| const TSourceLoc &loc) |
| { |
| // First find by unmangled name to check whether the function name has been |
| // hidden by a variable name or struct typename. |
| // If a function is found, check for one with a matching argument list. |
| bool builtIn; |
| const TSymbol *symbol = symbolTable.find(fnCall->getName(), mShaderVersion, &builtIn); |
| if (symbol != nullptr && !symbol->isFunction()) |
| { |
| error(loc, "function name expected", fnCall->getName().c_str()); |
| } |
| else |
| { |
| symbol = symbolTable.find(TFunction::GetMangledNameFromCall(fnCall->getName(), *arguments), |
| mShaderVersion, &builtIn); |
| if (symbol == nullptr) |
| { |
| error(loc, "no matching overloaded function found", fnCall->getName().c_str()); |
| } |
| else |
| { |
| const TFunction *fnCandidate = static_cast<const TFunction *>(symbol); |
| // |
| // A declared function. |
| // |
| if (builtIn && fnCandidate->getExtension() != TExtension::UNDEFINED) |
| { |
| checkCanUseExtension(loc, fnCandidate->getExtension()); |
| } |
| TOperator op = fnCandidate->getBuiltInOp(); |
| if (builtIn && op != EOpNull) |
| { |
| // A function call mapped to a built-in operation. |
| if (fnCandidate->getParamCount() == 1) |
| { |
| // Treat it like a built-in unary operator. |
| TIntermNode *unaryParamNode = arguments->front(); |
| TIntermTyped *callNode = createUnaryMath(op, unaryParamNode->getAsTyped(), loc); |
| ASSERT(callNode != nullptr); |
| return callNode; |
| } |
| else |
| { |
| TIntermAggregate *callNode = |
| TIntermAggregate::Create(fnCandidate->getReturnType(), op, arguments); |
| callNode->setLine(loc); |
| |
| // Some built-in functions have out parameters too. |
| functionCallRValueLValueErrorCheck(fnCandidate, callNode); |
| |
| if (TIntermAggregate::CanFoldAggregateBuiltInOp(callNode->getOp())) |
| { |
| // See if we can constant fold a built-in. Note that this may be possible |
| // even if it is not const-qualified. |
| return callNode->fold(mDiagnostics); |
| } |
| else |
| { |
| return callNode; |
| } |
| } |
| } |
| else |
| { |
| // This is a real function call |
| TIntermAggregate *callNode = nullptr; |
| |
| // If builtIn == false, the function is user defined - could be an overloaded |
| // built-in as well. |
| // if builtIn == true, it's a builtIn function with no op associated with it. |
| // This needs to happen after the function info including name is set. |
| if (builtIn) |
| { |
| callNode = TIntermAggregate::CreateBuiltInFunctionCall(*fnCandidate, arguments); |
| checkTextureOffsetConst(callNode); |
| checkTextureGather(callNode); |
| checkImageMemoryAccessForBuiltinFunctions(callNode); |
| checkAtomicMemoryBuiltinFunctions(callNode); |
| } |
| else |
| { |
| callNode = TIntermAggregate::CreateFunctionCall(*fnCandidate, arguments); |
| checkImageMemoryAccessForUserDefinedFunctions(fnCandidate, callNode); |
| } |
| |
| functionCallRValueLValueErrorCheck(fnCandidate, callNode); |
| |
| callNode->setLine(loc); |
| |
| return callNode; |
| } |
| } |
| } |
| |
| // Error message was already written. Put on a dummy node for error recovery. |
| return CreateZeroNode(TType(EbtFloat, EbpMedium, EvqConst)); |
| } |
| |
| TIntermTyped *TParseContext::addTernarySelection(TIntermTyped *cond, |
| TIntermTyped *trueExpression, |
| TIntermTyped *falseExpression, |
| const TSourceLoc &loc) |
| { |
| if (!checkIsScalarBool(loc, cond)) |
| { |
| return falseExpression; |
| } |
| |
| if (trueExpression->getType() != falseExpression->getType()) |
| { |
| std::stringstream reasonStream; |
| reasonStream << "mismatching ternary operator operand types '" |
| << trueExpression->getCompleteString() << " and '" |
| << falseExpression->getCompleteString() << "'"; |
| std::string reason = reasonStream.str(); |
| error(loc, reason.c_str(), "?:"); |
| return falseExpression; |
| } |
| if (IsOpaqueType(trueExpression->getBasicType())) |
| { |
| // ESSL 1.00 section 4.1.7 |
| // ESSL 3.00.6 section 4.1.7 |
| // Opaque/sampler types are not allowed in most types of expressions, including ternary. |
| // Note that structs containing opaque types don't need to be checked as structs are |
| // forbidden below. |
| error(loc, "ternary operator is not allowed for opaque types", "?:"); |
| return falseExpression; |
| } |
| |
| if (cond->getMemoryQualifier().writeonly || trueExpression->getMemoryQualifier().writeonly || |
| falseExpression->getMemoryQualifier().writeonly) |
| { |
| error(loc, "ternary operator is not allowed for variables with writeonly", "?:"); |
| return falseExpression; |
| } |
| |
| // ESSL 1.00.17 sections 5.2 and 5.7: |
| // Ternary operator is not among the operators allowed for structures/arrays. |
| // ESSL 3.00.6 section 5.7: |
| // Ternary operator support is optional for arrays. No certainty that it works across all |
| // devices with struct either, so we err on the side of caution here. TODO (oetuaho@nvidia.com): |
| // Would be nice to make the spec and implementation agree completely here. |
| if (trueExpression->isArray() || trueExpression->getBasicType() == EbtStruct) |
| { |
| error(loc, "ternary operator is not allowed for structures or arrays", "?:"); |
| return falseExpression; |
| } |
| if (trueExpression->getBasicType() == EbtInterfaceBlock) |
| { |
| error(loc, "ternary operator is not allowed for interface blocks", "?:"); |
| return falseExpression; |
| } |
| |
| // WebGL2 section 5.26, the following results in an error: |
| // "Ternary operator applied to void, arrays, or structs containing arrays" |
| if (mShaderSpec == SH_WEBGL2_SPEC && trueExpression->getBasicType() == EbtVoid) |
| { |
| error(loc, "ternary operator is not allowed for void", "?:"); |
| return falseExpression; |
| } |
| |
| // Note that the node resulting from here can be a constant union without being qualified as |
| // constant. |
| TIntermTernary *node = new TIntermTernary(cond, trueExpression, falseExpression); |
| node->setLine(loc); |
| |
| return node->fold(); |
| } |
| |
| // |
| // Parse an array of strings using yyparse. |
| // |
| // Returns 0 for success. |
| // |
| int PaParseStrings(size_t count, |
| const char *const string[], |
| const int length[], |
| TParseContext *context) |
| { |
| if ((count == 0) || (string == nullptr)) |
| return 1; |
| |
| if (glslang_initialize(context)) |
| return 1; |
| |
| int error = glslang_scan(count, string, length, context); |
| if (!error) |
| error = glslang_parse(context); |
| |
| glslang_finalize(context); |
| |
| return (error == 0) && (context->numErrors() == 0) ? 0 : 1; |
| } |
| |
| } // namespace sh |