blob: 9b45b1bb1b4f6b916306886a1d07f5deeca8ee30 [file] [log] [blame]
/*
* Copyright (C) 2011-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGByteCodeParser.h"
#if ENABLE(DFG_JIT)
#include "ArithProfile.h"
#include "ArrayConstructor.h"
#include "BasicBlockLocation.h"
#include "BytecodeStructs.h"
#include "CallLinkStatus.h"
#include "CodeBlock.h"
#include "CodeBlockWithJITType.h"
#include "CommonSlowPaths.h"
#include "DFGAbstractHeap.h"
#include "DFGArrayMode.h"
#include "DFGCFG.h"
#include "DFGCapabilities.h"
#include "DFGClobberize.h"
#include "DFGClobbersExitState.h"
#include "DFGGraph.h"
#include "DFGJITCode.h"
#include "FunctionCodeBlock.h"
#include "GetByIdStatus.h"
#include "Heap.h"
#include "JSCInlines.h"
#include "JSFixedArray.h"
#include "JSModuleEnvironment.h"
#include "JSModuleNamespaceObject.h"
#include "NumberConstructor.h"
#include "ObjectConstructor.h"
#include "PreciseJumpTargets.h"
#include "PutByIdFlags.h"
#include "PutByIdStatus.h"
#include "RegExpPrototype.h"
#include "StackAlignment.h"
#include "StringConstructor.h"
#include "StructureStubInfo.h"
#include "Watchdog.h"
#include <wtf/CommaPrinter.h>
#include <wtf/HashMap.h>
#include <wtf/MathExtras.h>
#include <wtf/SetForScope.h>
#include <wtf/StdLibExtras.h>
namespace JSC { namespace DFG {
namespace DFGByteCodeParserInternal {
#ifdef NDEBUG
static const bool verbose = false;
#else
static const bool verbose = true;
#endif
} // namespace DFGByteCodeParserInternal
#define VERBOSE_LOG(...) do { \
if (DFGByteCodeParserInternal::verbose && Options::verboseDFGBytecodeParsing()) \
dataLog(__VA_ARGS__); \
} while (false)
// === ByteCodeParser ===
//
// This class is used to compile the dataflow graph from a CodeBlock.
class ByteCodeParser {
public:
ByteCodeParser(Graph& graph)
: m_vm(&graph.m_vm)
, m_codeBlock(graph.m_codeBlock)
, m_profiledBlock(graph.m_profiledBlock)
, m_graph(graph)
, m_currentBlock(0)
, m_currentIndex(0)
, m_constantUndefined(graph.freeze(jsUndefined()))
, m_constantNull(graph.freeze(jsNull()))
, m_constantNaN(graph.freeze(jsNumber(PNaN)))
, m_constantOne(graph.freeze(jsNumber(1)))
, m_numArguments(m_codeBlock->numParameters())
, m_numLocals(m_codeBlock->m_numCalleeLocals)
, m_parameterSlots(0)
, m_numPassedVarArgs(0)
, m_inlineStackTop(0)
, m_currentInstruction(0)
, m_hasDebuggerEnabled(graph.hasDebuggerEnabled())
{
ASSERT(m_profiledBlock);
}
// Parse a full CodeBlock of bytecode.
void parse();
private:
struct InlineStackEntry;
// Just parse from m_currentIndex to the end of the current CodeBlock.
void parseCodeBlock();
void ensureLocals(unsigned newNumLocals)
{
VERBOSE_LOG(" ensureLocals: trying to raise m_numLocals from ", m_numLocals, " to ", newNumLocals, "\n");
if (newNumLocals <= m_numLocals)
return;
m_numLocals = newNumLocals;
for (size_t i = 0; i < m_graph.numBlocks(); ++i)
m_graph.block(i)->ensureLocals(newNumLocals);
}
// Helper for min and max.
template<typename ChecksFunctor>
bool handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks);
void refineStatically(CallLinkStatus&, Node* callTarget);
// Blocks can either be targetable (i.e. in the m_blockLinkingTargets of one InlineStackEntry) with a well-defined bytecodeBegin,
// or they can be untargetable, with bytecodeBegin==UINT_MAX, to be managed manually and not by the linkBlock machinery.
// This is used most notably when doing polyvariant inlining (it requires a fair bit of control-flow with no bytecode analog).
// It is also used when doing an early return from an inlined callee: it is easier to fix the bytecode index later on if needed
// than to move the right index all the way to the treatment of op_ret.
BasicBlock* allocateTargetableBlock(unsigned bytecodeIndex);
BasicBlock* allocateTargetableBlock(InlineStackEntry*, unsigned bytecodeIndex);
BasicBlock* allocateUntargetableBlock();
// An untargetable block can be given a bytecodeIndex to be later managed by linkBlock, but only once, and it can never go in the other direction
void makeBlockTargetable(BasicBlock*, unsigned bytecodeIndex);
void addJumpTo(BasicBlock*);
void addJumpTo(unsigned bytecodeIndex);
// Handle calls. This resolves issues surrounding inlining and intrinsics.
enum Terminality { Terminal, NonTerminal };
Terminality handleCall(
int result, NodeType op, InlineCallFrame::Kind, unsigned instructionSize,
Node* callTarget, int argumentCountIncludingThis, int registerOffset, CallLinkStatus,
SpeculatedType prediction);
Terminality handleCall(Instruction* pc, NodeType op, CallMode);
Terminality handleVarargsCall(Instruction* pc, NodeType op, CallMode);
void emitFunctionChecks(CallVariant, Node* callTarget, VirtualRegister thisArgumnt);
void emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis);
Node* getArgumentCount();
template<typename ChecksFunctor>
bool handleRecursiveTailCall(CallVariant, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& emitFunctionCheckIfNeeded);
unsigned inliningCost(CallVariant, int argumentCountIncludingThis, InlineCallFrame::Kind); // Return UINT_MAX if it's not an inlining candidate. By convention, intrinsics have a cost of 1.
// Handle inlining. Return true if it succeeded, false if we need to plant a call.
bool handleVarargsInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, VirtualRegister thisArgument, VirtualRegister argumentsArgument, unsigned argumentsOffset, NodeType callOp, InlineCallFrame::Kind);
unsigned getInliningBalance(const CallLinkStatus&, CodeSpecializationKind);
enum class CallOptimizationResult { OptimizedToJump, Inlined, DidNothing };
CallOptimizationResult handleCallVariant(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, VirtualRegister thisArgument, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind, SpeculatedType prediction, unsigned& inliningBalance, BasicBlock* continuationBlock, bool needsToCheckCallee);
CallOptimizationResult handleInlining(Node* callTargetNode, int resultOperand, const CallLinkStatus&, int registerOffset, VirtualRegister thisArgument, int argumentCountIncludingThis, unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind, SpeculatedType prediction);
template<typename ChecksFunctor>
void inlineCall(Node* callTargetNode, int resultOperand, CallVariant, int registerOffset, int argumentCountIncludingThis, InlineCallFrame::Kind, BasicBlock* continuationBlock, const ChecksFunctor& insertChecks);
// Handle intrinsic functions. Return true if it succeeded, false if we need to plant a call.
template<typename ChecksFunctor>
bool handleIntrinsicCall(Node* callee, int resultOperand, Intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
bool handleDOMJITCall(Node* callee, int resultOperand, const DOMJIT::Signature*, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
bool handleIntrinsicGetter(int resultOperand, SpeculatedType prediction, const GetByIdVariant& intrinsicVariant, Node* thisNode, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
bool handleTypedArrayConstructor(int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, TypedArrayType, const ChecksFunctor& insertChecks);
template<typename ChecksFunctor>
bool handleConstantInternalFunction(Node* callTargetNode, int resultOperand, InternalFunction*, int registerOffset, int argumentCountIncludingThis, CodeSpecializationKind, SpeculatedType, const ChecksFunctor& insertChecks);
Node* handlePutByOffset(Node* base, unsigned identifier, PropertyOffset, const InferredType::Descriptor&, Node* value);
Node* handleGetByOffset(SpeculatedType, Node* base, unsigned identifierNumber, PropertyOffset, const InferredType::Descriptor&, NodeType = GetByOffset);
bool handleDOMJITGetter(int resultOperand, const GetByIdVariant&, Node* thisNode, unsigned identifierNumber, SpeculatedType prediction);
bool handleModuleNamespaceLoad(int resultOperand, SpeculatedType, Node* base, GetByIdStatus);
// Create a presence ObjectPropertyCondition based on some known offset and structure set. Does not
// check the validity of the condition, but it may return a null one if it encounters a contradiction.
ObjectPropertyCondition presenceLike(
JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&);
// Attempt to watch the presence of a property. It will watch that the property is present in the same
// way as in all of the structures in the set. It may emit code instead of just setting a watchpoint.
// Returns true if this all works out.
bool checkPresenceLike(JSObject* knownBase, UniquedStringImpl*, PropertyOffset, const StructureSet&);
void checkPresenceLike(Node* base, UniquedStringImpl*, PropertyOffset, const StructureSet&);
// Works with both GetByIdVariant and the setter form of PutByIdVariant.
template<typename VariantType>
Node* load(SpeculatedType, Node* base, unsigned identifierNumber, const VariantType&);
Node* store(Node* base, unsigned identifier, const PutByIdVariant&, Node* value);
void handleGetById(
int destinationOperand, SpeculatedType, Node* base, unsigned identifierNumber, GetByIdStatus, AccessType, unsigned instructionSize);
void emitPutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&, bool isDirect);
void handlePutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus&,
bool isDirect);
// Either register a watchpoint or emit a check for this condition. Returns false if the
// condition no longer holds, and therefore no reasonable check can be emitted.
bool check(const ObjectPropertyCondition&);
GetByOffsetMethod promoteToConstant(GetByOffsetMethod);
// Either register a watchpoint or emit a check for this condition. It must be a Presence
// condition. It will attempt to promote a Presence condition to an Equivalence condition.
// Emits code for the loaded value that the condition guards, and returns a node containing
// the loaded value. Returns null if the condition no longer holds.
GetByOffsetMethod planLoad(const ObjectPropertyCondition&);
Node* load(SpeculatedType, unsigned identifierNumber, const GetByOffsetMethod&, NodeType = GetByOffset);
Node* load(SpeculatedType, const ObjectPropertyCondition&, NodeType = GetByOffset);
// Calls check() for each condition in the set: that is, it either emits checks or registers
// watchpoints (or a combination of the two) to make the conditions hold. If any of those
// conditions are no longer checkable, returns false.
bool check(const ObjectPropertyConditionSet&);
// Calls check() for those conditions that aren't the slot base, and calls load() for the slot
// base. Does a combination of watchpoint registration and check emission to guard the
// conditions, and emits code to load the value from the slot base. Returns a node containing
// the loaded value. Returns null if any of the conditions were no longer checkable.
GetByOffsetMethod planLoad(const ObjectPropertyConditionSet&);
Node* load(SpeculatedType, const ObjectPropertyConditionSet&, NodeType = GetByOffset);
void prepareToParseBlock();
void clearCaches();
// Parse a single basic block of bytecode instructions.
void parseBlock(unsigned limit);
// Link block successors.
void linkBlock(BasicBlock*, Vector<BasicBlock*>& possibleTargets);
void linkBlocks(Vector<BasicBlock*>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets);
VariableAccessData* newVariableAccessData(VirtualRegister operand)
{
ASSERT(!operand.isConstant());
m_graph.m_variableAccessData.append(VariableAccessData(operand));
return &m_graph.m_variableAccessData.last();
}
// Get/Set the operands/result of a bytecode instruction.
Node* getDirect(VirtualRegister operand)
{
ASSERT(!operand.isConstant());
// Is this an argument?
if (operand.isArgument())
return getArgument(operand);
// Must be a local.
return getLocal(operand);
}
Node* get(VirtualRegister operand)
{
if (operand.isConstant()) {
unsigned constantIndex = operand.toConstantIndex();
unsigned oldSize = m_constants.size();
if (constantIndex >= oldSize || !m_constants[constantIndex]) {
const CodeBlock& codeBlock = *m_inlineStackTop->m_codeBlock;
JSValue value = codeBlock.getConstant(operand.offset());
SourceCodeRepresentation sourceCodeRepresentation = codeBlock.constantSourceCodeRepresentation(operand.offset());
if (constantIndex >= oldSize) {
m_constants.grow(constantIndex + 1);
for (unsigned i = oldSize; i < m_constants.size(); ++i)
m_constants[i] = nullptr;
}
Node* constantNode = nullptr;
if (sourceCodeRepresentation == SourceCodeRepresentation::Double)
constantNode = addToGraph(DoubleConstant, OpInfo(m_graph.freezeStrong(jsDoubleNumber(value.asNumber()))));
else
constantNode = addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(value)));
m_constants[constantIndex] = constantNode;
}
ASSERT(m_constants[constantIndex]);
return m_constants[constantIndex];
}
if (inlineCallFrame()) {
if (!inlineCallFrame()->isClosureCall) {
JSFunction* callee = inlineCallFrame()->calleeConstant();
if (operand.offset() == CallFrameSlot::callee)
return weakJSConstant(callee);
}
} else if (operand.offset() == CallFrameSlot::callee) {
// We have to do some constant-folding here because this enables CreateThis folding. Note
// that we don't have such watchpoint-based folding for inlined uses of Callee, since in that
// case if the function is a singleton then we already know it.
if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(*m_vm, m_codeBlock->ownerExecutable())) {
InferredValue* singleton = executable->singletonFunction();
if (JSValue value = singleton->inferredValue()) {
m_graph.watchpoints().addLazily(singleton);
JSFunction* function = jsCast<JSFunction*>(value);
return weakJSConstant(function);
}
}
return addToGraph(GetCallee);
}
return getDirect(m_inlineStackTop->remapOperand(operand));
}
enum SetMode {
// A normal set which follows a two-phase commit that spans code origins. During
// the current code origin it issues a MovHint, and at the start of the next
// code origin there will be a SetLocal. If the local needs flushing, the second
// SetLocal will be preceded with a Flush.
NormalSet,
// A set where the SetLocal happens immediately and there is still a Flush. This
// is relevant when assigning to a local in tricky situations for the delayed
// SetLocal logic but where we know that we have not performed any side effects
// within this code origin. This is a safe replacement for NormalSet anytime we
// know that we have not yet performed side effects in this code origin.
ImmediateSetWithFlush,
// A set where the SetLocal happens immediately and we do not Flush it even if
// this is a local that is marked as needing it. This is relevant when
// initializing locals at the top of a function.
ImmediateNakedSet
};
Node* setDirect(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
addToGraph(MovHint, OpInfo(operand.offset()), value);
// We can't exit anymore because our OSR exit state has changed.
m_exitOK = false;
DelayedSetLocal delayed(currentCodeOrigin(), operand, value, setMode);
if (setMode == NormalSet) {
m_setLocalQueue.append(delayed);
return nullptr;
}
return delayed.execute(this);
}
void processSetLocalQueue()
{
for (unsigned i = 0; i < m_setLocalQueue.size(); ++i)
m_setLocalQueue[i].execute(this);
m_setLocalQueue.shrink(0);
}
Node* set(VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
return setDirect(m_inlineStackTop->remapOperand(operand), value, setMode);
}
Node* injectLazyOperandSpeculation(Node* node)
{
ASSERT(node->op() == GetLocal);
ASSERT(node->origin.semantic.bytecodeIndex == m_currentIndex);
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
LazyOperandValueProfileKey key(m_currentIndex, node->local());
SpeculatedType prediction = m_inlineStackTop->m_lazyOperands.prediction(locker, key);
node->variableAccessData()->predict(prediction);
return node;
}
// Used in implementing get/set, above, where the operand is a local variable.
Node* getLocal(VirtualRegister operand)
{
unsigned local = operand.toLocal();
Node* node = m_currentBlock->variablesAtTail.local(local);
// This has two goals: 1) link together variable access datas, and 2)
// try to avoid creating redundant GetLocals. (1) is required for
// correctness - no other phase will ensure that block-local variable
// access data unification is done correctly. (2) is purely opportunistic
// and is meant as an compile-time optimization only.
VariableAccessData* variable;
if (node) {
variable = node->variableAccessData();
switch (node->op()) {
case GetLocal:
return node;
case SetLocal:
return node->child1().node();
default:
break;
}
} else
variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.local(local) = node;
return node;
}
Node* setLocal(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
SetForScope<CodeOrigin> originChange(m_currentSemanticOrigin, semanticOrigin);
unsigned local = operand.toLocal();
if (setMode != ImmediateNakedSet) {
ArgumentPosition* argumentPosition = findArgumentPositionForLocal(operand);
if (argumentPosition)
flushDirect(operand, argumentPosition);
else if (m_graph.needsScopeRegister() && operand == m_codeBlock->scopeRegister())
flush(operand);
}
VariableAccessData* variableAccessData = newVariableAccessData(operand);
variableAccessData->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
variableAccessData->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.local(local) = node;
return node;
}
// Used in implementing get/set, above, where the operand is an argument.
Node* getArgument(VirtualRegister operand)
{
unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
Node* node = m_currentBlock->variablesAtTail.argument(argument);
VariableAccessData* variable;
if (node) {
variable = node->variableAccessData();
switch (node->op()) {
case GetLocal:
return node;
case SetLocal:
return node->child1().node();
default:
break;
}
} else
variable = newVariableAccessData(operand);
node = injectLazyOperandSpeculation(addToGraph(GetLocal, OpInfo(variable)));
m_currentBlock->variablesAtTail.argument(argument) = node;
return node;
}
Node* setArgument(const CodeOrigin& semanticOrigin, VirtualRegister operand, Node* value, SetMode setMode = NormalSet)
{
SetForScope<CodeOrigin> originChange(m_currentSemanticOrigin, semanticOrigin);
unsigned argument = operand.toArgument();
ASSERT(argument < m_numArguments);
VariableAccessData* variableAccessData = newVariableAccessData(operand);
// Always flush arguments, except for 'this'. If 'this' is created by us,
// then make sure that it's never unboxed.
if (argument || m_graph.needsFlushedThis()) {
if (setMode != ImmediateNakedSet)
flushDirect(operand);
}
if (!argument && m_codeBlock->specializationKind() == CodeForConstruct)
variableAccessData->mergeShouldNeverUnbox(true);
variableAccessData->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadCache));
variableAccessData->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(semanticOrigin.bytecodeIndex, BadIndexingType));
Node* node = addToGraph(SetLocal, OpInfo(variableAccessData), value);
m_currentBlock->variablesAtTail.argument(argument) = node;
return node;
}
ArgumentPosition* findArgumentPositionForArgument(int argument)
{
InlineStackEntry* stack = m_inlineStackTop;
while (stack->m_inlineCallFrame)
stack = stack->m_caller;
return stack->m_argumentPositions[argument];
}
ArgumentPosition* findArgumentPositionForLocal(VirtualRegister operand)
{
for (InlineStackEntry* stack = m_inlineStackTop; ; stack = stack->m_caller) {
InlineCallFrame* inlineCallFrame = stack->m_inlineCallFrame;
if (!inlineCallFrame)
break;
if (operand.offset() < static_cast<int>(inlineCallFrame->stackOffset + CallFrame::headerSizeInRegisters))
continue;
if (operand.offset() >= static_cast<int>(inlineCallFrame->stackOffset + CallFrame::thisArgumentOffset() + inlineCallFrame->argumentsWithFixup.size()))
continue;
int argument = VirtualRegister(operand.offset() - inlineCallFrame->stackOffset).toArgument();
return stack->m_argumentPositions[argument];
}
return 0;
}
ArgumentPosition* findArgumentPosition(VirtualRegister operand)
{
if (operand.isArgument())
return findArgumentPositionForArgument(operand.toArgument());
return findArgumentPositionForLocal(operand);
}
template<typename AddFlushDirectFunc>
void flushImpl(InlineCallFrame* inlineCallFrame, const AddFlushDirectFunc& addFlushDirect)
{
int numArguments;
if (inlineCallFrame) {
ASSERT(!m_graph.hasDebuggerEnabled());
numArguments = inlineCallFrame->argumentsWithFixup.size();
if (inlineCallFrame->isClosureCall)
addFlushDirect(inlineCallFrame, remapOperand(inlineCallFrame, VirtualRegister(CallFrameSlot::callee)));
if (inlineCallFrame->isVarargs())
addFlushDirect(inlineCallFrame, remapOperand(inlineCallFrame, VirtualRegister(CallFrameSlot::argumentCount)));
} else
numArguments = m_graph.baselineCodeBlockFor(inlineCallFrame)->numParameters();
for (unsigned argument = numArguments; argument--;)
addFlushDirect(inlineCallFrame, remapOperand(inlineCallFrame, virtualRegisterForArgument(argument)));
if (m_graph.needsScopeRegister())
addFlushDirect(nullptr, m_graph.m_codeBlock->scopeRegister());
}
template<typename AddFlushDirectFunc, typename AddPhantomLocalDirectFunc>
void flushForTerminalImpl(CodeOrigin origin, const AddFlushDirectFunc& addFlushDirect, const AddPhantomLocalDirectFunc& addPhantomLocalDirect)
{
origin.walkUpInlineStack(
[&] (CodeOrigin origin) {
unsigned bytecodeIndex = origin.bytecodeIndex;
InlineCallFrame* inlineCallFrame = origin.inlineCallFrame;
flushImpl(inlineCallFrame, addFlushDirect);
CodeBlock* codeBlock = m_graph.baselineCodeBlockFor(inlineCallFrame);
FullBytecodeLiveness& fullLiveness = m_graph.livenessFor(codeBlock);
const FastBitVector& livenessAtBytecode = fullLiveness.getLiveness(bytecodeIndex);
for (unsigned local = codeBlock->m_numCalleeLocals; local--;) {
if (livenessAtBytecode[local])
addPhantomLocalDirect(inlineCallFrame, remapOperand(inlineCallFrame, virtualRegisterForLocal(local)));
}
});
}
void flush(VirtualRegister operand)
{
flushDirect(m_inlineStackTop->remapOperand(operand));
}
void flushDirect(VirtualRegister operand)
{
flushDirect(operand, findArgumentPosition(operand));
}
void flushDirect(VirtualRegister operand, ArgumentPosition* argumentPosition)
{
addFlushOrPhantomLocal<Flush>(operand, argumentPosition);
}
template<NodeType nodeType>
void addFlushOrPhantomLocal(VirtualRegister operand, ArgumentPosition* argumentPosition)
{
ASSERT(!operand.isConstant());
Node* node = m_currentBlock->variablesAtTail.operand(operand);
VariableAccessData* variable;
if (node)
variable = node->variableAccessData();
else
variable = newVariableAccessData(operand);
node = addToGraph(nodeType, OpInfo(variable));
m_currentBlock->variablesAtTail.operand(operand) = node;
if (argumentPosition)
argumentPosition->addVariable(variable);
}
void phantomLocalDirect(VirtualRegister operand)
{
addFlushOrPhantomLocal<PhantomLocal>(operand, findArgumentPosition(operand));
}
void flush(InlineStackEntry* inlineStackEntry)
{
auto addFlushDirect = [&] (InlineCallFrame*, VirtualRegister reg) { flushDirect(reg); };
flushImpl(inlineStackEntry->m_inlineCallFrame, addFlushDirect);
}
void flushForTerminal()
{
auto addFlushDirect = [&] (InlineCallFrame*, VirtualRegister reg) { flushDirect(reg); };
auto addPhantomLocalDirect = [&] (InlineCallFrame*, VirtualRegister reg) { phantomLocalDirect(reg); };
flushForTerminalImpl(currentCodeOrigin(), addFlushDirect, addPhantomLocalDirect);
}
void flushForReturn()
{
flush(m_inlineStackTop);
}
void flushIfTerminal(SwitchData& data)
{
if (data.fallThrough.bytecodeIndex() > m_currentIndex)
return;
for (unsigned i = data.cases.size(); i--;) {
if (data.cases[i].target.bytecodeIndex() > m_currentIndex)
return;
}
flushForTerminal();
}
// Assumes that the constant should be strongly marked.
Node* jsConstant(JSValue constantValue)
{
return addToGraph(JSConstant, OpInfo(m_graph.freezeStrong(constantValue)));
}
Node* weakJSConstant(JSValue constantValue)
{
return addToGraph(JSConstant, OpInfo(m_graph.freeze(constantValue)));
}
// Helper functions to get/set the this value.
Node* getThis()
{
return get(m_inlineStackTop->m_codeBlock->thisRegister());
}
void setThis(Node* value)
{
set(m_inlineStackTop->m_codeBlock->thisRegister(), value);
}
InlineCallFrame* inlineCallFrame()
{
return m_inlineStackTop->m_inlineCallFrame;
}
bool allInlineFramesAreTailCalls()
{
return !inlineCallFrame() || !inlineCallFrame()->getCallerSkippingTailCalls();
}
CodeOrigin currentCodeOrigin()
{
return CodeOrigin(m_currentIndex, inlineCallFrame());
}
NodeOrigin currentNodeOrigin()
{
CodeOrigin semantic;
CodeOrigin forExit;
if (m_currentSemanticOrigin.isSet())
semantic = m_currentSemanticOrigin;
else
semantic = currentCodeOrigin();
forExit = currentCodeOrigin();
return NodeOrigin(semantic, forExit, m_exitOK);
}
BranchData* branchData(unsigned taken, unsigned notTaken)
{
// We assume that branches originating from bytecode always have a fall-through. We
// use this assumption to avoid checking for the creation of terminal blocks.
ASSERT((taken > m_currentIndex) || (notTaken > m_currentIndex));
BranchData* data = m_graph.m_branchData.add();
*data = BranchData::withBytecodeIndices(taken, notTaken);
return data;
}
Node* addToGraph(Node* node)
{
m_hasAnyForceOSRExits |= (node->op() == ForceOSRExit);
VERBOSE_LOG(" appended ", node, " ", Graph::opName(node->op()), "\n");
m_currentBlock->append(node);
if (clobbersExitState(m_graph, node))
m_exitOK = false;
return node;
}
Node* addToGraph(NodeType op, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
op, currentNodeOrigin(), Edge(child1), Edge(child2),
Edge(child3));
return addToGraph(result);
}
Node* addToGraph(NodeType op, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
{
Node* result = m_graph.addNode(
op, currentNodeOrigin(), child1, child2, child3);
return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
op, currentNodeOrigin(), info, Edge(child1), Edge(child2),
Edge(child3));
return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
{
Node* result = m_graph.addNode(op, currentNodeOrigin(), info, child1, child2, child3);
return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Node* child1 = 0, Node* child2 = 0, Node* child3 = 0)
{
Node* result = m_graph.addNode(
op, currentNodeOrigin(), info1, info2,
Edge(child1), Edge(child2), Edge(child3));
return addToGraph(result);
}
Node* addToGraph(NodeType op, OpInfo info1, OpInfo info2, Edge child1, Edge child2 = Edge(), Edge child3 = Edge())
{
Node* result = m_graph.addNode(
op, currentNodeOrigin(), info1, info2, child1, child2, child3);
return addToGraph(result);
}
Node* addToGraph(Node::VarArgTag, NodeType op, OpInfo info1, OpInfo info2 = OpInfo())
{
Node* result = m_graph.addNode(
Node::VarArg, op, currentNodeOrigin(), info1, info2,
m_graph.m_varArgChildren.size() - m_numPassedVarArgs, m_numPassedVarArgs);
addToGraph(result);
m_numPassedVarArgs = 0;
return result;
}
void addVarArgChild(Node* child)
{
m_graph.m_varArgChildren.append(Edge(child));
m_numPassedVarArgs++;
}
void addVarArgChild(Edge child)
{
m_graph.m_varArgChildren.append(child);
m_numPassedVarArgs++;
}
Node* addCallWithoutSettingResult(
NodeType op, OpInfo opInfo, Node* callee, int argCount, int registerOffset,
OpInfo prediction)
{
addVarArgChild(callee);
size_t parameterSlots = Graph::parameterSlotsForArgCount(argCount);
if (parameterSlots > m_parameterSlots)
m_parameterSlots = parameterSlots;
for (int i = 0; i < argCount; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
return addToGraph(Node::VarArg, op, opInfo, prediction);
}
Node* addCall(
int result, NodeType op, const DOMJIT::Signature* signature, Node* callee, int argCount, int registerOffset,
SpeculatedType prediction)
{
if (op == TailCall) {
if (allInlineFramesAreTailCalls())
return addCallWithoutSettingResult(op, OpInfo(signature), callee, argCount, registerOffset, OpInfo());
op = TailCallInlinedCaller;
}
Node* call = addCallWithoutSettingResult(
op, OpInfo(signature), callee, argCount, registerOffset, OpInfo(prediction));
VirtualRegister resultReg(result);
if (resultReg.isValid())
set(resultReg, call);
return call;
}
Node* cellConstantWithStructureCheck(JSCell* object, Structure* structure)
{
// FIXME: This should route to emitPropertyCheck, not the other way around. But currently,
// this gets no profit from using emitPropertyCheck() since we'll non-adaptively watch the
// object's structure as soon as we make it a weakJSCosntant.
Node* objectNode = weakJSConstant(object);
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structure)), objectNode);
return objectNode;
}
SpeculatedType getPredictionWithoutOSRExit(unsigned bytecodeIndex)
{
SpeculatedType prediction;
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
prediction = m_inlineStackTop->m_profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex);
}
if (prediction != SpecNone)
return prediction;
// If we have no information about the values this
// node generates, we check if by any chance it is
// a tail call opcode. In that case, we walk up the
// inline frames to find a call higher in the call
// chain and use its prediction. If we only have
// inlined tail call frames, we use SpecFullTop
// to avoid a spurious OSR exit.
Instruction* instruction = &m_inlineStackTop->m_profiledBlock->instructions()[bytecodeIndex];
OpcodeID opcodeID = Interpreter::getOpcodeID(instruction->u.opcode);
switch (opcodeID) {
case op_tail_call:
case op_tail_call_varargs:
case op_tail_call_forward_arguments: {
// Things should be more permissive to us returning BOTTOM instead of TOP here.
// Currently, this will cause us to Force OSR exit. This is bad because returning
// TOP will cause anything that transitively touches this speculated type to
// also become TOP during prediction propagation.
// https://bugs.webkit.org/show_bug.cgi?id=164337
if (!inlineCallFrame())
return SpecFullTop;
CodeOrigin* codeOrigin = inlineCallFrame()->getCallerSkippingTailCalls();
if (!codeOrigin)
return SpecFullTop;
InlineStackEntry* stack = m_inlineStackTop;
while (stack->m_inlineCallFrame != codeOrigin->inlineCallFrame)
stack = stack->m_caller;
bytecodeIndex = codeOrigin->bytecodeIndex;
CodeBlock* profiledBlock = stack->m_profiledBlock;
ConcurrentJSLocker locker(profiledBlock->m_lock);
return profiledBlock->valueProfilePredictionForBytecodeOffset(locker, bytecodeIndex);
}
default:
return SpecNone;
}
RELEASE_ASSERT_NOT_REACHED();
return SpecNone;
}
SpeculatedType getPrediction(unsigned bytecodeIndex)
{
SpeculatedType prediction = getPredictionWithoutOSRExit(bytecodeIndex);
if (prediction == SpecNone) {
// We have no information about what values this node generates. Give up
// on executing this code, since we're likely to do more damage than good.
addToGraph(ForceOSRExit);
}
return prediction;
}
SpeculatedType getPredictionWithoutOSRExit()
{
return getPredictionWithoutOSRExit(m_currentIndex);
}
SpeculatedType getPrediction()
{
return getPrediction(m_currentIndex);
}
ArrayMode getArrayMode(ArrayProfile* profile, Array::Action action)
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
profile->computeUpdatedPrediction(locker, m_inlineStackTop->m_profiledBlock);
bool makeSafe = profile->outOfBounds(locker);
return ArrayMode::fromObserved(locker, profile, action, makeSafe);
}
ArrayMode getArrayMode(ArrayProfile* profile)
{
return getArrayMode(profile, Array::Read);
}
Node* makeSafe(Node* node)
{
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInt32InDFG);
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInDFG);
if (!isX86() && node->op() == ArithMod)
return node;
{
ArithProfile* arithProfile = m_inlineStackTop->m_profiledBlock->arithProfileForBytecodeOffset(m_currentIndex);
if (arithProfile) {
switch (node->op()) {
case ArithAdd:
case ArithSub:
case ValueAdd:
if (arithProfile->didObserveDouble())
node->mergeFlags(NodeMayHaveDoubleResult);
if (arithProfile->didObserveNonNumber())
node->mergeFlags(NodeMayHaveNonNumberResult);
break;
case ArithMul: {
if (arithProfile->didObserveInt52Overflow())
node->mergeFlags(NodeMayOverflowInt52);
if (arithProfile->didObserveInt32Overflow() || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInt32InBaseline);
if (arithProfile->didObserveNegZeroDouble() || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInBaseline);
if (arithProfile->didObserveDouble())
node->mergeFlags(NodeMayHaveDoubleResult);
if (arithProfile->didObserveNonNumber())
node->mergeFlags(NodeMayHaveNonNumberResult);
break;
}
case ArithNegate: {
// We'd like to assert here that the arith profile for the result of negate never
// sees a non-number, but we can't. It's true that negate never produces a non-number.
// But sometimes we'll end up grabbing the wrong ArithProfile during OSR exit, and
// profiling the wrong value, leading the ArithProfile to think it observed a non-number result.
if (arithProfile->lhsObservedType().sawNumber() || arithProfile->didObserveDouble())
node->mergeFlags(NodeMayHaveDoubleResult);
if (arithProfile->didObserveNegZeroDouble() || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInBaseline);
if (arithProfile->didObserveInt32Overflow() || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInt32InBaseline);
break;
}
default:
break;
}
}
}
if (m_inlineStackTop->m_profiledBlock->likelyToTakeSlowCase(m_currentIndex)) {
switch (node->op()) {
case UInt32ToNumber:
case ArithAdd:
case ArithSub:
case ValueAdd:
case ArithMod: // for ArithMod "MayOverflow" means we tried to divide by zero, or we saw double.
node->mergeFlags(NodeMayOverflowInt32InBaseline);
break;
default:
break;
}
}
return node;
}
Node* makeDivSafe(Node* node)
{
ASSERT(node->op() == ArithDiv);
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInt32InDFG);
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, NegativeZero))
node->mergeFlags(NodeMayNegZeroInDFG);
// The main slow case counter for op_div in the old JIT counts only when
// the operands are not numbers. We don't care about that since we already
// have speculations in place that take care of that separately. We only
// care about when the outcome of the division is not an integer, which
// is what the special fast case counter tells us.
if (!m_inlineStackTop->m_profiledBlock->couldTakeSpecialFastCase(m_currentIndex))
return node;
// FIXME: It might be possible to make this more granular.
node->mergeFlags(NodeMayOverflowInt32InBaseline | NodeMayNegZeroInBaseline);
return node;
}
void noticeArgumentsUse()
{
// All of the arguments in this function need to be formatted as JSValues because we will
// load from them in a random-access fashion and we don't want to have to switch on
// format.
for (ArgumentPosition* argument : m_inlineStackTop->m_argumentPositions)
argument->mergeShouldNeverUnbox(true);
}
bool needsDynamicLookup(ResolveType, OpcodeID);
VM* m_vm;
CodeBlock* m_codeBlock;
CodeBlock* m_profiledBlock;
Graph& m_graph;
// The current block being generated.
BasicBlock* m_currentBlock;
// The bytecode index of the current instruction being generated.
unsigned m_currentIndex;
// The semantic origin of the current node if different from the current Index.
CodeOrigin m_currentSemanticOrigin;
// True if it's OK to OSR exit right now.
bool m_exitOK { false };
FrozenValue* m_constantUndefined;
FrozenValue* m_constantNull;
FrozenValue* m_constantNaN;
FrozenValue* m_constantOne;
Vector<Node*, 16> m_constants;
HashMap<InlineCallFrame*, Vector<ArgumentPosition*>, WTF::DefaultHash<InlineCallFrame*>::Hash, WTF::NullableHashTraits<InlineCallFrame*>> m_inlineCallFrameToArgumentPositions;
// The number of arguments passed to the function.
unsigned m_numArguments;
// The number of locals (vars + temporaries) used in the function.
unsigned m_numLocals;
// The number of slots (in units of sizeof(Register)) that we need to
// preallocate for arguments to outgoing calls from this frame. This
// number includes the CallFrame slots that we initialize for the callee
// (but not the callee-initialized CallerFrame and ReturnPC slots).
// This number is 0 if and only if this function is a leaf.
unsigned m_parameterSlots;
// The number of var args passed to the next var arg node.
unsigned m_numPassedVarArgs;
struct InlineStackEntry {
ByteCodeParser* m_byteCodeParser;
CodeBlock* m_codeBlock;
CodeBlock* m_profiledBlock;
InlineCallFrame* m_inlineCallFrame;
ScriptExecutable* executable() { return m_codeBlock->ownerScriptExecutable(); }
QueryableExitProfile m_exitProfile;
// Remapping of identifier and constant numbers from the code block being
// inlined (inline callee) to the code block that we're inlining into
// (the machine code block, which is the transitive, though not necessarily
// direct, caller).
Vector<unsigned> m_identifierRemap;
Vector<unsigned> m_switchRemap;
// These are blocks whose terminal is a Jump, Branch or Switch, and whose target has not yet been linked.
// Their terminal instead refers to a bytecode index, and the right BB can be found in m_blockLinkingTargets.
Vector<BasicBlock*> m_unlinkedBlocks;
// Potential block linking targets. Must be sorted by bytecodeBegin, and
// cannot have two blocks that have the same bytecodeBegin.
Vector<BasicBlock*> m_blockLinkingTargets;
// Optional: a continuation block for returns to jump to. It is set by early returns if it does not exist.
BasicBlock* m_continuationBlock;
VirtualRegister m_returnValue;
// Speculations about variable types collected from the profiled code block,
// which are based on OSR exit profiles that past DFG compilations of this
// code block had gathered.
LazyOperandValueProfileParser m_lazyOperands;
CallLinkInfoMap m_callLinkInfos;
StubInfoMap m_stubInfos;
ByValInfoMap m_byValInfos;
// Pointers to the argument position trackers for this slice of code.
Vector<ArgumentPosition*> m_argumentPositions;
InlineStackEntry* m_caller;
InlineStackEntry(
ByteCodeParser*,
CodeBlock*,
CodeBlock* profiledBlock,
JSFunction* callee, // Null if this is a closure call.
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
InlineCallFrame::Kind,
BasicBlock* continuationBlock);
~InlineStackEntry()
{
m_byteCodeParser->m_inlineStackTop = m_caller;
}
VirtualRegister remapOperand(VirtualRegister operand) const
{
if (!m_inlineCallFrame)
return operand;
ASSERT(!operand.isConstant());
return VirtualRegister(operand.offset() + m_inlineCallFrame->stackOffset);
}
};
InlineStackEntry* m_inlineStackTop;
struct DelayedSetLocal {
CodeOrigin m_origin;
VirtualRegister m_operand;
Node* m_value;
SetMode m_setMode;
DelayedSetLocal() { }
DelayedSetLocal(const CodeOrigin& origin, VirtualRegister operand, Node* value, SetMode setMode)
: m_origin(origin)
, m_operand(operand)
, m_value(value)
, m_setMode(setMode)
{
RELEASE_ASSERT(operand.isValid());
}
Node* execute(ByteCodeParser* parser)
{
if (m_operand.isArgument())
return parser->setArgument(m_origin, m_operand, m_value, m_setMode);
return parser->setLocal(m_origin, m_operand, m_value, m_setMode);
}
};
Vector<DelayedSetLocal, 2> m_setLocalQueue;
CodeBlock* m_dfgCodeBlock;
CallLinkStatus::ContextMap m_callContextMap;
StubInfoMap m_dfgStubInfos;
Instruction* m_currentInstruction;
bool m_hasDebuggerEnabled;
bool m_hasAnyForceOSRExits { false };
};
BasicBlock* ByteCodeParser::allocateTargetableBlock(unsigned bytecodeIndex)
{
return allocateTargetableBlock(m_inlineStackTop, bytecodeIndex);
}
BasicBlock* ByteCodeParser::allocateTargetableBlock(InlineStackEntry* stackEntry, unsigned bytecodeIndex)
{
ASSERT(bytecodeIndex != UINT_MAX);
Ref<BasicBlock> block = adoptRef(*new BasicBlock(bytecodeIndex, m_numArguments, m_numLocals, 1));
BasicBlock* blockPtr = block.ptr();
// m_blockLinkingTargets must always be sorted in increasing order of bytecodeBegin
if (stackEntry->m_blockLinkingTargets.size())
ASSERT(stackEntry->m_blockLinkingTargets.last()->bytecodeBegin < bytecodeIndex);
stackEntry->m_blockLinkingTargets.append(blockPtr);
m_graph.appendBlock(WTFMove(block));
return blockPtr;
}
BasicBlock* ByteCodeParser::allocateUntargetableBlock()
{
Ref<BasicBlock> block = adoptRef(*new BasicBlock(UINT_MAX, m_numArguments, m_numLocals, 1));
BasicBlock* blockPtr = block.ptr();
m_graph.appendBlock(WTFMove(block));
return blockPtr;
}
void ByteCodeParser::makeBlockTargetable(BasicBlock* block, unsigned bytecodeIndex)
{
RELEASE_ASSERT(block->bytecodeBegin == UINT_MAX);
block->bytecodeBegin = bytecodeIndex;
// m_blockLinkingTargets must always be sorted in increasing order of bytecodeBegin
if (m_inlineStackTop->m_blockLinkingTargets.size())
ASSERT(m_inlineStackTop->m_blockLinkingTargets.last()->bytecodeBegin < bytecodeIndex);
m_inlineStackTop->m_blockLinkingTargets.append(block);
}
void ByteCodeParser::addJumpTo(BasicBlock* block)
{
ASSERT(!m_currentBlock->terminal());
Node* jumpNode = addToGraph(Jump);
jumpNode->targetBlock() = block;
m_currentBlock->didLink();
}
void ByteCodeParser::addJumpTo(unsigned bytecodeIndex)
{
ASSERT(!m_currentBlock->terminal());
addToGraph(Jump, OpInfo(bytecodeIndex));
m_inlineStackTop->m_unlinkedBlocks.append(m_currentBlock);
}
ByteCodeParser::Terminality ByteCodeParser::handleCall(Instruction* pc, NodeType op, CallMode callMode)
{
static_assert(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_construct),
"op_call, op_tail_call and op_construct should always have the same length");
static_assert(OPCODE_LENGTH(op_call) == OPCODE_LENGTH(op_tail_call),
"op_call, op_tail_call and op_construct should always have the same length");
int result = pc[1].u.operand;
Node* callTarget = get(VirtualRegister(pc[2].u.operand));
int argumentCountIncludingThis = pc[3].u.operand;
int registerOffset = -pc[4].u.operand;
CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
m_inlineStackTop->m_callLinkInfos, m_callContextMap);
InlineCallFrame::Kind kind = InlineCallFrame::kindFor(callMode);
return handleCall(result, op, kind, OPCODE_LENGTH(op_call), callTarget,
argumentCountIncludingThis, registerOffset, callLinkStatus, getPrediction());
}
void ByteCodeParser::refineStatically(CallLinkStatus& callLinkStatus, Node* callTarget)
{
if (callTarget->isCellConstant())
callLinkStatus.setProvenConstantCallee(CallVariant(callTarget->asCell()));
}
ByteCodeParser::Terminality ByteCodeParser::handleCall(
int result, NodeType op, InlineCallFrame::Kind kind, unsigned instructionSize,
Node* callTarget, int argumentCountIncludingThis, int registerOffset,
CallLinkStatus callLinkStatus, SpeculatedType prediction)
{
ASSERT(registerOffset <= 0);
refineStatically(callLinkStatus, callTarget);
VERBOSE_LOG(" Handling call at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
// If we have profiling information about this call, and it did not behave too polymorphically,
// we may be able to inline it, or in the case of recursive tail calls turn it into a jump.
if (callLinkStatus.canOptimize()) {
VirtualRegister thisArgument = virtualRegisterForArgument(0, registerOffset);
auto optimizationResult = handleInlining(callTarget, result, callLinkStatus, registerOffset, thisArgument,
argumentCountIncludingThis, m_currentIndex + instructionSize, op, kind, prediction);
if (optimizationResult == CallOptimizationResult::OptimizedToJump)
return Terminal;
if (optimizationResult == CallOptimizationResult::Inlined) {
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedCall();
return NonTerminal;
}
}
Node* callNode = addCall(result, op, nullptr, callTarget, argumentCountIncludingThis, registerOffset, prediction);
ASSERT(callNode->op() != TailCallVarargs && callNode->op() != TailCallForwardVarargs);
return callNode->op() == TailCall ? Terminal : NonTerminal;
}
ByteCodeParser::Terminality ByteCodeParser::handleVarargsCall(Instruction* pc, NodeType op, CallMode callMode)
{
static_assert(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_construct_varargs),
"op_call_varargs, op_tail_call_varargs and op_construct_varargs should always have the same length");
static_assert(OPCODE_LENGTH(op_call_varargs) == OPCODE_LENGTH(op_tail_call_varargs),
"op_call_varargs, op_tail_call_varargs and op_construct_varargs should always have the same length");
int result = pc[1].u.operand;
int callee = pc[2].u.operand;
int thisReg = pc[3].u.operand;
int arguments = pc[4].u.operand;
int firstFreeReg = pc[5].u.operand;
int firstVarArgOffset = pc[6].u.operand;
SpeculatedType prediction = getPrediction();
Node* callTarget = get(VirtualRegister(callee));
CallLinkStatus callLinkStatus = CallLinkStatus::computeFor(
m_inlineStackTop->m_profiledBlock, currentCodeOrigin(),
m_inlineStackTop->m_callLinkInfos, m_callContextMap);
refineStatically(callLinkStatus, callTarget);
VERBOSE_LOG(" Varargs call link status at ", currentCodeOrigin(), ": ", callLinkStatus, "\n");
if (callLinkStatus.canOptimize()) {
if (handleVarargsInlining(callTarget, result,
callLinkStatus, firstFreeReg, VirtualRegister(thisReg), VirtualRegister(arguments),
firstVarArgOffset, op,
InlineCallFrame::varargsKindFor(callMode))) {
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedCall();
return NonTerminal;
}
}
CallVarargsData* data = m_graph.m_callVarargsData.add();
data->firstVarArgOffset = firstVarArgOffset;
Node* thisChild = get(VirtualRegister(thisReg));
Node* argumentsChild = nullptr;
if (op != TailCallForwardVarargs)
argumentsChild = get(VirtualRegister(arguments));
if (op == TailCallVarargs || op == TailCallForwardVarargs) {
if (allInlineFramesAreTailCalls()) {
addToGraph(op, OpInfo(data), OpInfo(), callTarget, thisChild, argumentsChild);
return Terminal;
}
op = op == TailCallVarargs ? TailCallVarargsInlinedCaller : TailCallForwardVarargsInlinedCaller;
}
Node* call = addToGraph(op, OpInfo(data), OpInfo(prediction), callTarget, thisChild, argumentsChild);
VirtualRegister resultReg(result);
if (resultReg.isValid())
set(resultReg, call);
return NonTerminal;
}
void ByteCodeParser::emitFunctionChecks(CallVariant callee, Node* callTarget, VirtualRegister thisArgumentReg)
{
Node* thisArgument;
if (thisArgumentReg.isValid())
thisArgument = get(thisArgumentReg);
else
thisArgument = nullptr;
JSCell* calleeCell;
Node* callTargetForCheck;
if (callee.isClosureCall()) {
calleeCell = callee.executable();
callTargetForCheck = addToGraph(GetExecutable, callTarget);
} else {
calleeCell = callee.nonExecutableCallee();
callTargetForCheck = callTarget;
}
ASSERT(calleeCell);
addToGraph(CheckCell, OpInfo(m_graph.freeze(calleeCell)), callTargetForCheck);
if (thisArgument)
addToGraph(Phantom, thisArgument);
}
Node* ByteCodeParser::getArgumentCount()
{
Node* argumentCount;
if (m_inlineStackTop->m_inlineCallFrame && !m_inlineStackTop->m_inlineCallFrame->isVarargs())
argumentCount = jsConstant(m_graph.freeze(jsNumber(m_inlineStackTop->m_inlineCallFrame->argumentCountIncludingThis))->value());
else
argumentCount = addToGraph(GetArgumentCountIncludingThis, OpInfo(m_inlineStackTop->m_inlineCallFrame), OpInfo(SpecInt32Only));
return argumentCount;
}
void ByteCodeParser::emitArgumentPhantoms(int registerOffset, int argumentCountIncludingThis)
{
for (int i = 0; i < argumentCountIncludingThis; ++i)
addToGraph(Phantom, get(virtualRegisterForArgument(i, registerOffset)));
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleRecursiveTailCall(CallVariant callVariant, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& emitFunctionCheckIfNeeded)
{
if (UNLIKELY(!Options::optimizeRecursiveTailCalls()))
return false;
// Currently we cannot do this optimisation for closures. The problem is that "emitFunctionChecks" which we use later is too coarse, only checking the executable
// and not the value of captured variables.
if (callVariant.isClosureCall())
return false;
auto targetExecutable = callVariant.executable();
InlineStackEntry* stackEntry = m_inlineStackTop;
do {
if (targetExecutable != stackEntry->executable())
continue;
VERBOSE_LOG(" We found a recursive tail call, trying to optimize it into a jump.\n");
if (auto* callFrame = stackEntry->m_inlineCallFrame) {
// Some code may statically use the argument count from the InlineCallFrame, so it would be invalid to loop back if it does not match.
// We "continue" instead of returning false in case another stack entry further on the stack has the right number of arguments.
if (argumentCountIncludingThis != static_cast<int>(callFrame->argumentCountIncludingThis))
continue;
} else {
// We are in the machine code entry (i.e. the original caller).
// If we have more arguments than the number of parameters to the function, it is not clear where we could put them on the stack.
if (argumentCountIncludingThis > m_codeBlock->numParameters())
return false;
}
// We must add some check that the profiling information was correct and the target of this call is what we thought.
emitFunctionCheckIfNeeded();
// We flush everything, as if we were in the backedge of a loop (see treatment of op_jmp in parseBlock).
flushForTerminal();
// We must set the arguments to the right values
if (!stackEntry->m_inlineCallFrame)
addToGraph(SetArgumentCountIncludingThis, OpInfo(argumentCountIncludingThis));
int argIndex = 0;
for (; argIndex < argumentCountIncludingThis; ++argIndex) {
Node* value = get(virtualRegisterForArgument(argIndex, registerOffset));
setDirect(stackEntry->remapOperand(virtualRegisterForArgument(argIndex)), value, NormalSet);
}
Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined));
for (; argIndex < stackEntry->m_codeBlock->numParameters(); ++argIndex)
setDirect(stackEntry->remapOperand(virtualRegisterForArgument(argIndex)), undefined, NormalSet);
// We must repeat the work of op_enter here as we will jump right after it.
// We jump right after it and not before it, because of some invariant saying that a CFG root cannot have predecessors in the IR.
for (int i = 0; i < stackEntry->m_codeBlock->m_numVars; ++i)
setDirect(stackEntry->remapOperand(virtualRegisterForLocal(i)), undefined, NormalSet);
// We want to emit the SetLocals with an exit origin that points to the place we are jumping to.
unsigned oldIndex = m_currentIndex;
auto oldStackTop = m_inlineStackTop;
m_inlineStackTop = stackEntry;
m_currentIndex = OPCODE_LENGTH(op_enter);
m_exitOK = true;
processSetLocalQueue();
m_currentIndex = oldIndex;
m_inlineStackTop = oldStackTop;
m_exitOK = false;
BasicBlock** entryBlockPtr = tryBinarySearch<BasicBlock*, unsigned>(stackEntry->m_blockLinkingTargets, stackEntry->m_blockLinkingTargets.size(), OPCODE_LENGTH(op_enter), getBytecodeBeginForBlock);
RELEASE_ASSERT(entryBlockPtr);
addJumpTo(*entryBlockPtr);
return true;
// It would be unsound to jump over a non-tail call: the "tail" call is not really a tail call in that case.
} while (stackEntry->m_inlineCallFrame && stackEntry->m_inlineCallFrame->kind == InlineCallFrame::TailCall && (stackEntry = stackEntry->m_caller));
// The tail call was not recursive
return false;
}
unsigned ByteCodeParser::inliningCost(CallVariant callee, int argumentCountIncludingThis, InlineCallFrame::Kind kind)
{
CallMode callMode = InlineCallFrame::callModeFor(kind);
CodeSpecializationKind specializationKind = specializationKindFor(callMode);
VERBOSE_LOG("Considering inlining ", callee, " into ", currentCodeOrigin(), "\n");
if (m_hasDebuggerEnabled) {
VERBOSE_LOG(" Failing because the debugger is in use.\n");
return UINT_MAX;
}
FunctionExecutable* executable = callee.functionExecutable();
if (!executable) {
VERBOSE_LOG(" Failing because there is no function executable.\n");
return UINT_MAX;
}
// Do we have a code block, and does the code block's size match the heuristics/requirements for
// being an inline candidate? We might not have a code block (1) if code was thrown away,
// (2) if we simply hadn't actually made this call yet or (3) code is a builtin function and
// specialization kind is construct. In the former 2 cases, we could still theoretically attempt
// to inline it if we had a static proof of what was being called; this might happen for example
// if you call a global function, where watchpointing gives us static information. Overall,
// it's a rare case because we expect that any hot callees would have already been compiled.
CodeBlock* codeBlock = executable->baselineCodeBlockFor(specializationKind);
if (!codeBlock) {
VERBOSE_LOG(" Failing because no code block available.\n");
return UINT_MAX;
}
if (!Options::useArityFixupInlining()) {
if (codeBlock->numParameters() > argumentCountIncludingThis) {
VERBOSE_LOG(" Failing because of arity mismatch.\n");
return UINT_MAX;
}
}
CapabilityLevel capabilityLevel = inlineFunctionForCapabilityLevel(
codeBlock, specializationKind, callee.isClosureCall());
VERBOSE_LOG(" Call mode: ", callMode, "\n");
VERBOSE_LOG(" Is closure call: ", callee.isClosureCall(), "\n");
VERBOSE_LOG(" Capability level: ", capabilityLevel, "\n");
VERBOSE_LOG(" Might inline function: ", mightInlineFunctionFor(codeBlock, specializationKind), "\n");
VERBOSE_LOG(" Might compile function: ", mightCompileFunctionFor(codeBlock, specializationKind), "\n");
VERBOSE_LOG(" Is supported for inlining: ", isSupportedForInlining(codeBlock), "\n");
VERBOSE_LOG(" Is inlining candidate: ", codeBlock->ownerScriptExecutable()->isInliningCandidate(), "\n");
if (!canInline(capabilityLevel)) {
VERBOSE_LOG(" Failing because the function is not inlineable.\n");
return UINT_MAX;
}
// Check if the caller is already too large. We do this check here because that's just
// where we happen to also have the callee's code block, and we want that for the
// purpose of unsetting SABI.
if (!isSmallEnoughToInlineCodeInto(m_codeBlock)) {
codeBlock->m_shouldAlwaysBeInlined = false;
VERBOSE_LOG(" Failing because the caller is too large.\n");
return UINT_MAX;
}
// FIXME: this should be better at predicting how much bloat we will introduce by inlining
// this function.
// https://bugs.webkit.org/show_bug.cgi?id=127627
// FIXME: We currently inline functions that have run in LLInt but not in Baseline. These
// functions have very low fidelity profiling, and presumably they weren't very hot if they
// haven't gotten to Baseline yet. Consider not inlining these functions.
// https://bugs.webkit.org/show_bug.cgi?id=145503
// Have we exceeded inline stack depth, or are we trying to inline a recursive call to
// too many levels? If either of these are detected, then don't inline. We adjust our
// heuristics if we are dealing with a function that cannot otherwise be compiled.
unsigned depth = 0;
unsigned recursion = 0;
for (InlineStackEntry* entry = m_inlineStackTop; entry; entry = entry->m_caller) {
++depth;
if (depth >= Options::maximumInliningDepth()) {
VERBOSE_LOG(" Failing because depth exceeded.\n");
return UINT_MAX;
}
if (entry->executable() == executable) {
++recursion;
if (recursion >= Options::maximumInliningRecursion()) {
VERBOSE_LOG(" Failing because recursion detected.\n");
return UINT_MAX;
}
}
}
VERBOSE_LOG(" Inlining should be possible.\n");
// It might be possible to inline.
return codeBlock->instructionCount();
}
template<typename ChecksFunctor>
void ByteCodeParser::inlineCall(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, int argumentCountIncludingThis, InlineCallFrame::Kind kind, BasicBlock* continuationBlock, const ChecksFunctor& insertChecks)
{
Instruction* savedCurrentInstruction = m_currentInstruction;
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
ASSERT(inliningCost(callee, argumentCountIncludingThis, kind) != UINT_MAX);
CodeBlock* codeBlock = callee.functionExecutable()->baselineCodeBlockFor(specializationKind);
insertChecks(codeBlock);
// FIXME: Don't flush constants!
// arityFixupCount and numberOfStackPaddingSlots are different. While arityFixupCount does not consider about stack alignment,
// numberOfStackPaddingSlots consider alignment. Consider the following case,
//
// before: [ ... ][arg0][header]
// after: [ ... ][ext ][arg1][arg0][header]
//
// In the above case, arityFixupCount is 1. But numberOfStackPaddingSlots is 2 because the stack needs to be aligned.
// We insert extra slots to align stack.
int arityFixupCount = std::max<int>(codeBlock->numParameters() - argumentCountIncludingThis, 0);
int numberOfStackPaddingSlots = CommonSlowPaths::numberOfStackPaddingSlots(codeBlock, argumentCountIncludingThis);
ASSERT(!(numberOfStackPaddingSlots % stackAlignmentRegisters()));
int registerOffsetAfterFixup = registerOffset - numberOfStackPaddingSlots;
int inlineCallFrameStart = m_inlineStackTop->remapOperand(VirtualRegister(registerOffsetAfterFixup)).offset() + CallFrame::headerSizeInRegisters;
ensureLocals(
VirtualRegister(inlineCallFrameStart).toLocal() + 1 +
CallFrame::headerSizeInRegisters + codeBlock->m_numCalleeLocals);
size_t argumentPositionStart = m_graph.m_argumentPositions.size();
VirtualRegister resultReg(resultOperand);
if (resultReg.isValid())
resultReg = m_inlineStackTop->remapOperand(resultReg);
VariableAccessData* calleeVariable = nullptr;
if (callee.isClosureCall()) {
Node* calleeSet = set(
VirtualRegister(registerOffsetAfterFixup + CallFrameSlot::callee), callTargetNode, ImmediateNakedSet);
calleeVariable = calleeSet->variableAccessData();
calleeVariable->mergeShouldNeverUnbox(true);
}
if (arityFixupCount) {
// Note: we do arity fixup in two phases:
// 1. We get all the values we need and MovHint them to the expected locals.
// 2. We SetLocal them inside the callee's CodeOrigin. This way, if we exit, the callee's
// frame is already set up. If any SetLocal exits, we have a valid exit state.
// This is required because if we didn't do this in two phases, we may exit in
// the middle of arity fixup from the caller's CodeOrigin. This is unsound because if
// we did the SetLocals in the caller's frame, the memcpy may clobber needed parts
// of the frame right before exiting. For example, consider if we need to pad two args:
// [arg3][arg2][arg1][arg0]
// [fix ][fix ][arg3][arg2][arg1][arg0]
// We memcpy starting from arg0 in the direction of arg3. If we were to exit at a type check
// for arg3's SetLocal in the caller's CodeOrigin, we'd exit with a frame like so:
// [arg3][arg2][arg1][arg2][arg1][arg0]
// And the caller would then just end up thinking its argument are:
// [arg3][arg2][arg1][arg2]
// which is incorrect.
Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined));
// The stack needs to be aligned due to the JS calling convention. Thus, we have a hole if the count of arguments is not aligned.
// We call this hole "extra slot". Consider the following case, the number of arguments is 2. If this argument
// count does not fulfill the stack alignment requirement, we already inserted extra slots.
//
// before: [ ... ][ext ][arg1][arg0][header]
//
// In the above case, one extra slot is inserted. If the code's parameter count is 3, we will fixup arguments.
// At that time, we can simply use this extra slots. So the fixuped stack is the following.
//
// before: [ ... ][ext ][arg1][arg0][header]
// after: [ ... ][arg2][arg1][arg0][header]
//
// In such cases, we do not need to move frames.
if (registerOffsetAfterFixup != registerOffset) {
for (int index = 0; index < argumentCountIncludingThis; ++index) {
Node* value = get(virtualRegisterForArgument(index, registerOffset));
VirtualRegister argumentToSet = m_inlineStackTop->remapOperand(virtualRegisterForArgument(index, registerOffsetAfterFixup));
addToGraph(MovHint, OpInfo(argumentToSet.offset()), value);
m_setLocalQueue.append(DelayedSetLocal { currentCodeOrigin(), argumentToSet, value, ImmediateNakedSet });
}
}
for (int index = 0; index < arityFixupCount; ++index) {
VirtualRegister argumentToSet = m_inlineStackTop->remapOperand(virtualRegisterForArgument(argumentCountIncludingThis + index, registerOffsetAfterFixup));
addToGraph(MovHint, OpInfo(argumentToSet.offset()), undefined);
m_setLocalQueue.append(DelayedSetLocal { currentCodeOrigin(), argumentToSet, undefined, ImmediateNakedSet });
}
// At this point, it's OK to OSR exit because we finished setting up
// our callee's frame. We emit an ExitOK below from the callee's CodeOrigin.
}
InlineStackEntry inlineStackEntry(this, codeBlock, codeBlock, callee.function(), resultReg,
(VirtualRegister)inlineCallFrameStart, argumentCountIncludingThis, kind, continuationBlock);
// This is where the actual inlining really happens.
unsigned oldIndex = m_currentIndex;
m_currentIndex = 0;
// At this point, it's again OK to OSR exit.
m_exitOK = true;
addToGraph(ExitOK);
processSetLocalQueue();
InlineVariableData inlineVariableData;
inlineVariableData.inlineCallFrame = m_inlineStackTop->m_inlineCallFrame;
inlineVariableData.argumentPositionStart = argumentPositionStart;
inlineVariableData.calleeVariable = 0;
RELEASE_ASSERT(
m_inlineStackTop->m_inlineCallFrame->isClosureCall
== callee.isClosureCall());
if (callee.isClosureCall()) {
RELEASE_ASSERT(calleeVariable);
inlineVariableData.calleeVariable = calleeVariable;
}
m_graph.m_inlineVariableData.append(inlineVariableData);
parseCodeBlock();
clearCaches(); // Reset our state now that we're back to the outer code.
m_currentIndex = oldIndex;
m_exitOK = false;
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
// Most functions have at least one op_ret and thus set up the continuation block.
// In some rare cases, a function ends in op_unreachable, forcing us to allocate a new continuationBlock here.
// We must be careful to allocate it in the caller and not the top of the inline stack, since the callee is still on the stack at this point.
if (inlineStackEntry.m_continuationBlock)
m_currentBlock = inlineStackEntry.m_continuationBlock;
else
m_currentBlock = allocateTargetableBlock(inlineStackEntry.m_caller, m_currentIndex);
ASSERT(!m_currentBlock->terminal());
prepareToParseBlock();
m_currentInstruction = savedCurrentInstruction;
}
ByteCodeParser::CallOptimizationResult ByteCodeParser::handleCallVariant(Node* callTargetNode, int resultOperand, CallVariant callee, int registerOffset, VirtualRegister thisArgument, int argumentCountIncludingThis, unsigned nextOffset, InlineCallFrame::Kind kind, SpeculatedType prediction, unsigned& inliningBalance, BasicBlock* continuationBlock, bool needsToCheckCallee)
{
VERBOSE_LOG(" Considering callee ", callee, "\n");
bool didInsertChecks = false;
auto insertChecksWithAccounting = [&] () {
if (needsToCheckCallee)
emitFunctionChecks(callee, callTargetNode, thisArgument);
didInsertChecks = true;
};
if (kind == InlineCallFrame::TailCall && ByteCodeParser::handleRecursiveTailCall(callee, registerOffset, argumentCountIncludingThis, insertChecksWithAccounting)) {
RELEASE_ASSERT(didInsertChecks);
return CallOptimizationResult::OptimizedToJump;
}
RELEASE_ASSERT(!didInsertChecks);
if (!inliningBalance)
return CallOptimizationResult::DidNothing;
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
auto endSpecialCase = [&] () {
RELEASE_ASSERT(didInsertChecks);
addToGraph(Phantom, callTargetNode);
emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
inliningBalance--;
if (continuationBlock) {
m_currentIndex = nextOffset;
m_exitOK = true;
processSetLocalQueue();
addJumpTo(continuationBlock);
}
};
if (InternalFunction* function = callee.internalFunction()) {
if (handleConstantInternalFunction(callTargetNode, resultOperand, function, registerOffset, argumentCountIncludingThis, specializationKind, prediction, insertChecksWithAccounting)) {
endSpecialCase();
return CallOptimizationResult::Inlined;
}
RELEASE_ASSERT(!didInsertChecks);
return CallOptimizationResult::DidNothing;
}
Intrinsic intrinsic = callee.intrinsicFor(specializationKind);
if (intrinsic != NoIntrinsic) {
if (handleIntrinsicCall(callTargetNode, resultOperand, intrinsic, registerOffset, argumentCountIncludingThis, prediction, insertChecksWithAccounting)) {
endSpecialCase();
return CallOptimizationResult::Inlined;
}
RELEASE_ASSERT(!didInsertChecks);
// We might still try to inline the Intrinsic because it might be a builtin JS function.
}
if (Options::useDOMJIT()) {
if (const DOMJIT::Signature* signature = callee.signatureFor(specializationKind)) {
if (handleDOMJITCall(callTargetNode, resultOperand, signature, registerOffset, argumentCountIncludingThis, prediction, insertChecksWithAccounting)) {
endSpecialCase();
return CallOptimizationResult::Inlined;
}
RELEASE_ASSERT(!didInsertChecks);
}
}
unsigned myInliningCost = inliningCost(callee, argumentCountIncludingThis, kind);
if (myInliningCost > inliningBalance)
return CallOptimizationResult::DidNothing;
auto insertCheck = [&] (CodeBlock*) {
if (needsToCheckCallee)
emitFunctionChecks(callee, callTargetNode, thisArgument);
};
inlineCall(callTargetNode, resultOperand, callee, registerOffset, argumentCountIncludingThis, kind, continuationBlock, insertCheck);
inliningBalance -= myInliningCost;
return CallOptimizationResult::Inlined;
}
bool ByteCodeParser::handleVarargsInlining(Node* callTargetNode, int resultOperand,
const CallLinkStatus& callLinkStatus, int firstFreeReg, VirtualRegister thisArgument,
VirtualRegister argumentsArgument, unsigned argumentsOffset,
NodeType callOp, InlineCallFrame::Kind kind)
{
VERBOSE_LOG("Handling inlining (Varargs)...\nStack: ", currentCodeOrigin(), "\n");
if (callLinkStatus.maxNumArguments() > Options::maximumVarargsForInlining()) {
VERBOSE_LOG("Bailing inlining: too many arguments for varargs inlining.\n");
return false;
}
if (callLinkStatus.couldTakeSlowPath() || callLinkStatus.size() != 1) {
VERBOSE_LOG("Bailing inlining: polymorphic inlining is not yet supported for varargs.\n");
return false;
}
CallVariant callVariant = callLinkStatus[0];
unsigned mandatoryMinimum;
if (FunctionExecutable* functionExecutable = callVariant.functionExecutable())
mandatoryMinimum = functionExecutable->parameterCount();
else
mandatoryMinimum = 0;
// includes "this"
unsigned maxNumArguments = std::max(callLinkStatus.maxNumArguments(), mandatoryMinimum + 1);
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
if (inliningCost(callVariant, maxNumArguments, kind) > getInliningBalance(callLinkStatus, specializationKind)) {
VERBOSE_LOG("Bailing inlining: inlining cost too high.\n");
return false;
}
int registerOffset = firstFreeReg + 1;
registerOffset -= maxNumArguments; // includes "this"
registerOffset -= CallFrame::headerSizeInRegisters;
registerOffset = -WTF::roundUpToMultipleOf(stackAlignmentRegisters(), -registerOffset);
auto insertChecks = [&] (CodeBlock* codeBlock) {
emitFunctionChecks(callVariant, callTargetNode, thisArgument);
int remappedRegisterOffset =
m_inlineStackTop->remapOperand(VirtualRegister(registerOffset)).offset();
ensureLocals(VirtualRegister(remappedRegisterOffset).toLocal());
int argumentStart = registerOffset + CallFrame::headerSizeInRegisters;
int remappedArgumentStart =
m_inlineStackTop->remapOperand(VirtualRegister(argumentStart)).offset();
LoadVarargsData* data = m_graph.m_loadVarargsData.add();
data->start = VirtualRegister(remappedArgumentStart + 1);
data->count = VirtualRegister(remappedRegisterOffset + CallFrameSlot::argumentCount);
data->offset = argumentsOffset;
data->limit = maxNumArguments;
data->mandatoryMinimum = mandatoryMinimum;
if (callOp == TailCallForwardVarargs)
addToGraph(ForwardVarargs, OpInfo(data));
else
addToGraph(LoadVarargs, OpInfo(data), get(argumentsArgument));
// LoadVarargs may OSR exit. Hence, we need to keep alive callTargetNode, thisArgument
// and argumentsArgument for the baseline JIT. However, we only need a Phantom for
// callTargetNode because the other 2 are still in use and alive at this point.
addToGraph(Phantom, callTargetNode);
// In DFG IR before SSA, we cannot insert control flow between after the
// LoadVarargs and the last SetArgument. This isn't a problem once we get to DFG
// SSA. Fortunately, we also have other reasons for not inserting control flow
// before SSA.
VariableAccessData* countVariable = newVariableAccessData(VirtualRegister(remappedRegisterOffset + CallFrameSlot::argumentCount));
// This is pretty lame, but it will force the count to be flushed as an int. This doesn't
// matter very much, since our use of a SetArgument and Flushes for this local slot is
// mostly just a formality.
countVariable->predict(SpecInt32Only);
countVariable->mergeIsProfitableToUnbox(true);
Node* setArgumentCount = addToGraph(SetArgument, OpInfo(countVariable));
m_currentBlock->variablesAtTail.setOperand(countVariable->local(), setArgumentCount);
set(VirtualRegister(argumentStart), get(thisArgument), ImmediateNakedSet);
for (unsigned argument = 1; argument < maxNumArguments; ++argument) {
VariableAccessData* variable = newVariableAccessData(VirtualRegister(remappedArgumentStart + argument));
variable->mergeShouldNeverUnbox(true); // We currently have nowhere to put the type check on the LoadVarargs. LoadVarargs is effectful, so after it finishes, we cannot exit.
// For a while it had been my intention to do things like this inside the
// prediction injection phase. But in this case it's really best to do it here,
// because it's here that we have access to the variable access datas for the
// inlining we're about to do.
//
// Something else that's interesting here is that we'd really love to get
// predictions from the arguments loaded at the callsite, rather than the
// arguments received inside the callee. But that probably won't matter for most
// calls.
if (codeBlock && argument < static_cast<unsigned>(codeBlock->numParameters())) {
ConcurrentJSLocker locker(codeBlock->m_lock);
ValueProfile& profile = codeBlock->valueProfileForArgument(argument);
variable->predict(profile.computeUpdatedPrediction(locker));
}
Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
m_currentBlock->variablesAtTail.setOperand(variable->local(), setArgument);
}
};
// Intrinsics and internal functions can only be inlined if we're not doing varargs. This is because
// we currently don't have any way of getting profiling information for arguments to non-JS varargs
// calls. The prediction propagator won't be of any help because LoadVarargs obscures the data flow,
// and there are no callsite value profiles and native function won't have callee value profiles for
// those arguments. Even worse, if the intrinsic decides to exit, it won't really have anywhere to
// exit to: LoadVarargs is effectful and it's part of the op_call_varargs, so we can't exit without
// calling LoadVarargs twice.
inlineCall(callTargetNode, resultOperand, callVariant, registerOffset, maxNumArguments, kind, nullptr, insertChecks);
VERBOSE_LOG("Successful inlining (varargs, monomorphic).\nStack: ", currentCodeOrigin(), "\n");
return true;
}
unsigned ByteCodeParser::getInliningBalance(const CallLinkStatus& callLinkStatus, CodeSpecializationKind specializationKind)
{
unsigned inliningBalance = Options::maximumFunctionForCallInlineCandidateInstructionCount();
if (specializationKind == CodeForConstruct)
inliningBalance = std::min(inliningBalance, Options::maximumFunctionForConstructInlineCandidateInstructionCount());
if (callLinkStatus.isClosureCall())
inliningBalance = std::min(inliningBalance, Options::maximumFunctionForClosureCallInlineCandidateInstructionCount());
return inliningBalance;
}
ByteCodeParser::CallOptimizationResult ByteCodeParser::handleInlining(
Node* callTargetNode, int resultOperand, const CallLinkStatus& callLinkStatus,
int registerOffset, VirtualRegister thisArgument,
int argumentCountIncludingThis,
unsigned nextOffset, NodeType callOp, InlineCallFrame::Kind kind, SpeculatedType prediction)
{
VERBOSE_LOG("Handling inlining...\nStack: ", currentCodeOrigin(), "\n");
CodeSpecializationKind specializationKind = InlineCallFrame::specializationKindFor(kind);
unsigned inliningBalance = getInliningBalance(callLinkStatus, specializationKind);
// First check if we can avoid creating control flow. Our inliner does some CFG
// simplification on the fly and this helps reduce compile times, but we can only leverage
// this in cases where we don't need control flow diamonds to check the callee.
if (!callLinkStatus.couldTakeSlowPath() && callLinkStatus.size() == 1) {
return handleCallVariant(
callTargetNode, resultOperand, callLinkStatus[0], registerOffset, thisArgument,
argumentCountIncludingThis, nextOffset, kind, prediction, inliningBalance, nullptr, true);
}
// We need to create some kind of switch over callee. For now we only do this if we believe that
// we're in the top tier. We have two reasons for this: first, it provides us an opportunity to
// do more detailed polyvariant/polymorphic profiling; and second, it reduces compile times in
// the DFG. And by polyvariant profiling we mean polyvariant profiling of *this* call. Note that
// we could improve that aspect of this by doing polymorphic inlining but having the profiling
// also.
if (!isFTL(m_graph.m_plan.mode) || !Options::usePolymorphicCallInlining()) {
VERBOSE_LOG("Bailing inlining (hard).\nStack: ", currentCodeOrigin(), "\n");
return CallOptimizationResult::DidNothing;
}
// If the claim is that this did not originate from a stub, then we don't want to emit a switch
// statement. Whenever the non-stub profiling says that it could take slow path, it really means that
// it has no idea.
if (!Options::usePolymorphicCallInliningForNonStubStatus()
&& !callLinkStatus.isBasedOnStub()) {
VERBOSE_LOG("Bailing inlining (non-stub polymorphism).\nStack: ", currentCodeOrigin(), "\n");
return CallOptimizationResult::DidNothing;
}
bool allAreClosureCalls = true;
bool allAreDirectCalls = true;
for (unsigned i = callLinkStatus.size(); i--;) {
if (callLinkStatus[i].isClosureCall())
allAreDirectCalls = false;
else
allAreClosureCalls = false;
}
Node* thingToSwitchOn;
if (allAreDirectCalls)
thingToSwitchOn = callTargetNode;
else if (allAreClosureCalls)
thingToSwitchOn = addToGraph(GetExecutable, callTargetNode);
else {
// FIXME: We should be able to handle this case, but it's tricky and we don't know of cases
// where it would be beneficial. It might be best to handle these cases as if all calls were
// closure calls.
// https://bugs.webkit.org/show_bug.cgi?id=136020
VERBOSE_LOG("Bailing inlining (mix).\nStack: ", currentCodeOrigin(), "\n");
return CallOptimizationResult::DidNothing;
}
VERBOSE_LOG("Doing hard inlining...\nStack: ", currentCodeOrigin(), "\n");
// This makes me wish that we were in SSA all the time. We need to pick a variable into which to
// store the callee so that it will be accessible to all of the blocks we're about to create. We
// get away with doing an immediate-set here because we wouldn't have performed any side effects
// yet.
VERBOSE_LOG("Register offset: ", registerOffset);
VirtualRegister calleeReg(registerOffset + CallFrameSlot::callee);
calleeReg = m_inlineStackTop->remapOperand(calleeReg);
VERBOSE_LOG("Callee is going to be ", calleeReg, "\n");
setDirect(calleeReg, callTargetNode, ImmediateSetWithFlush);
// It's OK to exit right now, even though we set some locals. That's because those locals are not
// user-visible.
m_exitOK = true;
addToGraph(ExitOK);
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchCell;
addToGraph(Switch, OpInfo(&data), thingToSwitchOn);
m_currentBlock->didLink();
BasicBlock* continuationBlock = allocateUntargetableBlock();
VERBOSE_LOG("Adding untargetable block ", RawPointer(continuationBlock), " (continuation)\n");
// We may force this true if we give up on inlining any of the edges.
bool couldTakeSlowPath = callLinkStatus.couldTakeSlowPath();
VERBOSE_LOG("About to loop over functions at ", currentCodeOrigin(), ".\n");
unsigned oldOffset = m_currentIndex;
for (unsigned i = 0; i < callLinkStatus.size(); ++i) {
m_currentIndex = oldOffset;
BasicBlock* calleeEntryBlock = allocateUntargetableBlock();
m_currentBlock = calleeEntryBlock;
prepareToParseBlock();
// At the top of each switch case, we can exit.
m_exitOK = true;
Node* myCallTargetNode = getDirect(calleeReg);
auto inliningResult = handleCallVariant(
myCallTargetNode, resultOperand, callLinkStatus[i], registerOffset,
thisArgument, argumentCountIncludingThis, nextOffset, kind, prediction,
inliningBalance, continuationBlock, false);
if (inliningResult == CallOptimizationResult::DidNothing) {
// That failed so we let the block die. Nothing interesting should have been added to
// the block. We also give up on inlining any of the (less frequent) callees.
ASSERT(m_graph.m_blocks.last() == m_currentBlock);
m_graph.killBlockAndItsContents(m_currentBlock);
m_graph.m_blocks.removeLast();
VERBOSE_LOG("Inlining of a poly call failed, we will have to go through a slow path\n");
// The fact that inlining failed means we need a slow path.
couldTakeSlowPath = true;
break;
}
JSCell* thingToCaseOn;
if (allAreDirectCalls)
thingToCaseOn = callLinkStatus[i].nonExecutableCallee();
else {
ASSERT(allAreClosureCalls);
thingToCaseOn = callLinkStatus[i].executable();
}
data.cases.append(SwitchCase(m_graph.freeze(thingToCaseOn), calleeEntryBlock));
VERBOSE_LOG("Finished optimizing ", callLinkStatus[i], " at ", currentCodeOrigin(), ".\n");
}
// Slow path block
m_currentBlock = allocateUntargetableBlock();
m_currentIndex = oldOffset;
m_exitOK = true;
data.fallThrough = BranchTarget(m_currentBlock);
prepareToParseBlock();
Node* myCallTargetNode = getDirect(calleeReg);
if (couldTakeSlowPath) {
addCall(
resultOperand, callOp, nullptr, myCallTargetNode, argumentCountIncludingThis,
registerOffset, prediction);
VERBOSE_LOG("We added a call in the slow path\n");
} else {
addToGraph(CheckBadCell);
addToGraph(Phantom, myCallTargetNode);
emitArgumentPhantoms(registerOffset, argumentCountIncludingThis);
set(VirtualRegister(resultOperand), addToGraph(BottomValue));
VERBOSE_LOG("couldTakeSlowPath was false\n");
}
m_currentIndex = nextOffset;
m_exitOK = true; // Origin changed, so it's fine to exit again.
processSetLocalQueue();
if (Node* terminal = m_currentBlock->terminal())
ASSERT_UNUSED(terminal, terminal->op() == TailCall || terminal->op() == TailCallVarargs || terminal->op() == TailCallForwardVarargs);
else {
addJumpTo(continuationBlock);
}
prepareToParseBlock();
m_currentIndex = oldOffset;
m_currentBlock = continuationBlock;
m_exitOK = true;
VERBOSE_LOG("Done inlining (hard).\nStack: ", currentCodeOrigin(), "\n");
return CallOptimizationResult::Inlined;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleMinMax(int resultOperand, NodeType op, int registerOffset, int argumentCountIncludingThis, const ChecksFunctor& insertChecks)
{
ASSERT(op == ArithMin || op == ArithMax);
if (argumentCountIncludingThis == 1) {
insertChecks();
double result = op == ArithMax ? -std::numeric_limits<double>::infinity() : +std::numeric_limits<double>::infinity();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_graph.freeze(jsDoubleNumber(result)))));
return true;
}
if (argumentCountIncludingThis == 2) {
insertChecks();
Node* result = get(VirtualRegister(virtualRegisterForArgument(1, registerOffset)));
addToGraph(Phantom, Edge(result, NumberUse));
set(VirtualRegister(resultOperand), result);
return true;
}
if (argumentCountIncludingThis == 3) {
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(op, get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset))));
return true;
}
// Don't handle >=3 arguments for now.
return false;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleIntrinsicCall(Node* callee, int resultOperand, Intrinsic intrinsic, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks)
{
VERBOSE_LOG(" The intrinsic is ", intrinsic, "\n");
// It so happens that the code below doesn't handle the invalid result case. We could fix that, but
// it would only benefit intrinsics called as setters, like if you do:
//
// o.__defineSetter__("foo", Math.pow)
//
// Which is extremely amusing, but probably not worth optimizing.
if (!VirtualRegister(resultOperand).isValid())
return false;
switch (intrinsic) {
// Intrinsic Functions:
case AbsIntrinsic: {
if (argumentCountIncludingThis == 1) { // Math.abs()
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
if (!MacroAssembler::supportsFloatingPointAbs())
return false;
insertChecks();
Node* node = addToGraph(ArithAbs, get(virtualRegisterForArgument(1, registerOffset)));
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, Overflow))
node->mergeFlags(NodeMayOverflowInt32InDFG);
set(VirtualRegister(resultOperand), node);
return true;
}
case MinIntrinsic:
return handleMinMax(resultOperand, ArithMin, registerOffset, argumentCountIncludingThis, insertChecks);
case MaxIntrinsic:
return handleMinMax(resultOperand, ArithMax, registerOffset, argumentCountIncludingThis, insertChecks);
#define DFG_ARITH_UNARY(capitalizedName, lowerName) \
case capitalizedName##Intrinsic:
FOR_EACH_DFG_ARITH_UNARY_OP(DFG_ARITH_UNARY)
#undef DFG_ARITH_UNARY
{
if (argumentCountIncludingThis == 1) {
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
Arith::UnaryType type = Arith::UnaryType::Sin;
switch (intrinsic) {
#define DFG_ARITH_UNARY(capitalizedName, lowerName) \
case capitalizedName##Intrinsic: \
type = Arith::UnaryType::capitalizedName; \
break;
FOR_EACH_DFG_ARITH_UNARY_OP(DFG_ARITH_UNARY)
#undef DFG_ARITH_UNARY
default:
RELEASE_ASSERT_NOT_REACHED();
}
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithUnary, OpInfo(static_cast<std::underlying_type<Arith::UnaryType>::type>(type)), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
case FRoundIntrinsic:
case SqrtIntrinsic: {
if (argumentCountIncludingThis == 1) {
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
NodeType nodeType = Unreachable;
switch (intrinsic) {
case FRoundIntrinsic:
nodeType = ArithFRound;
break;
case SqrtIntrinsic:
nodeType = ArithSqrt;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(nodeType, get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
case PowIntrinsic: {
if (argumentCountIncludingThis < 3) {
// Math.pow() and Math.pow(x) return NaN.
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
insertChecks();
VirtualRegister xOperand = virtualRegisterForArgument(1, registerOffset);
VirtualRegister yOperand = virtualRegisterForArgument(2, registerOffset);
set(VirtualRegister(resultOperand), addToGraph(ArithPow, get(xOperand), get(yOperand)));
return true;
}
case ArrayPushIntrinsic: {
#if USE(JSVALUE32_64)
if (isX86() || isMIPS()) {
if (argumentCountIncludingThis > 2)
return false;
}
#endif
if (static_cast<unsigned>(argumentCountIncludingThis) >= MIN_SPARSE_ARRAY_INDEX)
return false;
ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
switch (arrayMode.type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
insertChecks();
addVarArgChild(nullptr); // For storage.
for (int i = 0; i < argumentCountIncludingThis; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
Node* arrayPush = addToGraph(Node::VarArg, ArrayPush, OpInfo(arrayMode.asWord()), OpInfo(prediction));
set(VirtualRegister(resultOperand), arrayPush);
return true;
}
default:
return false;
}
}
case ArraySliceIntrinsic: {
#if USE(JSVALUE32_64)
if (isX86() || isMIPS()) {
// There aren't enough registers for this to be done easily.
return false;
}
#endif
if (argumentCountIncludingThis < 1)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadConstantCache)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache))
return false;
ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
if (arrayMode.arrayClass() != Array::OriginalArray)
return false;
switch (arrayMode.type()) {
case Array::Double:
case Array::Int32:
case Array::Contiguous: {
JSGlobalObject* globalObject = m_graph.globalObjectFor(currentNodeOrigin().semantic);
Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure();
Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure();
// FIXME: We could easily relax the Array/Object.prototype transition as long as we OSR exitted if we saw a hole.
// https://bugs.webkit.org/show_bug.cgi?id=173171
if (globalObject->arraySpeciesWatchpoint().state() == IsWatched
&& globalObject->havingABadTimeWatchpoint()->isStillValid()
&& arrayPrototypeStructure->transitionWatchpointSetIsStillValid()
&& objectPrototypeStructure->transitionWatchpointSetIsStillValid()
&& globalObject->arrayPrototypeChainIsSane()) {
m_graph.watchpoints().addLazily(globalObject->arraySpeciesWatchpoint());
m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint());
m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure);
m_graph.registerAndWatchStructureTransition(objectPrototypeStructure);
insertChecks();
Node* array = get(virtualRegisterForArgument(0, registerOffset));
// We do a few things here to prove that we aren't skipping doing side-effects in an observable way:
// 1. We ensure that the "constructor" property hasn't been changed (because the observable
// effects of slice require that we perform a Get(array, "constructor") and we can skip
// that if we're an original array structure. (We can relax this in the future by using
// TryGetById and CheckCell).
//
// 2. We check that the array we're calling slice on has the same global object as the lexical
// global object that this code is running in. This requirement is necessary because we setup the
// watchpoints above on the lexical global object. This means that code that calls slice on
// arrays produced by other global objects won't get this optimization. We could relax this
// requirement in the future by checking that the watchpoint hasn't fired at runtime in the code
// we generate instead of registering it as a watchpoint that would invalidate the compilation.
//
// 3. By proving we're an original array structure, we guarantee that the incoming array
// isn't a subclass of Array.
StructureSet structureSet;
structureSet.add(globalObject->originalArrayStructureForIndexingType(ArrayWithInt32));
structureSet.add(globalObject->originalArrayStructureForIndexingType(ArrayWithContiguous));
structureSet.add(globalObject->originalArrayStructureForIndexingType(ArrayWithDouble));
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(structureSet)), array);
addVarArgChild(array);
if (argumentCountIncludingThis >= 2)
addVarArgChild(get(virtualRegisterForArgument(1, registerOffset))); // Start index.
if (argumentCountIncludingThis >= 3)
addVarArgChild(get(virtualRegisterForArgument(2, registerOffset))); // End index.
addVarArgChild(addToGraph(GetButterfly, array));
Node* arraySlice = addToGraph(Node::VarArg, ArraySlice, OpInfo(), OpInfo());
set(VirtualRegister(resultOperand), arraySlice);
return true;
}
return false;
}
default:
return false;
}
RELEASE_ASSERT_NOT_REACHED();
return false;
}
case ArrayIndexOfIntrinsic: {
if (argumentCountIncludingThis < 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadConstantCache)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
if (arrayMode.arrayClass() != Array::OriginalArray)
return false;
// We do not want to convert arrays into one type just to perform indexOf.
if (arrayMode.doesConversion())
return false;
switch (arrayMode.type()) {
case Array::Double:
case Array::Int32:
case Array::Contiguous: {
JSGlobalObject* globalObject = m_graph.globalObjectFor(currentNodeOrigin().semantic);
Structure* arrayPrototypeStructure = globalObject->arrayPrototype()->structure();
Structure* objectPrototypeStructure = globalObject->objectPrototype()->structure();
// FIXME: We could easily relax the Array/Object.prototype transition as long as we OSR exitted if we saw a hole.
// https://bugs.webkit.org/show_bug.cgi?id=173171
if (globalObject->havingABadTimeWatchpoint()->isStillValid()
&& arrayPrototypeStructure->transitionWatchpointSetIsStillValid()
&& objectPrototypeStructure->transitionWatchpointSetIsStillValid()
&& globalObject->arrayPrototypeChainIsSane()) {
m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint());
m_graph.registerAndWatchStructureTransition(arrayPrototypeStructure);
m_graph.registerAndWatchStructureTransition(objectPrototypeStructure);
insertChecks();
Node* array = get(virtualRegisterForArgument(0, registerOffset));
addVarArgChild(array);
addVarArgChild(get(virtualRegisterForArgument(1, registerOffset))); // Search element.
if (argumentCountIncludingThis >= 3)
addVarArgChild(get(virtualRegisterForArgument(2, registerOffset))); // Start index.
addVarArgChild(nullptr);
Node* node = addToGraph(Node::VarArg, ArrayIndexOf, OpInfo(arrayMode.asWord()), OpInfo());
set(VirtualRegister(resultOperand), node);
return true;
}
return false;
}
default:
return false;
}
RELEASE_ASSERT_NOT_REACHED();
return false;
}
case ArrayPopIntrinsic: {
if (argumentCountIncludingThis != 1)
return false;
ArrayMode arrayMode = getArrayMode(m_currentInstruction[OPCODE_LENGTH(op_call) - 2].u.arrayProfile);
if (!arrayMode.isJSArray())
return false;
switch (arrayMode.type()) {
case Array::Int32:
case Array::Double:
case Array::Contiguous:
case Array::ArrayStorage: {
insertChecks();
Node* arrayPop = addToGraph(ArrayPop, OpInfo(arrayMode.asWord()), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)));
set(VirtualRegister(resultOperand), arrayPop);
return true;
}
default:
return false;
}
}
case AtomicsAddIntrinsic:
case AtomicsAndIntrinsic:
case AtomicsCompareExchangeIntrinsic:
case AtomicsExchangeIntrinsic:
case AtomicsIsLockFreeIntrinsic:
case AtomicsLoadIntrinsic:
case AtomicsOrIntrinsic:
case AtomicsStoreIntrinsic:
case AtomicsSubIntrinsic:
case AtomicsXorIntrinsic: {
if (!is64Bit())
return false;
NodeType op = LastNodeType;
unsigned numArgs = 0; // Number of actual args; we add one for the backing store pointer.
switch (intrinsic) {
case AtomicsAddIntrinsic:
op = AtomicsAdd;
numArgs = 3;
break;
case AtomicsAndIntrinsic:
op = AtomicsAnd;
numArgs = 3;
break;
case AtomicsCompareExchangeIntrinsic:
op = AtomicsCompareExchange;
numArgs = 4;
break;
case AtomicsExchangeIntrinsic:
op = AtomicsExchange;
numArgs = 3;
break;
case AtomicsIsLockFreeIntrinsic:
// This gets no backing store, but we need no special logic for this since this also does
// not need varargs.
op = AtomicsIsLockFree;
numArgs = 1;
break;
case AtomicsLoadIntrinsic:
op = AtomicsLoad;
numArgs = 2;
break;
case AtomicsOrIntrinsic:
op = AtomicsOr;
numArgs = 3;
break;
case AtomicsStoreIntrinsic:
op = AtomicsStore;
numArgs = 3;
break;
case AtomicsSubIntrinsic:
op = AtomicsSub;
numArgs = 3;
break;
case AtomicsXorIntrinsic:
op = AtomicsXor;
numArgs = 3;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
if (static_cast<unsigned>(argumentCountIncludingThis) < 1 + numArgs)
return false;
insertChecks();
Vector<Node*, 3> args;
for (unsigned i = 0; i < numArgs; ++i)
args.append(get(virtualRegisterForArgument(1 + i, registerOffset)));
Node* result;
if (numArgs + 1 <= 3) {
while (args.size() < 3)
args.append(nullptr);
result = addToGraph(op, OpInfo(ArrayMode(Array::SelectUsingPredictions).asWord()), OpInfo(prediction), args[0], args[1], args[2]);
} else {
for (Node* node : args)
addVarArgChild(node);
addVarArgChild(nullptr);
result = addToGraph(Node::VarArg, op, OpInfo(ArrayMode(Array::SelectUsingPredictions).asWord()), OpInfo(prediction));
}
set(VirtualRegister(resultOperand), result);
return true;
}
case ParseIntIntrinsic: {
if (argumentCountIncludingThis < 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell) || m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
VirtualRegister valueOperand = virtualRegisterForArgument(1, registerOffset);
Node* parseInt;
if (argumentCountIncludingThis == 2)
parseInt = addToGraph(ParseInt, OpInfo(), OpInfo(prediction), get(valueOperand));
else {
ASSERT(argumentCountIncludingThis > 2);
VirtualRegister radixOperand = virtualRegisterForArgument(2, registerOffset);
parseInt = addToGraph(ParseInt, OpInfo(), OpInfo(prediction), get(valueOperand), get(radixOperand));
}
set(VirtualRegister(resultOperand), parseInt);
return true;
}
case CharCodeAtIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringCharCodeAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
case CharAtIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister thisOperand = virtualRegisterForArgument(0, registerOffset);
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringCharAt, OpInfo(ArrayMode(Array::String).asWord()), get(thisOperand), get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
case Clz32Intrinsic: {
insertChecks();
if (argumentCountIncludingThis == 1)
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_graph.freeze(jsNumber(32)))));
else {
Node* operand = get(virtualRegisterForArgument(1, registerOffset));
set(VirtualRegister(resultOperand), addToGraph(ArithClz32, operand));
}
return true;
}
case FromCharCodeIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister indexOperand = virtualRegisterForArgument(1, registerOffset);
Node* charCode = addToGraph(StringFromCharCode, get(indexOperand));
set(VirtualRegister(resultOperand), charCode);
return true;
}
case RegExpExecIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
Node* regExpExec = addToGraph(RegExpExec, OpInfo(0), OpInfo(prediction), addToGraph(GetGlobalObject, callee), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpExec);
return true;
}
case RegExpTestIntrinsic:
case RegExpTestFastIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
if (intrinsic == RegExpTestIntrinsic) {
// Don't inline intrinsic if we exited due to one of the primordial RegExp checks failing.
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell))
return false;
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
Structure* regExpStructure = globalObject->regExpStructure();
m_graph.registerStructure(regExpStructure);
ASSERT(regExpStructure->storedPrototype().isObject());
ASSERT(regExpStructure->storedPrototype().asCell()->classInfo(*m_vm) == RegExpPrototype::info());
FrozenValue* regExpPrototypeObjectValue = m_graph.freeze(regExpStructure->storedPrototype());
Structure* regExpPrototypeStructure = regExpPrototypeObjectValue->structure();
auto isRegExpPropertySame = [&] (JSValue primordialProperty, UniquedStringImpl* propertyUID) {
JSValue currentProperty;
if (!m_graph.getRegExpPrototypeProperty(regExpStructure->storedPrototypeObject(), regExpPrototypeStructure, propertyUID, currentProperty))
return false;
return currentProperty == primordialProperty;
};
// Check that RegExp.exec is still the primordial RegExp.prototype.exec
if (!isRegExpPropertySame(globalObject->regExpProtoExecFunction(), m_vm->propertyNames->exec.impl()))
return false;
// Check that regExpObject is actually a RegExp object.
Node* regExpObject = get(virtualRegisterForArgument(0, registerOffset));
addToGraph(Check, Edge(regExpObject, RegExpObjectUse));
// Check that regExpObject's exec is actually the primodial RegExp.prototype.exec.
UniquedStringImpl* execPropertyID = m_vm->propertyNames->exec.impl();
unsigned execIndex = m_graph.identifiers().ensure(execPropertyID);
Node* actualProperty = addToGraph(TryGetById, OpInfo(execIndex), OpInfo(SpecFunction), Edge(regExpObject, CellUse));
FrozenValue* regExpPrototypeExec = m_graph.freeze(globalObject->regExpProtoExecFunction());
addToGraph(CheckCell, OpInfo(regExpPrototypeExec), Edge(actualProperty, CellUse));
}
insertChecks();
Node* regExpObject = get(virtualRegisterForArgument(0, registerOffset));
Node* regExpExec = addToGraph(RegExpTest, OpInfo(0), OpInfo(prediction), addToGraph(GetGlobalObject, callee), regExpObject, get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpExec);
return true;
}
case RegExpMatchFastIntrinsic: {
RELEASE_ASSERT(argumentCountIncludingThis == 2);
insertChecks();
Node* regExpMatch = addToGraph(RegExpMatchFast, OpInfo(0), OpInfo(prediction), addToGraph(GetGlobalObject, callee), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), regExpMatch);
return true;
}
case ObjectGetPrototypeOfIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(GetPrototypeOf, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
case ReflectGetPrototypeOfIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(GetPrototypeOf, OpInfo(0), OpInfo(prediction), Edge(get(virtualRegisterForArgument(1, registerOffset)), ObjectUse)));
return true;
}
case IsTypedArrayViewIntrinsic: {
ASSERT(argumentCountIncludingThis == 2);
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(IsTypedArrayView, OpInfo(prediction), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
case StringPrototypeReplaceIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
// Don't inline intrinsic if we exited due to "search" not being a RegExp or String object.
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
// Don't inline intrinsic if we exited due to one of the primordial RegExp checks failing.
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell))
return false;
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
Structure* regExpStructure = globalObject->regExpStructure();
m_graph.registerStructure(regExpStructure);
ASSERT(regExpStructure->storedPrototype().isObject());
ASSERT(regExpStructure->storedPrototype().asCell()->classInfo(*m_vm) == RegExpPrototype::info());
FrozenValue* regExpPrototypeObjectValue = m_graph.freeze(regExpStructure->storedPrototype());
Structure* regExpPrototypeStructure = regExpPrototypeObjectValue->structure();
auto isRegExpPropertySame = [&] (JSValue primordialProperty, UniquedStringImpl* propertyUID) {
JSValue currentProperty;
if (!m_graph.getRegExpPrototypeProperty(regExpStructure->storedPrototypeObject(), regExpPrototypeStructure, propertyUID, currentProperty))
return false;
return currentProperty == primordialProperty;
};
// Check that searchRegExp.exec is still the primordial RegExp.prototype.exec
if (!isRegExpPropertySame(globalObject->regExpProtoExecFunction(), m_vm->propertyNames->exec.impl()))
return false;
// Check that searchRegExp.global is still the primordial RegExp.prototype.global
if (!isRegExpPropertySame(globalObject->regExpProtoGlobalGetter(), m_vm->propertyNames->global.impl()))
return false;
// Check that searchRegExp.unicode is still the primordial RegExp.prototype.unicode
if (!isRegExpPropertySame(globalObject->regExpProtoUnicodeGetter(), m_vm->propertyNames->unicode.impl()))
return false;
// Check that searchRegExp[Symbol.match] is still the primordial RegExp.prototype[Symbol.replace]
if (!isRegExpPropertySame(globalObject->regExpProtoSymbolReplaceFunction(), m_vm->propertyNames->replaceSymbol.impl()))
return false;
insertChecks();
Node* result = addToGraph(StringReplace, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset)));
set(VirtualRegister(resultOperand), result);
return true;
}
case StringPrototypeReplaceRegExpIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
insertChecks();
Node* result = addToGraph(StringReplaceRegExp, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(0, registerOffset)), get(virtualRegisterForArgument(1, registerOffset)), get(virtualRegisterForArgument(2, registerOffset)));
set(VirtualRegister(resultOperand), result);
return true;
}
case RoundIntrinsic:
case FloorIntrinsic:
case CeilIntrinsic:
case TruncIntrinsic: {
if (argumentCountIncludingThis == 1) {
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantNaN)));
return true;
}
insertChecks();
Node* operand = get(virtualRegisterForArgument(1, registerOffset));
NodeType op;
if (intrinsic == RoundIntrinsic)
op = ArithRound;
else if (intrinsic == FloorIntrinsic)
op = ArithFloor;
else if (intrinsic == CeilIntrinsic)
op = ArithCeil;
else {
ASSERT(intrinsic == TruncIntrinsic);
op = ArithTrunc;
}
Node* roundNode = addToGraph(op, OpInfo(0), OpInfo(prediction), operand);
set(VirtualRegister(resultOperand), roundNode);
return true;
}
case IMulIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
insertChecks();
VirtualRegister leftOperand = virtualRegisterForArgument(1, registerOffset);
VirtualRegister rightOperand = virtualRegisterForArgument(2, registerOffset);
Node* left = get(leftOperand);
Node* right = get(rightOperand);
set(VirtualRegister(resultOperand), addToGraph(ArithIMul, left, right));
return true;
}
case RandomIntrinsic: {
if (argumentCountIncludingThis != 1)
return false;
insertChecks();
set(VirtualRegister(resultOperand), addToGraph(ArithRandom));
return true;
}
case DFGTrueIntrinsic: {
insertChecks();
set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
return true;
}
case FTLTrueIntrinsic: {
insertChecks();
set(VirtualRegister(resultOperand), jsConstant(jsBoolean(isFTL(m_graph.m_plan.mode))));
return true;
}
case OSRExitIntrinsic: {
insertChecks();
addToGraph(ForceOSRExit);
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
return true;
}
case IsFinalTierIntrinsic: {
insertChecks();
set(VirtualRegister(resultOperand),
jsConstant(jsBoolean(Options::useFTLJIT() ? isFTL(m_graph.m_plan.mode) : true)));
return true;
}
case SetInt32HeapPredictionIntrinsic: {
insertChecks();
for (int i = 1; i < argumentCountIncludingThis; ++i) {
Node* node = get(virtualRegisterForArgument(i, registerOffset));
if (node->hasHeapPrediction())
node->setHeapPrediction(SpecInt32Only);
}
set(VirtualRegister(resultOperand), addToGraph(JSConstant, OpInfo(m_constantUndefined)));
return true;
}
case CheckInt32Intrinsic: {
insertChecks();
for (int i = 1; i < argumentCountIncludingThis; ++i) {
Node* node = get(virtualRegisterForArgument(i, registerOffset));
addToGraph(Phantom, Edge(node, Int32Use));
}
set(VirtualRegister(resultOperand), jsConstant(jsBoolean(true)));
return true;
}
case FiatInt52Intrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
VirtualRegister operand = virtualRegisterForArgument(1, registerOffset);
if (enableInt52())
set(VirtualRegister(resultOperand), addToGraph(FiatInt52, get(operand)));
else
set(VirtualRegister(resultOperand), get(operand));
return true;
}
case JSMapGetIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
Node* map = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
Node* normalizedKey = addToGraph(NormalizeMapKey, key);
Node* hash = addToGraph(MapHash, normalizedKey);
Node* bucket = addToGraph(GetMapBucket, Edge(map, MapObjectUse), Edge(normalizedKey), Edge(hash));
Node* result = addToGraph(LoadValueFromMapBucket, OpInfo(BucketOwnerType::Map), OpInfo(prediction), bucket);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSSetHasIntrinsic:
case JSMapHasIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
Node* mapOrSet = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
Node* normalizedKey = addToGraph(NormalizeMapKey, key);
Node* hash = addToGraph(MapHash, normalizedKey);
UseKind useKind = intrinsic == JSSetHasIntrinsic ? SetObjectUse : MapObjectUse;
Node* bucket = addToGraph(GetMapBucket, OpInfo(0), Edge(mapOrSet, useKind), Edge(normalizedKey), Edge(hash));
JSCell* sentinel = nullptr;
if (intrinsic == JSMapHasIntrinsic)
sentinel = m_vm->sentinelMapBucket.get();
else
sentinel = m_vm->sentinelSetBucket.get();
FrozenValue* frozenPointer = m_graph.freeze(sentinel);
Node* invertedResult = addToGraph(CompareEqPtr, OpInfo(frozenPointer), bucket);
Node* result = addToGraph(LogicalNot, invertedResult);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSSetAddIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
insertChecks();
Node* base = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
Node* normalizedKey = addToGraph(NormalizeMapKey, key);
Node* hash = addToGraph(MapHash, normalizedKey);
addToGraph(SetAdd, base, normalizedKey, hash);
set(VirtualRegister(resultOperand), base);
return true;
}
case JSMapSetIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
insertChecks();
Node* base = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
Node* value = get(virtualRegisterForArgument(2, registerOffset));
Node* normalizedKey = addToGraph(NormalizeMapKey, key);
Node* hash = addToGraph(MapHash, normalizedKey);
addVarArgChild(base);
addVarArgChild(normalizedKey);
addVarArgChild(value);
addVarArgChild(hash);
addToGraph(Node::VarArg, MapSet, OpInfo(0), OpInfo(0));
set(VirtualRegister(resultOperand), base);
return true;
}
case JSSetBucketHeadIntrinsic:
case JSMapBucketHeadIntrinsic: {
ASSERT(argumentCountIncludingThis == 2);
insertChecks();
Node* map = get(virtualRegisterForArgument(1, registerOffset));
UseKind useKind = intrinsic == JSSetBucketHeadIntrinsic ? SetObjectUse : MapObjectUse;
Node* result = addToGraph(GetMapBucketHead, Edge(map, useKind));
set(VirtualRegister(resultOperand), result);
return true;
}
case JSSetBucketNextIntrinsic:
case JSMapBucketNextIntrinsic: {
ASSERT(argumentCountIncludingThis == 2);
insertChecks();
Node* bucket = get(virtualRegisterForArgument(1, registerOffset));
BucketOwnerType type = intrinsic == JSSetBucketNextIntrinsic ? BucketOwnerType::Set : BucketOwnerType::Map;
Node* result = addToGraph(GetMapBucketNext, OpInfo(type), bucket);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSSetBucketKeyIntrinsic:
case JSMapBucketKeyIntrinsic: {
ASSERT(argumentCountIncludingThis == 2);
insertChecks();
Node* bucket = get(virtualRegisterForArgument(1, registerOffset));
BucketOwnerType type = intrinsic == JSSetBucketKeyIntrinsic ? BucketOwnerType::Set : BucketOwnerType::Map;
Node* result = addToGraph(LoadKeyFromMapBucket, OpInfo(type), OpInfo(prediction), bucket);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSMapBucketValueIntrinsic: {
ASSERT(argumentCountIncludingThis == 2);
insertChecks();
Node* bucket = get(virtualRegisterForArgument(1, registerOffset));
Node* result = addToGraph(LoadValueFromMapBucket, OpInfo(BucketOwnerType::Map), OpInfo(prediction), bucket);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSWeakMapGetIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* map = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
addToGraph(Check, Edge(key, ObjectUse));
Node* hash = addToGraph(MapHash, key);
Node* holder = addToGraph(WeakMapGet, Edge(map, WeakMapObjectUse), Edge(key, ObjectUse), Edge(hash, Int32Use));
Node* result = addToGraph(ExtractValueFromWeakMapGet, OpInfo(), OpInfo(prediction), holder);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSWeakMapHasIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* map = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
addToGraph(Check, Edge(key, ObjectUse));
Node* hash = addToGraph(MapHash, key);
Node* holder = addToGraph(WeakMapGet, Edge(map, WeakMapObjectUse), Edge(key, ObjectUse), Edge(hash, Int32Use));
Node* invertedResult = addToGraph(IsEmpty, holder);
Node* result = addToGraph(LogicalNot, invertedResult);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSWeakSetHasIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* map = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
addToGraph(Check, Edge(key, ObjectUse));
Node* hash = addToGraph(MapHash, key);
Node* holder = addToGraph(WeakMapGet, Edge(map, WeakSetObjectUse), Edge(key, ObjectUse), Edge(hash, Int32Use));
Node* invertedResult = addToGraph(IsEmpty, holder);
Node* result = addToGraph(LogicalNot, invertedResult);
set(VirtualRegister(resultOperand), result);
return true;
}
case JSWeakSetAddIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* base = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
addToGraph(Check, Edge(key, ObjectUse));
Node* hash = addToGraph(MapHash, key);
addToGraph(WeakSetAdd, Edge(base, WeakSetObjectUse), Edge(key, ObjectUse), Edge(hash, Int32Use));
set(VirtualRegister(resultOperand), base);
return true;
}
case JSWeakMapSetIntrinsic: {
if (argumentCountIncludingThis != 3)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* base = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
Node* value = get(virtualRegisterForArgument(2, registerOffset));
addToGraph(Check, Edge(key, ObjectUse));
Node* hash = addToGraph(MapHash, key);
addVarArgChild(Edge(base, WeakMapObjectUse));
addVarArgChild(Edge(key, ObjectUse));
addVarArgChild(Edge(value));
addVarArgChild(Edge(hash, Int32Use));
addToGraph(Node::VarArg, WeakMapSet, OpInfo(0), OpInfo(0));
set(VirtualRegister(resultOperand), base);
return true;
}
case HasOwnPropertyIntrinsic: {
if (argumentCountIncludingThis != 2)
return false;
// This can be racy, that's fine. We know that once we observe that this is created,
// that it will never be destroyed until the VM is destroyed. It's unlikely that
// we'd ever get to the point where we inline this as an intrinsic without the
// cache being created, however, it's possible if we always throw exceptions inside
// hasOwnProperty.
if (!m_vm->hasOwnPropertyCache())
return false;
insertChecks();
Node* object = get(virtualRegisterForArgument(0, registerOffset));
Node* key = get(virtualRegisterForArgument(1, registerOffset));
Node* result = addToGraph(HasOwnProperty, object, key);
set(VirtualRegister(resultOperand), result);
return true;
}
case StringPrototypeSliceIntrinsic: {
if (argumentCountIncludingThis < 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* thisString = get(virtualRegisterForArgument(0, registerOffset));
Node* start = get(virtualRegisterForArgument(1, registerOffset));
Node* end = nullptr;
if (argumentCountIncludingThis > 2)
end = get(virtualRegisterForArgument(2, registerOffset));
Node* result = addToGraph(StringSlice, thisString, start, end);
set(VirtualRegister(resultOperand), result);
return true;
}
case StringPrototypeToLowerCaseIntrinsic: {
if (argumentCountIncludingThis != 1)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* thisString = get(virtualRegisterForArgument(0, registerOffset));
Node* result = addToGraph(ToLowerCase, thisString);
set(VirtualRegister(resultOperand), result);
return true;
}
case NumberPrototypeToStringIntrinsic: {
if (argumentCountIncludingThis != 1 && argumentCountIncludingThis != 2)
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
insertChecks();
Node* thisNumber = get(virtualRegisterForArgument(0, registerOffset));
if (argumentCountIncludingThis == 1) {
Node* result = addToGraph(ToString, thisNumber);
set(VirtualRegister(resultOperand), result);
} else {
Node* radix = get(virtualRegisterForArgument(1, registerOffset));
Node* result = addToGraph(NumberToStringWithRadix, thisNumber, radix);
set(VirtualRegister(resultOperand), result);
}
return true;
}
case NumberIsIntegerIntrinsic: {
if (argumentCountIncludingThis < 2)
return false;
insertChecks();
Node* input = get(virtualRegisterForArgument(1, registerOffset));
Node* result = addToGraph(NumberIsInteger, input);
set(VirtualRegister(resultOperand), result);
return true;
}
case CPUMfenceIntrinsic:
case CPURdtscIntrinsic:
case CPUCpuidIntrinsic:
case CPUPauseIntrinsic: {
#if CPU(X86_64)
if (!isFTL(m_graph.m_plan.mode))
return false;
insertChecks();
set(VirtualRegister(resultOperand),
addToGraph(CPUIntrinsic, OpInfo(intrinsic), OpInfo()));
return true;
#else
return false;
#endif
}
default:
return false;
}
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleDOMJITCall(Node* callTarget, int resultOperand, const DOMJIT::Signature* signature, int registerOffset, int argumentCountIncludingThis, SpeculatedType prediction, const ChecksFunctor& insertChecks)
{
if (argumentCountIncludingThis != static_cast<int>(1 + signature->argumentCount))
return false;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType))
return false;
// FIXME: Currently, we only support functions which arguments are up to 2.
// Eventually, we should extend this. But possibly, 2 or 3 can cover typical use cases.
// https://bugs.webkit.org/show_bug.cgi?id=164346
ASSERT_WITH_MESSAGE(argumentCountIncludingThis <= JSC_DOMJIT_SIGNATURE_MAX_ARGUMENTS_INCLUDING_THIS, "Currently CallDOM does not support an arbitrary length arguments.");
insertChecks();
addCall(resultOperand, Call, signature, callTarget, argumentCountIncludingThis, registerOffset, prediction);
return true;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleIntrinsicGetter(int resultOperand, SpeculatedType prediction, const GetByIdVariant& variant, Node* thisNode, const ChecksFunctor& insertChecks)
{
switch (variant.intrinsic()) {
case TypedArrayByteLengthIntrinsic: {
insertChecks();
TypedArrayType type = (*variant.structureSet().begin())->classInfo()->typedArrayStorageType;
Array::Type arrayType = toArrayType(type);
size_t logSize = logElementSize(type);
variant.structureSet().forEach([&] (Structure* structure) {
TypedArrayType curType = structure->classInfo()->typedArrayStorageType;
ASSERT(logSize == logElementSize(curType));
arrayType = refineTypedArrayType(arrayType, curType);
ASSERT(arrayType != Array::Generic);
});
Node* lengthNode = addToGraph(GetArrayLength, OpInfo(ArrayMode(arrayType).asWord()), thisNode);
if (!logSize) {
set(VirtualRegister(resultOperand), lengthNode);
return true;
}
// We can use a BitLShift here because typed arrays will never have a byteLength
// that overflows int32.
Node* shiftNode = jsConstant(jsNumber(logSize));
set(VirtualRegister(resultOperand), addToGraph(BitLShift, lengthNode, shiftNode));
return true;
}
case TypedArrayLengthIntrinsic: {
insertChecks();
TypedArrayType type = (*variant.structureSet().begin())->classInfo()->typedArrayStorageType;
Array::Type arrayType = toArrayType(type);
variant.structureSet().forEach([&] (Structure* structure) {
TypedArrayType curType = structure->classInfo()->typedArrayStorageType;
arrayType = refineTypedArrayType(arrayType, curType);
ASSERT(arrayType != Array::Generic);
});
set(VirtualRegister(resultOperand), addToGraph(GetArrayLength, OpInfo(ArrayMode(arrayType).asWord()), thisNode));
return true;
}
case TypedArrayByteOffsetIntrinsic: {
insertChecks();
TypedArrayType type = (*variant.structureSet().begin())->classInfo()->typedArrayStorageType;
Array::Type arrayType = toArrayType(type);
variant.structureSet().forEach([&] (Structure* structure) {
TypedArrayType curType = structure->classInfo()->typedArrayStorageType;
arrayType = refineTypedArrayType(arrayType, curType);
ASSERT(arrayType != Array::Generic);
});
set(VirtualRegister(resultOperand), addToGraph(GetTypedArrayByteOffset, OpInfo(ArrayMode(arrayType).asWord()), thisNode));
return true;
}
case UnderscoreProtoIntrinsic: {
insertChecks();
bool canFold = !variant.structureSet().isEmpty();
JSValue prototype;
variant.structureSet().forEach([&] (Structure* structure) {
auto getPrototypeMethod = structure->classInfo()->methodTable.getPrototype;
MethodTable::GetPrototypeFunctionPtr defaultGetPrototype = JSObject::getPrototype;
if (getPrototypeMethod != defaultGetPrototype) {
canFold = false;
return;
}
if (structure->hasPolyProto()) {
canFold = false;
return;
}
if (!prototype)
prototype = structure->storedPrototype();
else if (prototype != structure->storedPrototype())
canFold = false;
});
// OK, only one prototype is found. We perform constant folding here.
// This information is important for super's constructor call to get new.target constant.
if (prototype && canFold) {
set(VirtualRegister(resultOperand), weakJSConstant(prototype));
return true;
}
set(VirtualRegister(resultOperand), addToGraph(GetPrototypeOf, OpInfo(0), OpInfo(prediction), thisNode));
return true;
}
default:
return false;
}
RELEASE_ASSERT_NOT_REACHED();
}
static void blessCallDOMGetter(Node* node)
{
DOMJIT::CallDOMGetterSnippet* snippet = node->callDOMGetterData()->snippet;
if (snippet && !snippet->effect.mustGenerate())
node->clearFlags(NodeMustGenerate);
}
bool ByteCodeParser::handleDOMJITGetter(int resultOperand, const GetByIdVariant& variant, Node* thisNode, unsigned identifierNumber, SpeculatedType prediction)
{
if (!variant.domAttribute())
return false;
auto domAttribute = variant.domAttribute().value();
// We do not need to actually look up CustomGetterSetter here. Checking Structures or registering watchpoints are enough,
// since replacement of CustomGetterSetter always incurs Structure transition.
if (!check(variant.conditionSet()))
return false;
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structureSet())), thisNode);
// We do not need to emit CheckCell thingy here. When the custom accessor is replaced to different one, Structure transition occurs.
addToGraph(CheckSubClass, OpInfo(domAttribute.classInfo), thisNode);
CallDOMGetterData* callDOMGetterData = m_graph.m_callDOMGetterData.add();
callDOMGetterData->customAccessorGetter = variant.customAccessorGetter();
ASSERT(callDOMGetterData->customAccessorGetter);
if (const auto* domJIT = domAttribute.domJIT) {
callDOMGetterData->domJIT = domJIT;
Ref<DOMJIT::CallDOMGetterSnippet> snippet = domJIT->compiler()();
callDOMGetterData->snippet = snippet.ptr();
m_graph.m_domJITSnippets.append(WTFMove(snippet));
}
DOMJIT::CallDOMGetterSnippet* callDOMGetterSnippet = callDOMGetterData->snippet;
callDOMGetterData->identifierNumber = identifierNumber;
Node* callDOMGetterNode = nullptr;
// GlobalObject of thisNode is always used to create a DOMWrapper.
if (callDOMGetterSnippet && callDOMGetterSnippet->requireGlobalObject) {
Node* globalObject = addToGraph(GetGlobalObject, thisNode);
callDOMGetterNode = addToGraph(CallDOMGetter, OpInfo(callDOMGetterData), OpInfo(prediction), thisNode, globalObject);
} else
callDOMGetterNode = addToGraph(CallDOMGetter, OpInfo(callDOMGetterData), OpInfo(prediction), thisNode);
blessCallDOMGetter(callDOMGetterNode);
set(VirtualRegister(resultOperand), callDOMGetterNode);
return true;
}
bool ByteCodeParser::handleModuleNamespaceLoad(int resultOperand, SpeculatedType prediction, Node* base, GetByIdStatus getById)
{
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell))
return false;
addToGraph(CheckCell, OpInfo(m_graph.freeze(getById.moduleNamespaceObject())), Edge(base, CellUse));
// Ideally we wouldn't have to do this Phantom. But:
//
// For the constant case: we must do it because otherwise we would have no way of knowing
// that the scope is live at OSR here.
//
// For the non-constant case: GetClosureVar could be DCE'd, but baseline's implementation
// won't be able to handle an Undefined scope.
addToGraph(Phantom, base);
// Constant folding in the bytecode parser is important for performance. This may not
// have executed yet. If it hasn't, then we won't have a prediction. Lacking a
// prediction, we'd otherwise think that it has to exit. Then when it did execute, we
// would recompile. But if we can fold it here, we avoid the exit.
m_graph.freeze(getById.moduleEnvironment());
if (JSValue value = m_graph.tryGetConstantClosureVar(getById.moduleEnvironment(), getById.scopeOffset())) {
set(VirtualRegister(resultOperand), weakJSConstant(value));
return true;
}
set(VirtualRegister(resultOperand), addToGraph(GetClosureVar, OpInfo(getById.scopeOffset().offset()), OpInfo(prediction), weakJSConstant(getById.moduleEnvironment())));
return true;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleTypedArrayConstructor(
int resultOperand, InternalFunction* function, int registerOffset,
int argumentCountIncludingThis, TypedArrayType type, const ChecksFunctor& insertChecks)
{
if (!isTypedView(type))
return false;
if (function->classInfo() != constructorClassInfoForType(type))
return false;
if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
return false;
// We only have an intrinsic for the case where you say:
//
// new FooArray(blah);
//
// Of course, 'blah' could be any of the following:
//
// - Integer, indicating that you want to allocate an array of that length.
// This is the thing we're hoping for, and what we can actually do meaningful
// optimizations for.
//
// - Array buffer, indicating that you want to create a view onto that _entire_
// buffer.
//
// - Non-buffer object, indicating that you want to create a copy of that
// object by pretending that it quacks like an array.
//
// - Anything else, indicating that you want to have an exception thrown at
// you.
//
// The intrinsic, NewTypedArray, will behave as if it could do any of these
// things up until we do Fixup. Thereafter, if child1 (i.e. 'blah') is
// predicted Int32, then we lock it in as a normal typed array allocation.
// Otherwise, NewTypedArray turns into a totally opaque function call that
// may clobber the world - by virtue of it accessing properties on what could
// be an object.
//
// Note that although the generic form of NewTypedArray sounds sort of awful,
// it is actually quite likely to be more efficient than a fully generic
// Construct. So, we might want to think about making NewTypedArray variadic,
// or else making Construct not super slow.
if (argumentCountIncludingThis != 2)
return false;
if (!function->globalObject()->typedArrayStructureConcurrently(type))
return false;
insertChecks();
set(VirtualRegister(resultOperand),
addToGraph(NewTypedArray, OpInfo(type), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
template<typename ChecksFunctor>
bool ByteCodeParser::handleConstantInternalFunction(
Node* callTargetNode, int resultOperand, InternalFunction* function, int registerOffset,
int argumentCountIncludingThis, CodeSpecializationKind kind, SpeculatedType prediction, const ChecksFunctor& insertChecks)
{
VERBOSE_LOG(" Handling constant internal function ", JSValue(function), "\n");
// It so happens that the code below assumes that the result operand is valid. It's extremely
// unlikely that the result operand would be invalid - you'd have to call this via a setter call.
if (!VirtualRegister(resultOperand).isValid())
return false;
if (kind == CodeForConstruct) {
Node* newTargetNode = get(virtualRegisterForArgument(0, registerOffset));
// We cannot handle the case where new.target != callee (i.e. a construct from a super call) because we
// don't know what the prototype of the constructed object will be.
// FIXME: If we have inlined super calls up to the call site, however, we should be able to figure out the structure. https://bugs.webkit.org/show_bug.cgi?id=152700
if (newTargetNode != callTargetNode)
return false;
}
if (function->classInfo() == ArrayConstructor::info()) {
if (function->globalObject() != m_inlineStackTop->m_codeBlock->globalObject())
return false;
insertChecks();
if (argumentCountIncludingThis == 2) {
set(VirtualRegister(resultOperand),
addToGraph(NewArrayWithSize, OpInfo(ArrayWithUndecided), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
for (int i = 1; i < argumentCountIncludingThis; ++i)
addVarArgChild(get(virtualRegisterForArgument(i, registerOffset)));
set(VirtualRegister(resultOperand),
addToGraph(Node::VarArg, NewArray, OpInfo(ArrayWithUndecided), OpInfo(argumentCountIncludingThis - 1)));
return true;
}
if (function->classInfo() == NumberConstructor::info()) {
if (kind == CodeForConstruct)
return false;
insertChecks();
if (argumentCountIncludingThis <= 1)
set(VirtualRegister(resultOperand), jsConstant(jsNumber(0)));
else
set(VirtualRegister(resultOperand), addToGraph(ToNumber, OpInfo(0), OpInfo(prediction), get(virtualRegisterForArgument(1, registerOffset))));
return true;
}
if (function->classInfo() == StringConstructor::info()) {
insertChecks();
Node* result;
if (argumentCountIncludingThis <= 1)
result = jsConstant(m_vm->smallStrings.emptyString());
else
result = addToGraph(CallStringConstructor, get(virtualRegisterForArgument(1, registerOffset)));
if (kind == CodeForConstruct)
result = addToGraph(NewStringObject, OpInfo(m_graph.registerStructure(function->globalObject()->stringObjectStructure())), result);
set(VirtualRegister(resultOperand), result);
return true;
}
// FIXME: This should handle construction as well. https://bugs.webkit.org/show_bug.cgi?id=155591
if (function->classInfo() == ObjectConstructor::info() && kind == CodeForCall) {
insertChecks();
Node* result;
if (argumentCountIncludingThis <= 1)
result = addToGraph(NewObject, OpInfo(m_graph.registerStructure(function->globalObject()->objectStructureForObjectConstructor())));
else
result = addToGraph(CallObjectConstructor, OpInfo(m_graph.freeze(function->globalObject())), OpInfo(prediction), get(virtualRegisterForArgument(1, registerOffset)));
set(VirtualRegister(resultOperand), result);
return true;
}
for (unsigned typeIndex = 0; typeIndex < NumberOfTypedArrayTypes; ++typeIndex) {
bool result = handleTypedArrayConstructor(
resultOperand, function, registerOffset, argumentCountIncludingThis,
indexToTypedArrayType(typeIndex), insertChecks);
if (result)
return true;
}
return false;
}
Node* ByteCodeParser::handleGetByOffset(
SpeculatedType prediction, Node* base, unsigned identifierNumber, PropertyOffset offset,
const InferredType::Descriptor& inferredType, NodeType op)
{
Node* propertyStorage;
if (isInlineOffset(offset))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
StorageAccessData* data = m_graph.m_storageAccessData.add();
data->offset = offset;
data->identifierNumber = identifierNumber;
data->inferredType = inferredType;
m_graph.registerInferredType(inferredType);
Node* getByOffset = addToGraph(op, OpInfo(data), OpInfo(prediction), propertyStorage, base);
return getByOffset;
}
Node* ByteCodeParser::handlePutByOffset(
Node* base, unsigned identifier, PropertyOffset offset, const InferredType::Descriptor& inferredType,
Node* value)
{
Node* propertyStorage;
if (isInlineOffset(offset))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
StorageAccessData* data = m_graph.m_storageAccessData.add();
data->offset = offset;
data->identifierNumber = identifier;
data->inferredType = inferredType;
m_graph.registerInferredType(inferredType);
Node* result = addToGraph(PutByOffset, OpInfo(data), propertyStorage, base, value);
return result;
}
bool ByteCodeParser::check(const ObjectPropertyCondition& condition)
{
if (!condition)
return false;
if (m_graph.watchCondition(condition))
return true;
Structure* structure = condition.object()->structure();
if (!condition.structureEnsuresValidity(structure))
return false;
addToGraph(
CheckStructure,
OpInfo(m_graph.addStructureSet(structure)),
weakJSConstant(condition.object()));
return true;
}
GetByOffsetMethod ByteCodeParser::promoteToConstant(GetByOffsetMethod method)
{
if (method.kind() == GetByOffsetMethod::LoadFromPrototype
&& method.prototype()->structure()->dfgShouldWatch()) {
if (JSValue constant = m_graph.tryGetConstantProperty(method.prototype()->value(), method.prototype()->structure(), method.offset()))
return GetByOffsetMethod::constant(m_graph.freeze(constant));
}
return method;
}
bool ByteCodeParser::needsDynamicLookup(ResolveType type, OpcodeID opcode)
{
ASSERT(opcode == op_resolve_scope || opcode == op_get_from_scope || opcode == op_put_to_scope);
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
if (needsVarInjectionChecks(type) && globalObject->varInjectionWatchpoint()->hasBeenInvalidated())
return true;
switch (type) {
case GlobalProperty:
case GlobalVar:
case GlobalLexicalVar:
case ClosureVar:
case LocalClosureVar:
case ModuleVar:
return false;
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks: {
// The heuristic for UnresolvedProperty scope accesses is we will ForceOSRExit if we
// haven't exited from from this access before to let the baseline JIT try to better
// cache the access. If we've already exited from this operation, it's unlikely that
// the baseline will come up with a better ResolveType and instead we will compile
// this as a dynamic scope access.
// We only track our heuristic through resolve_scope since resolve_scope will
// dominate unresolved gets/puts on that scope.
if (opcode != op_resolve_scope)
return true;
if (m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, InadequateCoverage)) {
// We've already exited so give up on getting better ResolveType information.
return true;
}
// We have not exited yet, so let's have the baseline get better ResolveType information for us.
// This type of code is often seen when we tier up in a loop but haven't executed the part
// of a function that comes after the loop.
return false;
}
case Dynamic:
return true;
case GlobalPropertyWithVarInjectionChecks:
case GlobalVarWithVarInjectionChecks:
case GlobalLexicalVarWithVarInjectionChecks:
case ClosureVarWithVarInjectionChecks:
return false;
}
ASSERT_NOT_REACHED();
return false;
}
GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyCondition& condition)
{
VERBOSE_LOG("Planning a load: ", condition, "\n");
// We might promote this to Equivalence, and a later DFG pass might also do such promotion
// even if we fail, but for simplicity this cannot be asked to load an equivalence condition.
// None of the clients of this method will request a load of an Equivalence condition anyway,
// and supporting it would complicate the heuristics below.
RELEASE_ASSERT(condition.kind() == PropertyCondition::Presence);
// Here's the ranking of how to handle this, from most preferred to least preferred:
//
// 1) Watchpoint on an equivalence condition and return a constant node for the loaded value.
// No other code is emitted, and the structure of the base object is never registered.
// Hence this results in zero code and we won't jettison this compilation if the object
// transitions, even if the structure is watchable right now.
//
// 2) Need to emit a load, and the current structure of the base is going to be watched by the
// DFG anyway (i.e. dfgShouldWatch). Watch the structure and emit the load. Don't watch the
// condition, since the act of turning the base into a constant in IR will cause the DFG to
// watch the structure anyway and doing so would subsume watching the condition.
//
// 3) Need to emit a load, and the current structure of the base is watchable but not by the
// DFG (i.e. transitionWatchpointSetIsStillValid() and !dfgShouldWatchIfPossible()). Watch
// the condition, and emit a load.
//
// 4) Need to emit a load, and the current structure of the base is not watchable. Emit a
// structure check, and emit a load.
//
// 5) The condition does not hold. Give up and return null.
// First, try to promote Presence to Equivalence. We do this before doing anything else
// because it's the most profitable. Also, there are cases where the presence is watchable but
// we don't want to watch it unless it became an equivalence (see the relationship between
// (1), (2), and (3) above).
ObjectPropertyCondition equivalenceCondition = condition.attemptToMakeEquivalenceWithoutBarrier(*m_vm);
if (m_graph.watchCondition(equivalenceCondition))
return GetByOffsetMethod::constant(m_graph.freeze(equivalenceCondition.requiredValue()));
// At this point, we'll have to materialize the condition's base as a constant in DFG IR. Once
// we do this, the frozen value will have its own idea of what the structure is. Use that from
// now on just because it's less confusing.
FrozenValue* base = m_graph.freeze(condition.object());
Structure* structure = base->structure();
// Check if the structure that we've registered makes the condition hold. If not, just give
// up. This is case (5) above.
if (!condition.structureEnsuresValidity(structure))
return GetByOffsetMethod();
// If the structure is watched by the DFG already, then just use this fact to emit the load.
// This is case (2) above.
if (structure->dfgShouldWatch())
return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
// If we can watch the condition right now, then we can emit the load after watching it. This
// is case (3) above.
if (m_graph.watchCondition(condition))
return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
// We can't watch anything but we know that the current structure satisfies the condition. So,
// check for that structure and then emit the load.
addToGraph(
CheckStructure,
OpInfo(m_graph.addStructureSet(structure)),
addToGraph(JSConstant, OpInfo(base)));
return promoteToConstant(GetByOffsetMethod::loadFromPrototype(base, condition.offset()));
}
Node* ByteCodeParser::load(
SpeculatedType prediction, unsigned identifierNumber, const GetByOffsetMethod& method,
NodeType op)
{
switch (method.kind()) {
case GetByOffsetMethod::Invalid:
return nullptr;
case GetByOffsetMethod::Constant:
return addToGraph(JSConstant, OpInfo(method.constant()));
case GetByOffsetMethod::LoadFromPrototype: {
Node* baseNode = addToGraph(JSConstant, OpInfo(method.prototype()));
return handleGetByOffset(
prediction, baseNode, identifierNumber, method.offset(), InferredType::Top, op);
}
case GetByOffsetMethod::Load:
// Will never see this from planLoad().
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
RELEASE_ASSERT_NOT_REACHED();
return nullptr;
}
Node* ByteCodeParser::load(
SpeculatedType prediction, const ObjectPropertyCondition& condition, NodeType op)
{
GetByOffsetMethod method = planLoad(condition);
return load(prediction, m_graph.identifiers().ensure(condition.uid()), method, op);
}
bool ByteCodeParser::check(const ObjectPropertyConditionSet& conditionSet)
{
for (const ObjectPropertyCondition& condition : conditionSet) {
if (!check(condition))
return false;
}
return true;
}
GetByOffsetMethod ByteCodeParser::planLoad(const ObjectPropertyConditionSet& conditionSet)
{
VERBOSE_LOG("conditionSet = ", conditionSet, "\n");
GetByOffsetMethod result;
for (const ObjectPropertyCondition& condition : conditionSet) {
switch (condition.kind()) {
case PropertyCondition::Presence:
RELEASE_ASSERT(!result); // Should only see exactly one of these.
result = planLoad(condition);
if (!result)
return GetByOffsetMethod();
break;
default:
if (!check(condition))
return GetByOffsetMethod();
break;
}
}
if (!result) {
// We have a unset property.
ASSERT(!conditionSet.numberOfConditionsWithKind(PropertyCondition::Presence));
return GetByOffsetMethod::constant(m_constantUndefined);
}
return result;
}
Node* ByteCodeParser::load(
SpeculatedType prediction, const ObjectPropertyConditionSet& conditionSet, NodeType op)
{
GetByOffsetMethod method = planLoad(conditionSet);
return load(
prediction,
m_graph.identifiers().ensure(conditionSet.slotBaseCondition().uid()),
method, op);
}
ObjectPropertyCondition ByteCodeParser::presenceLike(
JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
{
if (set.isEmpty())
return ObjectPropertyCondition();
unsigned attributes;
PropertyOffset firstOffset = set[0]->getConcurrently(uid, attributes);
if (firstOffset != offset)
return ObjectPropertyCondition();
for (unsigned i = 1; i < set.size(); ++i) {
unsigned otherAttributes;
PropertyOffset otherOffset = set[i]->getConcurrently(uid, otherAttributes);
if (otherOffset != offset || otherAttributes != attributes)
return ObjectPropertyCondition();
}
return ObjectPropertyCondition::presenceWithoutBarrier(knownBase, uid, offset, attributes);
}
bool ByteCodeParser::checkPresenceLike(
JSObject* knownBase, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
{
return check(presenceLike(knownBase, uid, offset, set));
}
void ByteCodeParser::checkPresenceLike(
Node* base, UniquedStringImpl* uid, PropertyOffset offset, const StructureSet& set)
{
if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>(*m_vm)) {
if (checkPresenceLike(knownBase, uid, offset, set))
return;
}
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(set)), base);
}
template<typename VariantType>
Node* ByteCodeParser::load(
SpeculatedType prediction, Node* base, unsigned identifierNumber, const VariantType& variant)
{
// Make sure backwards propagation knows that we've used base.
addToGraph(Phantom, base);
bool needStructureCheck = true;
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
if (JSObject* knownBase = base->dynamicCastConstant<JSObject*>(*m_vm)) {
// Try to optimize away the structure check. Note that it's not worth doing anything about this
// if the base's structure is watched.
Structure* structure = base->constant()->structure();
if (!structure->dfgShouldWatch()) {
if (!variant.conditionSet().isEmpty()) {
// This means that we're loading from a prototype or we have a property miss. We expect
// the base not to have the property. We can only use ObjectPropertyCondition if all of
// the structures in the variant.structureSet() agree on the prototype (it would be
// hilariously rare if they didn't). Note that we are relying on structureSet() having
// at least one element. That will always be true here because of how GetByIdStatus/PutByIdStatus work.
// FIXME: right now, if we have an OPCS, we have mono proto. However, this will
// need to be changed in the future once we have a hybrid data structure for
// poly proto:
// https://bugs.webkit.org/show_bug.cgi?id=177339
JSObject* prototype = variant.structureSet()[0]->storedPrototypeObject();
bool allAgree = true;
for (unsigned i = 1; i < variant.structureSet().size(); ++i) {
if (variant.structureSet()[i]->storedPrototypeObject() != prototype) {
allAgree = false;
break;
}
}
if (allAgree) {
ObjectPropertyCondition condition = ObjectPropertyCondition::absenceWithoutBarrier(
knownBase, uid, prototype);
if (check(condition))
needStructureCheck = false;
}
} else {
// This means we're loading directly from base. We can avoid all of the code that follows
// if we can prove that the property is a constant. Otherwise, we try to prove that the
// property is watchably present, in which case we get rid of the structure check.
ObjectPropertyCondition presenceCondition =
presenceLike(knownBase, uid, variant.offset(), variant.structureSet());
if (presenceCondition) {
ObjectPropertyCondition equivalenceCondition =
presenceCondition.attemptToMakeEquivalenceWithoutBarrier(*m_vm);
if (m_graph.watchCondition(equivalenceCondition))
return weakJSConstant(equivalenceCondition.requiredValue());
if (check(presenceCondition))
needStructureCheck = false;
}
}
}
}
if (needStructureCheck)
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.structureSet())), base);
if (variant.isPropertyUnset()) {
if (m_graph.watchConditions(variant.conditionSet()))
return jsConstant(jsUndefined());
return nullptr;
}
SpeculatedType loadPrediction;
NodeType loadOp;
if (variant.callLinkStatus() || variant.intrinsic() != NoIntrinsic) {
loadPrediction = SpecCellOther;
loadOp = GetGetterSetterByOffset;
} else {
loadPrediction = prediction;
loadOp = GetByOffset;
}
Node* loadedValue;
if (!variant.conditionSet().isEmpty())
loadedValue = load(loadPrediction, variant.conditionSet(), loadOp);
else {
if (needStructureCheck && base->hasConstant()) {
// We did emit a structure check. That means that we have an opportunity to do constant folding
// here, since we didn't do it above.
JSValue constant = m_graph.tryGetConstantProperty(
base->asJSValue(), *m_graph.addStructureSet(variant.structureSet()), variant.offset());
if (constant)
return weakJSConstant(constant);
}
InferredType::Descriptor inferredType;
if (needStructureCheck) {
for (Structure* structure : variant.structureSet()) {
InferredType::Descriptor thisType = m_graph.inferredTypeForProperty(structure, uid);
inferredType.merge(thisType);
}
} else
inferredType = InferredType::Top;
loadedValue = handleGetByOffset(
loadPrediction, base, identifierNumber, variant.offset(), inferredType, loadOp);
}
return loadedValue;
}
Node* ByteCodeParser::store(Node* base, unsigned identifier, const PutByIdVariant& variant, Node* value)
{
RELEASE_ASSERT(variant.kind() == PutByIdVariant::Replace);
checkPresenceLike(base, m_graph.identifiers()[identifier], variant.offset(), variant.structure());
return handlePutByOffset(base, identifier, variant.offset(), variant.requiredType(), value);
}
void ByteCodeParser::handleGetById(
int destinationOperand, SpeculatedType prediction, Node* base, unsigned identifierNumber,
GetByIdStatus getByIdStatus, AccessType type, unsigned instructionSize)
{
// Attempt to reduce the set of things in the GetByIdStatus.
if (base->op() == NewObject) {
bool ok = true;
for (unsigned i = m_currentBlock->size(); i--;) {
Node* node = m_currentBlock->at(i);
if (node == base)
break;
if (writesOverlap(m_graph, node, JSCell_structureID)) {
ok = false;
break;
}
}
if (ok)
getByIdStatus.filter(base->structure().get());
}
NodeType getById;
if (type == AccessType::Get)
getById = getByIdStatus.makesCalls() ? GetByIdFlush : GetById;
else
getById = TryGetById;
if (getById != TryGetById && getByIdStatus.isModuleNamespace()) {
if (handleModuleNamespaceLoad(destinationOperand, prediction, base, getByIdStatus)) {
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedGetById();
return;
}
}
// Special path for custom accessors since custom's offset does not have any meanings.
// So, this is completely different from Simple one. But we have a chance to optimize it when we use DOMJIT.
if (Options::useDOMJIT() && getByIdStatus.isCustom()) {
ASSERT(getByIdStatus.numVariants() == 1);
ASSERT(!getByIdStatus.makesCalls());
GetByIdVariant variant = getByIdStatus[0];
ASSERT(variant.domAttribute());
if (handleDOMJITGetter(destinationOperand, variant, base, identifierNumber, prediction)) {
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedGetById();
return;
}
}
ASSERT(type == AccessType::Get || !getByIdStatus.makesCalls());
if (!getByIdStatus.isSimple() || !getByIdStatus.numVariants() || !Options::useAccessInlining()) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
if (getByIdStatus.numVariants() > 1) {
if (getByIdStatus.makesCalls() || !isFTL(m_graph.m_plan.mode)
|| !Options::usePolymorphicAccessInlining()) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
Vector<MultiGetByOffsetCase, 2> cases;
// 1) Emit prototype structure checks for all chains. This could sort of maybe not be
// optimal, if there is some rarely executed case in the chain that requires a lot
// of checks and those checks are not watchpointable.
for (const GetByIdVariant& variant : getByIdStatus.variants()) {
if (variant.intrinsic() != NoIntrinsic) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
if (variant.conditionSet().isEmpty()) {
cases.append(
MultiGetByOffsetCase(
*m_graph.addStructureSet(variant.structureSet()),
GetByOffsetMethod::load(variant.offset())));
continue;
}
GetByOffsetMethod method = planLoad(variant.conditionSet());
if (!method) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
cases.append(MultiGetByOffsetCase(*m_graph.addStructureSet(variant.structureSet()), method));
}
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedGetById();
// 2) Emit a MultiGetByOffset
MultiGetByOffsetData* data = m_graph.m_multiGetByOffsetData.add();
data->cases = cases;
data->identifierNumber = identifierNumber;
set(VirtualRegister(destinationOperand),
addToGraph(MultiGetByOffset, OpInfo(data), OpInfo(prediction), base));
return;
}
ASSERT(getByIdStatus.numVariants() == 1);
GetByIdVariant variant = getByIdStatus[0];
Node* loadedValue = load(prediction, base, identifierNumber, variant);
if (!loadedValue) {
set(VirtualRegister(destinationOperand),
addToGraph(getById, OpInfo(identifierNumber), OpInfo(prediction), base));
return;
}
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedGetById();
ASSERT(type == AccessType::Get || !variant.callLinkStatus());
if (!variant.callLinkStatus() && variant.intrinsic() == NoIntrinsic) {
set(VirtualRegister(destinationOperand), loadedValue);
return;
}
Node* getter = addToGraph(GetGetter, loadedValue);
if (handleIntrinsicGetter(destinationOperand, prediction, variant, base,
[&] () {
addToGraph(CheckCell, OpInfo(m_graph.freeze(variant.intrinsicFunction())), getter);
})) {
addToGraph(Phantom, base);
return;
}
ASSERT(variant.intrinsic() == NoIntrinsic);
// Make a call. We don't try to get fancy with using the smallest operand number because
// the stack layout phase should compress the stack anyway.
unsigned numberOfParameters = 0;
numberOfParameters++; // The 'this' argument.
numberOfParameters++; // True return PC.
// Start with a register offset that corresponds to the last in-use register.
int registerOffset = virtualRegisterForLocal(
m_inlineStackTop->m_profiledBlock->m_numCalleeLocals - 1).offset();
registerOffset -= numberOfParameters;
registerOffset -= CallFrame::headerSizeInRegisters;
// Get the alignment right.
registerOffset = -WTF::roundUpToMultipleOf(
stackAlignmentRegisters(),
-registerOffset);
ensureLocals(
m_inlineStackTop->remapOperand(
VirtualRegister(registerOffset)).toLocal());
// Issue SetLocals. This has two effects:
// 1) That's how handleCall() sees the arguments.
// 2) If we inline then this ensures that the arguments are flushed so that if you use
// the dreaded arguments object on the getter, the right things happen. Well, sort of -
// since we only really care about 'this' in this case. But we're not going to take that
// shortcut.
int nextRegister = registerOffset + CallFrame::headerSizeInRegisters;
set(VirtualRegister(nextRegister++), base, ImmediateNakedSet);
// We've set some locals, but they are not user-visible. It's still OK to exit from here.
m_exitOK = true;
addToGraph(ExitOK);
handleCall(
destinationOperand, Call, InlineCallFrame::GetterCall, instructionSize,
getter, numberOfParameters - 1, registerOffset, *variant.callLinkStatus(), prediction);
}
void ByteCodeParser::emitPutById(
Node* base, unsigned identifierNumber, Node* value, const PutByIdStatus& putByIdStatus, bool isDirect)
{
if (isDirect)
addToGraph(PutByIdDirect, OpInfo(identifierNumber), base, value);
else
addToGraph(putByIdStatus.makesCalls() ? PutByIdFlush : PutById, OpInfo(identifierNumber), base, value);
}
void ByteCodeParser::handlePutById(
Node* base, unsigned identifierNumber, Node* value,
const PutByIdStatus& putByIdStatus, bool isDirect)
{
if (!putByIdStatus.isSimple() || !putByIdStatus.numVariants() || !Options::useAccessInlining()) {
if (!putByIdStatus.isSet())
addToGraph(ForceOSRExit);
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
if (putByIdStatus.numVariants() > 1) {
if (!isFTL(m_graph.m_plan.mode) || putByIdStatus.makesCalls()
|| !Options::usePolymorphicAccessInlining()) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
if (!isDirect) {
for (unsigned variantIndex = putByIdStatus.numVariants(); variantIndex--;) {
if (putByIdStatus[variantIndex].kind() != PutByIdVariant::Transition)
continue;
if (!check(putByIdStatus[variantIndex].conditionSet())) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
}
}
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedPutById();
for (const PutByIdVariant& variant : putByIdStatus.variants()) {
m_graph.registerInferredType(variant.requiredType());
for (Structure* structure : variant.oldStructure())
m_graph.registerStructure(structure);
if (variant.kind() == PutByIdVariant::Transition)
m_graph.registerStructure(variant.newStructure());
}
MultiPutByOffsetData* data = m_graph.m_multiPutByOffsetData.add();
data->variants = putByIdStatus.variants();
data->identifierNumber = identifierNumber;
addToGraph(MultiPutByOffset, OpInfo(data), base, value);
return;
}
ASSERT(putByIdStatus.numVariants() == 1);
const PutByIdVariant& variant = putByIdStatus[0];
switch (variant.kind()) {
case PutByIdVariant::Replace: {
store(base, identifierNumber, variant, value);
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedPutById();
return;
}
case PutByIdVariant::Transition: {
addToGraph(CheckStructure, OpInfo(m_graph.addStructureSet(variant.oldStructure())), base);
if (!check(variant.conditionSet())) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
ASSERT(variant.oldStructureForTransition()->transitionWatchpointSetHasBeenInvalidated());
Node* propertyStorage;
Transition* transition = m_graph.m_transitions.add(
m_graph.registerStructure(variant.oldStructureForTransition()), m_graph.registerStructure(variant.newStructure()));
if (variant.reallocatesStorage()) {
// If we're growing the property storage then it must be because we're
// storing into the out-of-line storage.
ASSERT(!isInlineOffset(variant.offset()));
if (!variant.oldStructureForTransition()->outOfLineCapacity()) {
propertyStorage = addToGraph(
AllocatePropertyStorage, OpInfo(transition), base);
} else {
propertyStorage = addToGraph(
ReallocatePropertyStorage, OpInfo(transition),
base, addToGraph(GetButterfly, base));
}
} else {
if (isInlineOffset(variant.offset()))
propertyStorage = base;
else
propertyStorage = addToGraph(GetButterfly, base);
}
StorageAccessData* data = m_graph.m_storageAccessData.add();
data->offset = variant.offset();
data->identifierNumber = identifierNumber;
data->inferredType = variant.requiredType();
m_graph.registerInferredType(data->inferredType);
// NOTE: We could GC at this point because someone could insert an operation that GCs.
// That's fine because:
// - Things already in the structure will get scanned because we haven't messed with
// the object yet.
// - The value we are fixing to put is going to be kept live by OSR exit handling. So
// if the GC does a conservative scan here it will see the new value.
addToGraph(
PutByOffset,
OpInfo(data),
propertyStorage,
base,
value);
if (variant.reallocatesStorage())
addToGraph(NukeStructureAndSetButterfly, base, propertyStorage);
// FIXME: PutStructure goes last until we fix either
// https://bugs.webkit.org/show_bug.cgi?id=142921 or
// https://bugs.webkit.org/show_bug.cgi?id=142924.
addToGraph(PutStructure, OpInfo(transition), base);
if (UNLIKELY(m_graph.compilation()))
m_graph.compilation()->noticeInlinedPutById();
return;
}
case PutByIdVariant::Setter: {
Node* loadedValue = load(SpecCellOther, base, identifierNumber, variant);
if (!loadedValue) {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
}
Node* setter = addToGraph(GetSetter, loadedValue);
// Make a call. We don't try to get fancy with using the smallest operand number because
// the stack layout phase should compress the stack anyway.
unsigned numberOfParameters = 0;
numberOfParameters++; // The 'this' argument.
numberOfParameters++; // The new value.
numberOfParameters++; // True return PC.
// Start with a register offset that corresponds to the last in-use register.
int registerOffset = virtualRegisterForLocal(
m_inlineStackTop->m_profiledBlock->m_numCalleeLocals - 1).offset();
registerOffset -= numberOfParameters;
registerOffset -= CallFrame::headerSizeInRegisters;
// Get the alignment right.
registerOffset = -WTF::roundUpToMultipleOf(
stackAlignmentRegisters(),
-registerOffset);
ensureLocals(
m_inlineStackTop->remapOperand(
VirtualRegister(registerOffset)).toLocal());
int nextRegister = registerOffset + CallFrame::headerSizeInRegisters;
set(VirtualRegister(nextRegister++), base, ImmediateNakedSet);
set(VirtualRegister(nextRegister++), value, ImmediateNakedSet);
// We've set some locals, but they are not user-visible. It's still OK to exit from here.
m_exitOK = true;
addToGraph(ExitOK);
handleCall(
VirtualRegister().offset(), Call, InlineCallFrame::SetterCall,
OPCODE_LENGTH(op_put_by_id), setter, numberOfParameters - 1, registerOffset,
*variant.callLinkStatus(), SpecOther);
return;
}
default: {
emitPutById(base, identifierNumber, value, putByIdStatus, isDirect);
return;
} }
}
void ByteCodeParser::prepareToParseBlock()
{
clearCaches();
ASSERT(m_setLocalQueue.isEmpty());
}
void ByteCodeParser::clearCaches()
{
m_constants.shrink(0);
}
static uint64_t makeDynamicVarOpInfo(unsigned identifierNumber, unsigned getPutInfo)
{
static_assert(sizeof(identifierNumber) == 4,
"We cannot fit identifierNumber into the high bits of m_opInfo");
return static_cast<uint64_t>(identifierNumber) | (static_cast<uint64_t>(getPutInfo) << 32);
}
// The idiom:
// if (true) { ...; goto label; } else label: continue
// Allows using NEXT_OPCODE as a statement, even in unbraced if+else, while containing a `continue`.
// The more common idiom:
// do { ...; } while (false)
// Doesn't allow using `continue`.
#define NEXT_OPCODE(name) \
if (true) { \
m_currentIndex += OPCODE_LENGTH(name); \
goto WTF_CONCAT(NEXT_OPCODE_, __LINE__); /* Need a unique label: usable more than once per function. */ \
} else \
WTF_CONCAT(NEXT_OPCODE_, __LINE__): \
continue
#define LAST_OPCODE_LINKED(name) do { \
m_currentIndex += OPCODE_LENGTH(name); \
m_exitOK = false; \
return; \
} while (false)
#define LAST_OPCODE(name) \
do { \
if (m_currentBlock->terminal()) { \
switch (m_currentBlock->terminal()->op()) { \
case Jump: \
case Branch: \
case Switch: \
ASSERT(!m_currentBlock->isLinked); \
m_inlineStackTop->m_unlinkedBlocks.append(m_currentBlock); \
break;\
default: break; \
} \
} \
LAST_OPCODE_LINKED(name); \
} while (false)
void ByteCodeParser::parseBlock(unsigned limit)
{
Instruction* instructionsBegin = m_inlineStackTop->m_codeBlock->instructions().begin();
unsigned blockBegin = m_currentIndex;
// If we are the first basic block, introduce markers for arguments. This allows
// us to track if a use of an argument may use the actual argument passed, as
// opposed to using a value we set explicitly.
if (m_currentBlock == m_graph.block(0) && !inlineCallFrame()) {
auto addResult = m_graph.m_rootToArguments.add(m_currentBlock, ArgumentsVector());
RELEASE_ASSERT(addResult.isNewEntry);
ArgumentsVector& entrypointArguments = addResult.iterator->value;
entrypointArguments.resize(m_numArguments);
// We will emit SetArgument nodes. They don't exit, but we're at the top of an op_enter so
// exitOK = true.
m_exitOK = true;
for (unsigned argument = 0; argument < m_numArguments; ++argument) {
VariableAccessData* variable = newVariableAccessData(
virtualRegisterForArgument(argument));
variable->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache));
variable->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIndexingType));
Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
entrypointArguments[argument] = setArgument;
m_currentBlock->variablesAtTail.setArgumentFirstTime(argument, setArgument);
}
}
while (true) {
// We're staring at a new bytecode instruction. So we once again have a place that we can exit
// to.
m_exitOK = true;
processSetLocalQueue();
// Don't extend over jump destinations.
if (m_currentIndex == limit) {
// Ordinarily we want to plant a jump. But refuse to do this if the block is
// empty. This is a special case for inlining, which might otherwise create
// some empty blocks in some cases. When parseBlock() returns with an empty
// block, it will get repurposed instead of creating a new one. Note that this
// logic relies on every bytecode resulting in one or more nodes, which would
// be true anyway except for op_loop_hint, which emits a Phantom to force this
// to be true.
if (!m_currentBlock->isEmpty())
addJumpTo(m_currentIndex);
return;
}
// Switch on the current bytecode opcode.
Instruction* currentInstruction = instructionsBegin + m_currentIndex;
m_currentInstruction = currentInstruction; // Some methods want to use this, and we'd rather not thread it through calls.
OpcodeID opcodeID = Interpreter::getOpcodeID(currentInstruction->u.opcode);
VERBOSE_LOG(" parsing ", currentCodeOrigin(), ": ", opcodeID, "\n");
if (UNLIKELY(m_graph.compilation())) {
addToGraph(CountExecution, OpInfo(m_graph.compilation()->executionCounterFor(
Profiler::OriginStack(*m_vm->m_perBytecodeProfiler, m_codeBlock, currentCodeOrigin()))));
}
switch (opcodeID) {
// === Function entry opcodes ===
case op_enter: {
Node* undefined = addToGraph(JSConstant, OpInfo(m_constantUndefined));
// Initialize all locals to undefined.
for (int i = 0; i < m_inlineStackTop->m_codeBlock->m_numVars; ++i)
set(virtualRegisterForLocal(i), undefined, ImmediateNakedSet);
NEXT_OPCODE(op_enter);
}
case op_to_this: {
Node* op1 = getThis();
if (op1->op() != ToThis) {
Structure* cachedStructure = currentInstruction[2].u.structure.get();
if (currentInstruction[3].u.toThisStatus != ToThisOK
|| !cachedStructure
|| cachedStructure->classInfo()->methodTable.toThis != JSObject::info()->methodTable.toThis
|| m_inlineStackTop->m_profiledBlock->couldTakeSlowCase(m_currentIndex)
|| m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCache)
|| (op1->op() == GetLocal && op1->variableAccessData()->structureCheckHoistingFailed())) {
setThis(addToGraph(ToThis, OpInfo(), OpInfo(getPrediction()), op1));
} else {
addToGraph(
CheckStructure,
OpInfo(m_graph.addStructureSet(cachedStructure)),
op1);
}
}
NEXT_OPCODE(op_to_this);
}
case op_create_this: {
auto& bytecode = *reinterpret_cast<OpCreateThis*>(currentInstruction);
Node* callee = get(VirtualRegister(bytecode.callee()));
JSFunction* function = callee->dynamicCastConstant<JSFunction*>(*m_vm);
if (!function) {
JSCell* cachedFunction = bytecode.cachedCallee().unvalidatedGet();
if (cachedFunction
&& cachedFunction != JSCell::seenMultipleCalleeObjects()
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) {
ASSERT(cachedFunction->inherits<JSFunction>(*m_vm));
FrozenValue* frozen = m_graph.freeze(cachedFunction);
addToGraph(CheckCell, OpInfo(frozen), callee);
function = static_cast<JSFunction*>(cachedFunction);
}
}
bool alreadyEmitted = false;
if (function) {
if (FunctionRareData* rareData = function->rareData()) {
if (Structure* structure = rareData->objectAllocationStructure()) {
// FIXME: we should be able to allocate a poly proto object here:
// https://bugs.webkit.org/show_bug.cgi?id=177517
if (structure->hasMonoProto()) {
m_graph.freeze(rareData);
m_graph.watchpoints().addLazily(rareData->allocationProfileWatchpointSet());
// The callee is still live up to this point.
addToGraph(Phantom, callee);
set(VirtualRegister(bytecode.dst()), addToGraph(NewObject, OpInfo(m_graph.registerStructure(structure))));
alreadyEmitted = true;
}
}
}
}
if (!alreadyEmitted) {
set(VirtualRegister(bytecode.dst()),
addToGraph(CreateThis, OpInfo(bytecode.inlineCapacity()), callee));
}
NEXT_OPCODE(op_create_this);
}
case op_new_object: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(NewObject,
OpInfo(m_graph.registerStructure(currentInstruction[3].u.objectAllocationProfile->structure()))));
NEXT_OPCODE(op_new_object);
}
case op_new_array: {
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
ArrayAllocationProfile* profile = currentInstruction[4].u.arrayAllocationProfile;
for (int operandIdx = startOperand; operandIdx > startOperand - numOperands; --operandIdx)
addVarArgChild(get(VirtualRegister(operandIdx)));
unsigned vectorLengthHint = std::max<unsigned>(profile->vectorLengthHint(), numOperands);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(Node::VarArg, NewArray, OpInfo(profile->selectIndexingType()), OpInfo(vectorLengthHint)));
NEXT_OPCODE(op_new_array);
}
case op_new_array_with_spread: {
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
const BitVector& bitVector = m_inlineStackTop->m_profiledBlock->unlinkedCodeBlock()->bitVector(currentInstruction[4].u.unsignedValue);
for (int operandIdx = startOperand; operandIdx > startOperand - numOperands; --operandIdx)
addVarArgChild(get(VirtualRegister(operandIdx)));
BitVector* copy = m_graph.m_bitVectors.add(bitVector);
ASSERT(*copy == bitVector);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(Node::VarArg, NewArrayWithSpread, OpInfo(copy)));
NEXT_OPCODE(op_new_array_with_spread);
}
case op_spread: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(Spread, get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_spread);
}
case op_new_array_with_size: {
int lengthOperand = currentInstruction[2].u.operand;
ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile;
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayWithSize, OpInfo(profile->selectIndexingType()), get(VirtualRegister(lengthOperand))));
NEXT_OPCODE(op_new_array_with_size);
}
case op_new_array_buffer: {
FrozenValue* frozen = get(VirtualRegister(currentInstruction[2].u.operand))->constant();
JSFixedArray* fixedArray = frozen->cast<JSFixedArray*>();
ArrayAllocationProfile* profile = currentInstruction[3].u.arrayAllocationProfile;
NewArrayBufferData data { };
data.indexingType = profile->selectIndexingType();
data.vectorLengthHint = std::max<unsigned>(profile->vectorLengthHint(), fixedArray->length());
// If this statement has never executed, we'll have the wrong indexing type in the profile.
for (unsigned index = 0; index < fixedArray->length(); ++index)
data.indexingType = leastUpperBoundOfIndexingTypeAndValue(data.indexingType, fixedArray->get(index));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewArrayBuffer, OpInfo(frozen), OpInfo(data.asQuadWord)));
NEXT_OPCODE(op_new_array_buffer);
}
case op_new_regexp: {
RegExp* regexp = m_inlineStackTop->m_codeBlock->regexp(currentInstruction[2].u.operand);
FrozenValue* frozen = m_graph.freezeStrong(regexp);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(NewRegexp, OpInfo(frozen), jsConstant(jsNumber(0))));
NEXT_OPCODE(op_new_regexp);
}
case op_get_rest_length: {
InlineCallFrame* inlineCallFrame = this->inlineCallFrame();
Node* length;
if (inlineCallFrame && !inlineCallFrame->isVarargs()) {
unsigned argumentsLength = inlineCallFrame->argumentCountIncludingThis - 1;
unsigned numParamsToSkip = currentInstruction[2].u.unsignedValue;
JSValue restLength;
if (argumentsLength <= numParamsToSkip)
restLength = jsNumber(0);
else
restLength = jsNumber(argumentsLength - numParamsToSkip);
length = jsConstant(restLength);
} else
length = addToGraph(GetRestLength, OpInfo(currentInstruction[2].u.unsignedValue));
set(VirtualRegister(currentInstruction[1].u.operand), length);
NEXT_OPCODE(op_get_rest_length);
}
case op_create_rest: {
noticeArgumentsUse();
Node* arrayLength = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(CreateRest, OpInfo(currentInstruction[3].u.unsignedValue), arrayLength));
NEXT_OPCODE(op_create_rest);
}
// === Bitwise operations ===
case op_bitand: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitAnd, op1, op2));
NEXT_OPCODE(op_bitand);
}
case op_bitor: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitOr, op1, op2));
NEXT_OPCODE(op_bitor);
}
case op_bitxor: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(BitXor, op1, op2));
NEXT_OPCODE(op_bitxor);
}
case op_rshift: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(BitRShift, op1, op2));
NEXT_OPCODE(op_rshift);
}
case op_lshift: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(BitLShift, op1, op2));
NEXT_OPCODE(op_lshift);
}
case op_urshift: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(BitURShift, op1, op2));
NEXT_OPCODE(op_urshift);
}
case op_unsigned: {
set(VirtualRegister(currentInstruction[1].u.operand),
makeSafe(addToGraph(UInt32ToNumber, get(VirtualRegister(currentInstruction[2].u.operand)))));
NEXT_OPCODE(op_unsigned);
}
// === Increment/Decrement opcodes ===
case op_inc: {
int srcDst = currentInstruction[1].u.operand;
VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
Node* op = get(srcDstVirtualRegister);
set(srcDstVirtualRegister, makeSafe(addToGraph(ArithAdd, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_inc);
}
case op_dec: {
int srcDst = currentInstruction[1].u.operand;
VirtualRegister srcDstVirtualRegister = VirtualRegister(srcDst);
Node* op = get(srcDstVirtualRegister);
set(srcDstVirtualRegister, makeSafe(addToGraph(ArithSub, op, addToGraph(JSConstant, OpInfo(m_constantOne)))));
NEXT_OPCODE(op_dec);
}
// === Arithmetic operations ===
case op_add: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
if (op1->hasNumberResult() && op2->hasNumberResult())
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithAdd, op1, op2)));
else
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ValueAdd, op1, op2)));
NEXT_OPCODE(op_add);
}
case op_sub: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithSub, op1, op2)));
NEXT_OPCODE(op_sub);
}
case op_negate: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithNegate, op1)));
NEXT_OPCODE(op_negate);
}
case op_mul: {
// Multiply requires that the inputs are not truncated, unfortunately.
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMul, op1, op2)));
NEXT_OPCODE(op_mul);
}
case op_mod: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeSafe(addToGraph(ArithMod, op1, op2)));
NEXT_OPCODE(op_mod);
}
case op_pow: {
// FIXME: ArithPow(Untyped, Untyped) should be supported as the same to ArithMul, ArithSub etc.
// https://bugs.webkit.org/show_bug.cgi?id=160012
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ArithPow, op1, op2));
NEXT_OPCODE(op_pow);
}
case op_div: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), makeDivSafe(addToGraph(ArithDiv, op1, op2)));
NEXT_OPCODE(op_div);
}
// === Misc operations ===
case op_debug: {
// This is a nop in the DFG/FTL because when we set a breakpoint in the debugger,
// we will jettison all optimized CodeBlocks that contains the breakpoint.
addToGraph(Check); // We add a nop here so that basic block linking doesn't break.
NEXT_OPCODE(op_debug);
}
case op_mov: {
Node* op = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), op);
NEXT_OPCODE(op_mov);
}
case op_check_tdz: {
addToGraph(CheckNotEmpty, get(VirtualRegister(currentInstruction[1].u.operand)));
NEXT_OPCODE(op_check_tdz);
}
case op_overrides_has_instance: {
auto& bytecode = *reinterpret_cast<OpOverridesHasInstance*>(currentInstruction);
JSFunction* defaultHasInstanceSymbolFunction = m_inlineStackTop->m_codeBlock->globalObjectFor(currentCodeOrigin())->functionProtoHasInstanceSymbolFunction();
Node* constructor = get(VirtualRegister(bytecode.constructor()));
Node* hasInstanceValue = get(VirtualRegister(bytecode.hasInstanceValue()));
set(VirtualRegister(bytecode.dst()), addToGraph(OverridesHasInstance, OpInfo(m_graph.freeze(defaultHasInstanceSymbolFunction)), constructor, hasInstanceValue));
NEXT_OPCODE(op_overrides_has_instance);
}
case op_identity_with_profile: {
Node* src = get(VirtualRegister(currentInstruction[1].u.operand));
SpeculatedType speculation = static_cast<SpeculatedType>(currentInstruction[2].u.operand) << 32 | static_cast<SpeculatedType>(currentInstruction[3].u.operand);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IdentityWithProfile, OpInfo(speculation), src));
NEXT_OPCODE(op_identity_with_profile);
}
case op_instanceof: {
auto& bytecode = *reinterpret_cast<OpInstanceof*>(currentInstruction);
Node* value = get(VirtualRegister(bytecode.value()));
Node* prototype = get(VirtualRegister(bytecode.prototype()));
set(VirtualRegister(bytecode.dst()), addToGraph(InstanceOf, value, prototype));
NEXT_OPCODE(op_instanceof);
}
case op_instanceof_custom: {
auto& bytecode = *reinterpret_cast<OpInstanceofCustom*>(currentInstruction);
Node* value = get(VirtualRegister(bytecode.value()));
Node* constructor = get(VirtualRegister(bytecode.constructor()));
Node* hasInstanceValue = get(VirtualRegister(bytecode.hasInstanceValue()));
set(VirtualRegister(bytecode.dst()), addToGraph(InstanceOfCustom, value, constructor, hasInstanceValue));
NEXT_OPCODE(op_instanceof_custom);
}
case op_is_empty: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsEmpty, value));
NEXT_OPCODE(op_is_empty);
}
case op_is_undefined: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsUndefined, value));
NEXT_OPCODE(op_is_undefined);
}
case op_is_boolean: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsBoolean, value));
NEXT_OPCODE(op_is_boolean);
}
case op_is_number: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsNumber, value));
NEXT_OPCODE(op_is_number);
}
case op_is_cell_with_type: {
JSType type = static_cast<JSType>(currentInstruction[3].u.operand);
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsCellWithType, OpInfo(type), value));
NEXT_OPCODE(op_is_cell_with_type);
}
case op_is_object: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObject, value));
NEXT_OPCODE(op_is_object);
}
case op_is_object_or_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsObjectOrNull, value));
NEXT_OPCODE(op_is_object_or_null);
}
case op_is_function: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(IsFunction, value));
NEXT_OPCODE(op_is_function);
}
case op_not: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, value));
NEXT_OPCODE(op_not);
}
case op_to_primitive: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToPrimitive, value));
NEXT_OPCODE(op_to_primitive);
}
case op_strcat: {
int startOperand = currentInstruction[2].u.operand;
int numOperands = currentInstruction[3].u.operand;
#if CPU(X86)
// X86 doesn't have enough registers to compile MakeRope with three arguments. The
// StrCat we emit here may be turned into a MakeRope. Rather than try to be clever,
// we just make StrCat dumber on this processor.
const unsigned maxArguments = 2;
#else
const unsigned maxArguments = 3;
#endif
Node* operands[AdjacencyList::Size];
unsigned indexInOperands = 0;
for (unsigned i = 0; i < AdjacencyList::Size; ++i)
operands[i] = 0;
for (int operandIdx = 0; operandIdx < numOperands; ++operandIdx) {
if (indexInOperands == maxArguments) {
operands[0] = addToGraph(StrCat, operands[0], operands[1], operands[2]);
for (unsigned i = 1; i < AdjacencyList::Size; ++i)
operands[i] = 0;
indexInOperands = 1;
}
ASSERT(indexInOperands < AdjacencyList::Size);
ASSERT(indexInOperands < maxArguments);
operands[indexInOperands++] = get(VirtualRegister(startOperand - operandIdx));
}
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(StrCat, operands[0], operands[1], operands[2]));
NEXT_OPCODE(op_strcat);
}
case op_less: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLess, op1, op2));
NEXT_OPCODE(op_less);
}
case op_lesseq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareLessEq, op1, op2));
NEXT_OPCODE(op_lesseq);
}
case op_greater: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreater, op1, op2));
NEXT_OPCODE(op_greater);
}
case op_greatereq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareGreaterEq, op1, op2));
NEXT_OPCODE(op_greatereq);
}
case op_below: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareBelow, op1, op2));
NEXT_OPCODE(op_below);
}
case op_beloweq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareBelowEq, op1, op2));
NEXT_OPCODE(op_beloweq);
}
case op_eq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, op1, op2));
NEXT_OPCODE(op_eq);
}
case op_eq_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareEq, value, nullConstant));
NEXT_OPCODE(op_eq_null);
}
case op_stricteq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(CompareStrictEq, op1, op2));
NEXT_OPCODE(op_stricteq);
}
case op_neq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2)));
NEXT_OPCODE(op_neq);
}
case op_neq_null: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, addToGraph(CompareEq, value, nullConstant)));
NEXT_OPCODE(op_neq_null);
}
case op_nstricteq: {
Node* op1 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[3].u.operand));
Node* invertedResult;
invertedResult = addToGraph(CompareStrictEq, op1, op2);
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(LogicalNot, invertedResult));
NEXT_OPCODE(op_nstricteq);
}
// === Property access operations ===
case op_get_by_val: {
SpeculatedType prediction = getPredictionWithoutOSRExit();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
bool compiledAsGetById = false;
GetByIdStatus getByIdStatus;
unsigned identifierNumber = 0;
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex));
// FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null.
// At that time, there is no information.
if (byValInfo
&& byValInfo->stubInfo
&& !byValInfo->tookSlowPath
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType)
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) {
compiledAsGetById = true;
identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl());
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
if (Symbol* symbol = byValInfo->cachedSymbol.get()) {
FrozenValue* frozen = m_graph.freezeStrong(symbol);
addToGraph(CheckCell, OpInfo(frozen), property);
} else {
ASSERT(!uid->isSymbol());
addToGraph(CheckStringIdent, OpInfo(uid), property);
}
getByIdStatus = GetByIdStatus::computeForStubInfo(
locker, m_inlineStackTop->m_profiledBlock,
byValInfo->stubInfo, currentCodeOrigin(), uid);
}
}
if (compiledAsGetById)
handleGetById(currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus, AccessType::Get, OPCODE_LENGTH(op_get_by_val));
else {
ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(0); // Leave room for property storage.
if (isFTL(m_graph.m_plan.mode))
addVarArgChild(0); // Leave room for the array mask.
Node* getByVal = addToGraph(Node::VarArg, GetByVal, OpInfo(arrayMode.asWord()), OpInfo(prediction));
m_exitOK = false; // GetByVal must be treated as if it clobbers exit state, since FixupPhase may make it generic.
set(VirtualRegister(currentInstruction[1].u.operand), getByVal);
}
NEXT_OPCODE(op_get_by_val);
}
case op_get_by_val_with_this: {
SpeculatedType prediction = getPrediction();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* thisValue = get(VirtualRegister(currentInstruction[3].u.operand));
Node* property = get(VirtualRegister(currentInstruction[4].u.operand));
Node* getByValWithThis = addToGraph(GetByValWithThis, OpInfo(), OpInfo(prediction), base, thisValue, property);
set(VirtualRegister(currentInstruction[1].u.operand), getByValWithThis);
NEXT_OPCODE(op_get_by_val_with_this);
}
case op_put_by_val_direct:
case op_put_by_val: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* property = get(VirtualRegister(currentInstruction[2].u.operand));
Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
bool isDirect = opcodeID == op_put_by_val_direct;
bool compiledAsPutById = false;
{
unsigned identifierNumber = std::numeric_limits<unsigned>::max();
PutByIdStatus putByIdStatus;
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
ByValInfo* byValInfo = m_inlineStackTop->m_byValInfos.get(CodeOrigin(currentCodeOrigin().bytecodeIndex));
// FIXME: When the bytecode is not compiled in the baseline JIT, byValInfo becomes null.
// At that time, there is no information.
if (byValInfo
&& byValInfo->stubInfo
&& !byValInfo->tookSlowPath
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadIdent)
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadType)
&& !m_inlineStackTop->m_exitProfile.hasExitSite(m_currentIndex, BadCell)) {
compiledAsPutById = true;
identifierNumber = m_graph.identifiers().ensure(byValInfo->cachedId.impl());
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
if (Symbol* symbol = byValInfo->cachedSymbol.get()) {
FrozenValue* frozen = m_graph.freezeStrong(symbol);
addToGraph(CheckCell, OpInfo(frozen), property);
} else {
ASSERT(!uid->isSymbol());
addToGraph(CheckStringIdent, OpInfo(uid), property);
}
putByIdStatus = PutByIdStatus::computeForStubInfo(
locker, m_inlineStackTop->m_profiledBlock,
byValInfo->stubInfo, currentCodeOrigin(), uid);
}
}
if (compiledAsPutById)
handlePutById(base, identifierNumber, value, putByIdStatus, isDirect);
}
if (!compiledAsPutById) {
ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Write);
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(value);
addVarArgChild(0); // Leave room for property storage.
addVarArgChild(0); // Leave room for length.
addToGraph(Node::VarArg, isDirect ? PutByValDirect : PutByVal, OpInfo(arrayMode.asWord()), OpInfo(0));
}
NEXT_OPCODE(op_put_by_val);
}
case op_put_by_val_with_this: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* thisValue = get(VirtualRegister(currentInstruction[2].u.operand));
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
Node* value = get(VirtualRegister(currentInstruction[4].u.operand));
addVarArgChild(base);
addVarArgChild(thisValue);
addVarArgChild(property);
addVarArgChild(value);
addToGraph(Node::VarArg, PutByValWithThis, OpInfo(0), OpInfo(0));
NEXT_OPCODE(op_put_by_val_with_this);
}
case op_define_data_property: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* property = get(VirtualRegister(currentInstruction[2].u.operand));
Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
Node* attributes = get(VirtualRegister(currentInstruction[4].u.operand));
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(value);
addVarArgChild(attributes);
addToGraph(Node::VarArg, DefineDataProperty, OpInfo(0), OpInfo(0));
NEXT_OPCODE(op_define_data_property);
}
case op_define_accessor_property: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* property = get(VirtualRegister(currentInstruction[2].u.operand));
Node* getter = get(VirtualRegister(currentInstruction[3].u.operand));
Node* setter = get(VirtualRegister(currentInstruction[4].u.operand));
Node* attributes = get(VirtualRegister(currentInstruction[5].u.operand));
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(getter);
addVarArgChild(setter);
addVarArgChild(attributes);
addToGraph(Node::VarArg, DefineAccessorProperty, OpInfo(0), OpInfo(0));
NEXT_OPCODE(op_define_accessor_property);
}
case op_try_get_by_id:
case op_get_by_id:
case op_get_by_id_proto_load:
case op_get_by_id_unset:
case op_get_array_length: {
SpeculatedType prediction = getPrediction();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
GetByIdStatus getByIdStatus = GetByIdStatus::computeFor(
m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
currentCodeOrigin(), uid);
AccessType type = op_try_get_by_id == opcodeID ? AccessType::TryGet : AccessType::Get;
unsigned opcodeLength = opcodeID == op_try_get_by_id ? OPCODE_LENGTH(op_try_get_by_id) : OPCODE_LENGTH(op_get_by_id);
handleGetById(
currentInstruction[1].u.operand, prediction, base, identifierNumber, getByIdStatus, type, opcodeLength);
if (op_try_get_by_id == opcodeID)
NEXT_OPCODE(op_try_get_by_id); // Opcode's length is different from others in this case.
else
NEXT_OPCODE(op_get_by_id);
}
case op_get_by_id_with_this: {
SpeculatedType prediction = getPrediction();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* thisValue = get(VirtualRegister(currentInstruction[3].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[4].u.operand];
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(GetByIdWithThis, OpInfo(identifierNumber), OpInfo(prediction), base, thisValue));
NEXT_OPCODE(op_get_by_id_with_this);
}
case op_put_by_id: {
Node* value = get(VirtualRegister(currentInstruction[3].u.operand));
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
bool direct = currentInstruction[8].u.putByIdFlags & PutByIdIsDirect;
PutByIdStatus putByIdStatus = PutByIdStatus::computeFor(
m_inlineStackTop->m_profiledBlock, m_dfgCodeBlock,
m_inlineStackTop->m_stubInfos, m_dfgStubInfos,
currentCodeOrigin(), m_graph.identifiers()[identifierNumber]);
handlePutById(base, identifierNumber, value, putByIdStatus, direct);
NEXT_OPCODE(op_put_by_id);
}
case op_put_by_id_with_this: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* thisValue = get(VirtualRegister(currentInstruction[2].u.operand));
Node* value = get(VirtualRegister(currentInstruction[4].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
addToGraph(PutByIdWithThis, OpInfo(identifierNumber), base, thisValue, value);
NEXT_OPCODE(op_put_by_id_with_this);
}
case op_put_getter_by_id:
case op_put_setter_by_id: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
unsigned attributes = currentInstruction[3].u.operand;
Node* accessor = get(VirtualRegister(currentInstruction[4].u.operand));
NodeType op = (opcodeID == op_put_getter_by_id) ? PutGetterById : PutSetterById;
addToGraph(op, OpInfo(identifierNumber), OpInfo(attributes), base, accessor);
NEXT_OPCODE(op_put_getter_by_id);
}
case op_put_getter_setter_by_id: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[2].u.operand];
unsigned attributes = currentInstruction[3].u.operand;
Node* getter = get(VirtualRegister(currentInstruction[4].u.operand));
Node* setter = get(VirtualRegister(currentInstruction[5].u.operand));
addToGraph(PutGetterSetterById, OpInfo(identifierNumber), OpInfo(attributes), base, getter, setter);
NEXT_OPCODE(op_put_getter_setter_by_id);
}
case op_put_getter_by_val:
case op_put_setter_by_val: {
Node* base = get(VirtualRegister(currentInstruction[1].u.operand));
Node* subscript = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned attributes = currentInstruction[3].u.operand;
Node* accessor = get(VirtualRegister(currentInstruction[4].u.operand));
NodeType op = (opcodeID == op_put_getter_by_val) ? PutGetterByVal : PutSetterByVal;
addToGraph(op, OpInfo(attributes), base, subscript, accessor);
NEXT_OPCODE(op_put_getter_by_val);
}
case op_del_by_id: {
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(DeleteById, OpInfo(identifierNumber), base));
NEXT_OPCODE(op_del_by_id);
}
case op_del_by_val: {
int dst = currentInstruction[1].u.operand;
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* key = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(dst), addToGraph(DeleteByVal, base, key));
NEXT_OPCODE(op_del_by_val);
}
case op_profile_type: {
Node* valueToProfile = get(VirtualRegister(currentInstruction[1].u.operand));
addToGraph(ProfileType, OpInfo(currentInstruction[2].u.location), valueToProfile);
NEXT_OPCODE(op_profile_type);
}
case op_profile_control_flow: {
BasicBlockLocation* basicBlockLocation = currentInstruction[1].u.basicBlockLocation;
addToGraph(ProfileControlFlow, OpInfo(basicBlockLocation));
NEXT_OPCODE(op_profile_control_flow);
}
// === Block terminators. ===
case op_jmp: {
ASSERT(!m_currentBlock->terminal());
int relativeOffset = currentInstruction[1].u.operand;
addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
if (relativeOffset <= 0)
flushForTerminal();
LAST_OPCODE(op_jmp);
}
case op_jtrue: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* condition = get(VirtualRegister(currentInstruction[1].u.operand));
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jtrue))), condition);
LAST_OPCODE(op_jtrue);
}
case op_jfalse: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* condition = get(VirtualRegister(currentInstruction[1].u.operand));
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jfalse), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jfalse);
}
case op_jeq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
Node* condition = addToGraph(CompareEq, value, nullConstant);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jeq_null))), condition);
LAST_OPCODE(op_jeq_null);
}
case op_jneq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
Node* value = get(VirtualRegister(currentInstruction[1].u.operand));
Node* nullConstant = addToGraph(JSConstant, OpInfo(m_constantNull));
Node* condition = addToGraph(CompareEq, value, nullConstant);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq_null), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jneq_null);
}
case op_jless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jless))), condition);
LAST_OPCODE(op_jless);
}
case op_jlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jlesseq))), condition);
LAST_OPCODE(op_jlesseq);
}
case op_jgreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreater, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreater))), condition);
LAST_OPCODE(op_jgreater);
}
case op_jgreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreaterEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jgreatereq))), condition);
LAST_OPCODE(op_jgreatereq);
}
case op_jeq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jeq))), condition);
LAST_OPCODE(op_jeq);
}
case op_jstricteq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareStrictEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jstricteq))), condition);
LAST_OPCODE(op_jstricteq);
}
case op_jnless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnless), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnless);
}
case op_jnlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnlesseq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnlesseq);
}
case op_jngreater: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreater, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreater), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jngreater);
}
case op_jngreatereq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareGreaterEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jngreatereq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jngreatereq);
}
case op_jneq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jneq);
}
case op_jnstricteq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareStrictEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jnstricteq), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jnstricteq);
}
case op_jbelow: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareBelow, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jbelow))), condition);
LAST_OPCODE(op_jbelow);
}
case op_jbeloweq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* op1 = get(VirtualRegister(currentInstruction[1].u.operand));
Node* op2 = get(VirtualRegister(currentInstruction[2].u.operand));
Node* condition = addToGraph(CompareBelowEq, op1, op2);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + relativeOffset, m_currentIndex + OPCODE_LENGTH(op_jbeloweq))), condition);
LAST_OPCODE(op_jbeloweq);
}
case op_switch_imm: {
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchImm;
data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand];
data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex);
for (unsigned i = 0; i < table.branchOffsets.size(); ++i) {
if (!table.branchOffsets[i])
continue;
unsigned target = m_currentIndex + table.branchOffsets[i];
if (target == data.fallThrough.bytecodeIndex())
continue;
data.cases.append(SwitchCase::withBytecodeIndex(m_graph.freeze(jsNumber(static_cast<int32_t>(table.min + i))), target));
}
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
flushIfTerminal(data);
LAST_OPCODE(op_switch_imm);
}
case op_switch_char: {
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchChar;
data.switchTableIndex = m_inlineStackTop->m_switchRemap[currentInstruction[1].u.operand];
data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
SimpleJumpTable& table = m_codeBlock->switchJumpTable(data.switchTableIndex);
for (unsigned i = 0; i < table.branchOffsets.size(); ++i) {
if (!table.branchOffsets[i])
continue;
unsigned target = m_currentIndex + table.branchOffsets[i];
if (target == data.fallThrough.bytecodeIndex())
continue;
data.cases.append(
SwitchCase::withBytecodeIndex(LazyJSValue::singleCharacterString(table.min + i), target));
}
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
flushIfTerminal(data);
LAST_OPCODE(op_switch_char);
}
case op_switch_string: {
SwitchData& data = *m_graph.m_switchData.add();
data.kind = SwitchString;
data.switchTableIndex = currentInstruction[1].u.operand;
data.fallThrough.setBytecodeIndex(m_currentIndex + currentInstruction[2].u.operand);
StringJumpTable& table = m_codeBlock->stringSwitchJumpTable(data.switchTableIndex);
StringJumpTable::StringOffsetTable::iterator iter;
StringJumpTable::StringOffsetTable::iterator end = table.offsetTable.end();
for (iter = table.offsetTable.begin(); iter != end; ++iter) {
unsigned target = m_currentIndex + iter->value.branchOffset;
if (target == data.fallThrough.bytecodeIndex())
continue;
data.cases.append(
SwitchCase::withBytecodeIndex(LazyJSValue::knownStringImpl(iter->key.get()), target));
}
addToGraph(Switch, OpInfo(&data), get(VirtualRegister(currentInstruction[3].u.operand)));
flushIfTerminal(data);
LAST_OPCODE(op_switch_string);
}
case op_ret:
ASSERT(!m_currentBlock->terminal());
if (!inlineCallFrame()) {
// Simple case: we are just producing a return
addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
flushForReturn();
LAST_OPCODE(op_ret);
}
flushForReturn();
if (m_inlineStackTop->m_returnValue.isValid())
setDirect(m_inlineStackTop->m_returnValue, get(VirtualRegister(currentInstruction[1].u.operand)), ImmediateSetWithFlush);
if (!m_inlineStackTop->m_continuationBlock && m_currentIndex + OPCODE_LENGTH(op_ret) != m_inlineStackTop->m_codeBlock->instructions().size()) {
// This is an early return from an inlined function and we do not have a continuation block, so we must allocate one.
// It is untargetable, because we do not know the appropriate index.
// If this block turns out to be a jump target, parseCodeBlock will fix its bytecodeIndex before putting it in m_blockLinkingTargets
m_inlineStackTop->m_continuationBlock = allocateUntargetableBlock();
}
if (m_inlineStackTop->m_continuationBlock)
addJumpTo(m_inlineStackTop->m_continuationBlock);
else {
// We are returning from an inlined function, and do not need to jump anywhere, so we just keep the current block
m_inlineStackTop->m_continuationBlock = m_currentBlock;
}
LAST_OPCODE_LINKED(op_ret);
case op_end:
ASSERT(!inlineCallFrame());
addToGraph(Return, get(VirtualRegister(currentInstruction[1].u.operand)));
flushForReturn();
LAST_OPCODE(op_end);
case op_throw:
addToGraph(Throw, get(VirtualRegister(currentInstruction[1].u.operand)));
flushForTerminal();
LAST_OPCODE(op_throw);
case op_throw_static_error: {
uint32_t errorType = currentInstruction[2].u.unsignedValue;
addToGraph(ThrowStaticError, OpInfo(errorType), get(VirtualRegister(currentInstruction[1].u.operand)));
flushForTerminal();
LAST_OPCODE(op_throw_static_error);
}
case op_catch: {
m_graph.m_hasExceptionHandlers = true;
if (inlineCallFrame()) {
// We can't do OSR entry into an inlined frame.
NEXT_OPCODE(op_catch);
}
if (m_graph.m_plan.mode == FTLForOSREntryMode) {
NEXT_OPCODE(op_catch);
}
RELEASE_ASSERT(!m_currentBlock->size() || (m_graph.compilation() && m_currentBlock->size() == 1 && m_currentBlock->at(0)->op() == CountExecution));
ValueProfileAndOperandBuffer* buffer = static_cast<ValueProfileAndOperandBuffer*>(currentInstruction[3].u.pointer);
if (!buffer) {
NEXT_OPCODE(op_catch); // This catch has yet to execute. Note: this load can be racy with the main thread.
}
// We're now committed to compiling this as an entrypoint.
m_currentBlock->isCatchEntrypoint = true;
m_graph.m_roots.append(m_currentBlock);
Vector<SpeculatedType> argumentPredictions(m_numArguments);
Vector<SpeculatedType> localPredictions;
HashSet<unsigned, WTF::IntHash<unsigned>, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> seenArguments;
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
buffer->forEach([&] (ValueProfileAndOperand& profile) {
VirtualRegister operand(profile.m_operand);
SpeculatedType prediction = profile.m_profile.computeUpdatedPrediction(locker);
if (operand.isLocal())
localPredictions.append(prediction);
else {
RELEASE_ASSERT(operand.isArgument());
RELEASE_ASSERT(static_cast<uint32_t>(operand.toArgument()) < argumentPredictions.size());
if (validationEnabled())
seenArguments.add(operand.toArgument());
argumentPredictions[operand.toArgument()] = prediction;
}
});
if (validationEnabled()) {
for (unsigned argument = 0; argument < m_numArguments; ++argument)
RELEASE_ASSERT(seenArguments.contains(argument));
}
}
Vector<std::pair<VirtualRegister, Node*>> localsToSet;
localsToSet.reserveInitialCapacity(buffer->m_size); // Note: This will reserve more than the number of locals we see below because the buffer includes arguments.
// We're not allowed to exit here since we would not properly recover values.
// We first need to bootstrap the catch entrypoint state.
m_exitOK = false;
unsigned numberOfLocals = 0;
buffer->forEach([&] (ValueProfileAndOperand& profile) {
VirtualRegister operand(profile.m_operand);
if (operand.isArgument())
return;
ASSERT(operand.isLocal());
Node* value = addToGraph(ExtractCatchLocal, OpInfo(numberOfLocals), OpInfo(localPredictions[numberOfLocals]));
++numberOfLocals;
addToGraph(MovHint, OpInfo(profile.m_operand), value);
localsToSet.uncheckedAppend(std::make_pair(operand, value));
});
if (!m_graph.m_maxLocalsForCatchOSREntry)
m_graph.m_maxLocalsForCatchOSREntry = 0;
m_graph.m_maxLocalsForCatchOSREntry = std::max(numberOfLocals, *m_graph.m_maxLocalsForCatchOSREntry);
// We could not exit before this point in the program because we would not know how to do value
// recovery for live locals. The above IR sets up the necessary state so we can recover values
// during OSR exit.
//
// The nodes that follow here all exit to the following bytecode instruction, not
// the op_catch. Exiting to op_catch is reserved for when an exception is thrown.
// The SetArgument nodes that follow below may exit because we may hoist type checks
// to them. The SetLocal nodes that follow below may exit because we may choose
// a flush format that speculates on the type of the local.
m_exitOK = true;
addToGraph(ExitOK);
{
auto addResult = m_graph.m_rootToArguments.add(m_currentBlock, ArgumentsVector());
RELEASE_ASSERT(addResult.isNewEntry);
ArgumentsVector& entrypointArguments = addResult.iterator->value;
entrypointArguments.resize(m_numArguments);
unsigned exitBytecodeIndex = m_currentIndex + OPCODE_LENGTH(op_catch);
for (unsigned argument = 0; argument < argumentPredictions.size(); ++argument) {
VariableAccessData* variable = newVariableAccessData(virtualRegisterForArgument(argument));
variable->predict(argumentPredictions[argument]);
variable->mergeStructureCheckHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(exitBytecodeIndex, BadCache));
variable->mergeCheckArrayHoistingFailed(
m_inlineStackTop->m_exitProfile.hasExitSite(exitBytecodeIndex, BadIndexingType));
Node* setArgument = addToGraph(SetArgument, OpInfo(variable));
setArgument->origin.forExit.bytecodeIndex = exitBytecodeIndex;
m_currentBlock->variablesAtTail.setArgumentFirstTime(argument, setArgument);
entrypointArguments[argument] = setArgument;
}
}
for (const std::pair<VirtualRegister, Node*>& pair : localsToSet) {
DelayedSetLocal delayed { currentCodeOrigin(), pair.first, pair.second, ImmediateNakedSet };
m_setLocalQueue.append(delayed);
}
NEXT_OPCODE(op_catch);
}
case op_call:
handleCall(currentInstruction, Call, CallMode::Regular);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleCall, which may have inlined the callee, trashed m_currentInstruction");
NEXT_OPCODE(op_call);
case op_tail_call: {
flushForReturn();
Terminality terminality = handleCall(currentInstruction, TailCall, CallMode::Tail);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleCall, which may have inlined the callee, trashed m_currentInstruction");
// If the call is terminal then we should not parse any further bytecodes as the TailCall will exit the function.
// If the call is not terminal, however, then we want the subsequent op_ret/op_jmp to update metadata and clean
// things up.
if (terminality == NonTerminal)
NEXT_OPCODE(op_tail_call);
else
LAST_OPCODE_LINKED(op_tail_call);
// We use LAST_OPCODE_LINKED instead of LAST_OPCODE because if the tail call was optimized, it may now be a jump to a bytecode index in a different InlineStackEntry.
}
case op_construct:
handleCall(currentInstruction, Construct, CallMode::Construct);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleCall, which may have inlined the callee, trashed m_currentInstruction");
NEXT_OPCODE(op_construct);
case op_call_varargs: {
handleVarargsCall(currentInstruction, CallVarargs, CallMode::Regular);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleVarargsCall, which may have inlined the callee, trashed m_currentInstruction");
NEXT_OPCODE(op_call_varargs);
}
case op_tail_call_varargs: {
flushForReturn();
Terminality terminality = handleVarargsCall(currentInstruction, TailCallVarargs, CallMode::Tail);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleVarargsCall, which may have inlined the callee, trashed m_currentInstruction");
// If the call is terminal then we should not parse any further bytecodes as the TailCall will exit the function.
// If the call is not terminal, however, then we want the subsequent op_ret/op_jmp to update metadata and clean
// things up.
if (terminality == NonTerminal)
NEXT_OPCODE(op_tail_call_varargs);
else
LAST_OPCODE(op_tail_call_varargs);
}
case op_tail_call_forward_arguments: {
// We need to make sure that we don't unbox our arguments here since that won't be
// done by the arguments object creation node as that node may not exist.
noticeArgumentsUse();
flushForReturn();
Terminality terminality = handleVarargsCall(currentInstruction, TailCallForwardVarargs, CallMode::Tail);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleVarargsCall, which may have inlined the callee, trashed m_currentInstruction");
// If the call is terminal then we should not parse any further bytecodes as the TailCall will exit the function.
// If the call is not terminal, however, then we want the subsequent op_ret/op_jmp to update metadata and clean
// things up.
if (terminality == NonTerminal)
NEXT_OPCODE(op_tail_call_forward_arguments);
else
LAST_OPCODE(op_tail_call_forward_arguments);
}
case op_construct_varargs: {
handleVarargsCall(currentInstruction, ConstructVarargs, CallMode::Construct);
ASSERT_WITH_MESSAGE(m_currentInstruction == currentInstruction, "handleVarargsCall, which may have inlined the callee, trashed m_currentInstruction");
NEXT_OPCODE(op_construct_varargs);
}
case op_call_eval: {
int result = currentInstruction[1].u.operand;
int callee = currentInstruction[2].u.operand;
int argumentCountIncludingThis = currentInstruction[3].u.operand;
int registerOffset = -currentInstruction[4].u.operand;
addCall(result, CallEval, nullptr, get(VirtualRegister(callee)), argumentCountIncludingThis, registerOffset, getPrediction());
NEXT_OPCODE(op_call_eval);
}
case op_jneq_ptr: {
Special::Pointer specialPointer = currentInstruction[2].u.specialPointer;
ASSERT(pointerIsCell(specialPointer));
JSCell* actualPointer = static_cast<JSCell*>(
actualPointerFor(m_inlineStackTop->m_codeBlock, specialPointer));
FrozenValue* frozenPointer = m_graph.freeze(actualPointer);
int operand = currentInstruction[1].u.operand;
unsigned relativeOffset = currentInstruction[3].u.operand;
Node* child = get(VirtualRegister(operand));
if (currentInstruction[4].u.operand) {
Node* condition = addToGraph(CompareEqPtr, OpInfo(frozenPointer), child);
addToGraph(Branch, OpInfo(branchData(m_currentIndex + OPCODE_LENGTH(op_jneq_ptr), m_currentIndex + relativeOffset)), condition);
LAST_OPCODE(op_jneq_ptr);
}
addToGraph(CheckCell, OpInfo(frozenPointer), child);
NEXT_OPCODE(op_jneq_ptr);
}
case op_resolve_scope: {
int dst = currentInstruction[1].u.operand;
ResolveType resolveType = static_cast<ResolveType>(currentInstruction[4].u.operand);
unsigned depth = currentInstruction[5].u.operand;
int scope = currentInstruction[2].u.operand;
if (needsDynamicLookup(resolveType, op_resolve_scope)) {
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
set(VirtualRegister(dst), addToGraph(ResolveScope, OpInfo(identifierNumber), get(VirtualRegister(scope))));
NEXT_OPCODE(op_resolve_scope);
}
// get_from_scope and put_to_scope depend on this watchpoint forcing OSR exit, so they don't add their own watchpoints.
if (needsVarInjectionChecks(resolveType))
m_graph.watchpoints().addLazily(m_inlineStackTop->m_codeBlock->globalObject()->varInjectionWatchpoint());
switch (resolveType) {
case GlobalProperty:
case GlobalVar:
case GlobalPropertyWithVarInjectionChecks:
case GlobalVarWithVarInjectionChecks:
case GlobalLexicalVar:
case GlobalLexicalVarWithVarInjectionChecks: {
JSScope* constantScope = JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock);
RELEASE_ASSERT(constantScope);
RELEASE_ASSERT(static_cast<JSScope*>(currentInstruction[6].u.pointer) == constantScope);
set(VirtualRegister(dst), weakJSConstant(constantScope));
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
case ModuleVar: {
// Since the value of the "scope" virtual register is not used in LLInt / baseline op_resolve_scope with ModuleVar,
// we need not to keep it alive by the Phantom node.
JSModuleEnvironment* moduleEnvironment = jsCast<JSModuleEnvironment*>(currentInstruction[6].u.jsCell.get());
// Module environment is already strongly referenced by the CodeBlock.
set(VirtualRegister(dst), weakJSConstant(moduleEnvironment));
break;
}
case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* localBase = get(VirtualRegister(scope));
addToGraph(Phantom, localBase); // OSR exit cannot handle resolve_scope on a DCE'd scope.
// We have various forms of constant folding here. This is necessary to avoid
// spurious recompiles in dead-but-foldable code.
if (SymbolTable* symbolTable = currentInstruction[6].u.symbolTable.get()) {
InferredValue* singleton = symbolTable->singletonScope();
if (JSValue value = singleton->inferredValue()) {
m_graph.watchpoints().addLazily(singleton);
set(VirtualRegister(dst), weakJSConstant(value));
break;
}
}
if (JSScope* scope = localBase->dynamicCastConstant<JSScope*>(*m_vm)) {
for (unsigned n = depth; n--;)
scope = scope->next();
set(VirtualRegister(dst), weakJSConstant(scope));
break;
}
for (unsigned n = depth; n--;)
localBase = addToGraph(SkipScope, localBase);
set(VirtualRegister(dst), localBase);
break;
}
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks: {
addToGraph(Phantom, get(VirtualRegister(scope)));
addToGraph(ForceOSRExit);
set(VirtualRegister(dst), addToGraph(JSConstant, OpInfo(m_constantNull)));
break;
}
case Dynamic:
RELEASE_ASSERT_NOT_REACHED();
break;
}
NEXT_OPCODE(op_resolve_scope);
}
case op_resolve_scope_for_hoisting_func_decl_in_eval: {
int dst = currentInstruction[1].u.operand;
int scope = currentInstruction[2].u.operand;
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
set(VirtualRegister(dst), addToGraph(ResolveScopeForHoistingFuncDeclInEval, OpInfo(identifierNumber), get(VirtualRegister(scope))));
NEXT_OPCODE(op_resolve_scope_for_hoisting_func_decl_in_eval);
}
case op_get_from_scope: {
int dst = currentInstruction[1].u.operand;
int scope = currentInstruction[2].u.operand;
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
UniquedStringImpl* uid = m_graph.identifiers()[identifierNumber];
ResolveType resolveType = GetPutInfo(currentInstruction[4].u.operand).resolveType();
Structure* structure = 0;
WatchpointSet* watchpoints = 0;
uintptr_t operand;
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
watchpoints = currentInstruction[5].u.watchpointSet;
else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks)
structure = currentInstruction[5].u.structure.get();
operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer);
}
if (needsDynamicLookup(resolveType, op_get_from_scope)) {
uint64_t opInfo1 = makeDynamicVarOpInfo(identifierNumber, currentInstruction[4].u.operand);
SpeculatedType prediction = getPrediction();
set(VirtualRegister(dst),
addToGraph(GetDynamicVar, OpInfo(opInfo1), OpInfo(prediction), get(VirtualRegister(scope))));
NEXT_OPCODE(op_get_from_scope);
}
UNUSED_PARAM(watchpoints); // We will use this in the future. For now we set it as a way of documenting the fact that that's what index 5 is in GlobalVar mode.
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks: {
SpeculatedType prediction = getPrediction();
GetByIdStatus status = GetByIdStatus::computeFor(structure, uid);
if (status.state() != GetByIdStatus::Simple
|| status.numVariants() != 1
|| status[0].structureSet().size() != 1) {
set(VirtualRegister(dst), addToGraph(GetByIdFlush, OpInfo(identifierNumber), OpInfo(prediction), get(VirtualRegister(scope))));
break;
}
Node* base = weakJSConstant(globalObject);
Node* result = load(prediction, base, identifierNumber, status[0]);
addToGraph(Phantom, get(VirtualRegister(scope)));
set(VirtualRegister(dst), result);
break;
}
case GlobalVar:
case GlobalVarWithVarInjectionChecks:
case GlobalLexicalVar:
case GlobalLexicalVarWithVarInjectionChecks: {
addToGraph(Phantom, get(VirtualRegister(scope)));
WatchpointSet* watchpointSet;
ScopeOffset offset;
JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock));
{
ConcurrentJSLocker locker(scopeObject->symbolTable()->m_lock);
SymbolTableEntry entry = scopeObject->symbolTable()->get(locker, uid);
watchpointSet = entry.watchpointSet();
offset = entry.scopeOffset();
}
if (watchpointSet && watchpointSet->state() == IsWatched) {
// This has a fun concurrency story. There is the possibility of a race in two
// directions:
//
// We see that the set IsWatched, but in the meantime it gets invalidated: this is
// fine because if we saw that it IsWatched then we add a watchpoint. If it gets
// invalidated, then this compilation is invalidated. Note that in the meantime we
// may load an absurd value from the global object. It's fine to load an absurd
// value if the compilation is invalidated anyway.
//
// We see that the set IsWatched, but the value isn't yet initialized: this isn't
// possible because of the ordering of operations.
//
// Here's how we order operations:
//
// Main thread stores to the global object: always store a value first, and only
// after that do we touch the watchpoint set. There is a fence in the touch, that
// ensures that the store to the global object always happens before the touch on the
// set.
//
// Compilation thread: always first load the state of the watchpoint set, and then
// load the value. The WatchpointSet::state() method does fences for us to ensure
// that the load of the state happens before our load of the value.
//
// Finalizing compilation: this happens on the main thread and synchronously checks
// validity of all watchpoint sets.
//
// We will only perform optimizations if the load of the state yields IsWatched. That
// means that at least one store would have happened to initialize the original value
// of the variable (that is, the value we'd like to constant fold to). There may be
// other stores that happen after that, but those stores will invalidate the
// watchpoint set and also the compilation.
// Note that we need to use the operand, which is a direct pointer at the global,
// rather than looking up the global by doing variableAt(offset). That's because the
// internal data structures of JSSegmentedVariableObject are not thread-safe even
// though accessing the global itself is. The segmentation involves a vector spine
// that resizes with malloc/free, so if new globals unrelated to the one we are
// reading are added, we might access freed memory if we do variableAt().
WriteBarrier<Unknown>* pointer = bitwise_cast<WriteBarrier<Unknown>*>(operand);
ASSERT(scopeObject->findVariableIndex(pointer) == offset);
JSValue value = pointer->get();
if (value) {
m_graph.watchpoints().addLazily(watchpointSet);
set(VirtualRegister(dst), weakJSConstant(value));
break;
}
}
SpeculatedType prediction = getPrediction();
NodeType nodeType;
if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks)
nodeType = GetGlobalVar;
else
nodeType = GetGlobalLexicalVariable;
Node* value = addToGraph(nodeType, OpInfo(operand), OpInfo(prediction));
if (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
addToGraph(CheckNotEmpty, value);
set(VirtualRegister(dst), value);
break;
}
case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* scopeNode = get(VirtualRegister(scope));
// Ideally we wouldn't have to do this Phantom. But:
//
// For the constant case: we must do it because otherwise we would have no way of knowing
// that the scope is live at OSR here.
//
// For the non-constant case: GetClosureVar could be DCE'd, but baseline's implementation
// won't be able to handle an Undefined scope.
addToGraph(Phantom, scopeNode);
// Constant folding in the bytecode parser is important for performance. This may not
// have executed yet. If it hasn't, then we won't have a prediction. Lacking a
// prediction, we'd otherwise think that it has to exit. Then when it did execute, we
// would recompile. But if we can fold it here, we avoid the exit.
if (JSValue value = m_graph.tryGetConstantClosureVar(scopeNode, ScopeOffset(operand))) {
set(VirtualRegister(dst), weakJSConstant(value));
break;
}
SpeculatedType prediction = getPrediction();
set(VirtualRegister(dst),
addToGraph(GetClosureVar, OpInfo(operand), OpInfo(prediction), scopeNode));
break;
}
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks:
case ModuleVar:
case Dynamic:
RELEASE_ASSERT_NOT_REACHED();
break;
}
NEXT_OPCODE(op_get_from_scope);
}
case op_put_to_scope: {
unsigned scope = currentInstruction[1].u.operand;
unsigned identifierNumber = currentInstruction[2].u.operand;
if (identifierNumber != UINT_MAX)
identifierNumber = m_inlineStackTop->m_identifierRemap[identifierNumber];
unsigned value = currentInstruction[3].u.operand;
GetPutInfo getPutInfo = GetPutInfo(currentInstruction[4].u.operand);
ResolveType resolveType = getPutInfo.resolveType();
UniquedStringImpl* uid;
if (identifierNumber != UINT_MAX)
uid = m_graph.identifiers()[identifierNumber];
else
uid = nullptr;
Structure* structure = nullptr;
WatchpointSet* watchpoints = nullptr;
uintptr_t operand;
{
ConcurrentJSLocker locker(m_inlineStackTop->m_profiledBlock->m_lock);
if (resolveType == GlobalVar || resolveType == GlobalVarWithVarInjectionChecks || resolveType == LocalClosureVar || resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)
watchpoints = currentInstruction[5].u.watchpointSet;
else if (resolveType != UnresolvedProperty && resolveType != UnresolvedPropertyWithVarInjectionChecks)
structure = currentInstruction[5].u.structure.get();
operand = reinterpret_cast<uintptr_t>(currentInstruction[6].u.pointer);
}
JSGlobalObject* globalObject = m_inlineStackTop->m_codeBlock->globalObject();
if (needsDynamicLookup(resolveType, op_put_to_scope)) {
ASSERT(identifierNumber != UINT_MAX);
uint64_t opInfo1 = makeDynamicVarOpInfo(identifierNumber, currentInstruction[4].u.operand);
addToGraph(PutDynamicVar, OpInfo(opInfo1), OpInfo(), get(VirtualRegister(scope)), get(VirtualRegister(value)));
NEXT_OPCODE(op_put_to_scope);
}
switch (resolveType) {
case GlobalProperty:
case GlobalPropertyWithVarInjectionChecks: {
PutByIdStatus status;
if (uid)
status = PutByIdStatus::computeFor(globalObject, structure, uid, false);
else
status = PutByIdStatus(PutByIdStatus::TakesSlowPath);
if (status.numVariants() != 1
|| status[0].kind() != PutByIdVariant::Replace
|| status[0].structure().size() != 1) {
addToGraph(PutById, OpInfo(identifierNumber), get(VirtualRegister(scope)), get(VirtualRegister(value)));
break;
}
Node* base = weakJSConstant(globalObject);
store(base, identifierNumber, status[0], get(VirtualRegister(value)));
// Keep scope alive until after put.
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
case GlobalLexicalVar:
case GlobalLexicalVarWithVarInjectionChecks:
case GlobalVar:
case GlobalVarWithVarInjectionChecks: {
if (!isInitialization(getPutInfo.initializationMode()) && (resolveType == GlobalLexicalVar || resolveType == GlobalLexicalVarWithVarInjectionChecks)) {
SpeculatedType prediction = SpecEmpty;
Node* value = addToGraph(GetGlobalLexicalVariable, OpInfo(operand), OpInfo(prediction));
addToGraph(CheckNotEmpty, value);
}
JSSegmentedVariableObject* scopeObject = jsCast<JSSegmentedVariableObject*>(JSScope::constantScopeForCodeBlock(resolveType, m_inlineStackTop->m_codeBlock));
if (watchpoints) {
SymbolTableEntry entry = scopeObject->symbolTable()->get(uid);
ASSERT_UNUSED(entry, watchpoints == entry.watchpointSet());
}
Node* valueNode = get(VirtualRegister(value));
addToGraph(PutGlobalVariable, OpInfo(operand), weakJSConstant(scopeObject), valueNode);
if (watchpoints && watchpoints->state() != IsInvalidated) {
// Must happen after the store. See comment for GetGlobalVar.
addToGraph(NotifyWrite, OpInfo(watchpoints));
}
// Keep scope alive until after put.
addToGraph(Phantom, get(VirtualRegister(scope)));
break;
}
case LocalClosureVar:
case ClosureVar:
case ClosureVarWithVarInjectionChecks: {
Node* scopeNode = get(VirtualRegister(scope));
Node* valueNode = get(VirtualRegister(value));
addToGraph(PutClosureVar, OpInfo(operand), scopeNode, valueNode);
if (watchpoints && watchpoints->state() != IsInvalidated) {
// Must happen after the store. See comment for GetGlobalVar.
addToGraph(NotifyWrite, OpInfo(watchpoints));
}
break;
}
case ModuleVar:
// Need not to keep "scope" and "value" register values here by Phantom because
// they are not used in LLInt / baseline op_put_to_scope with ModuleVar.
addToGraph(ForceOSRExit);
break;
case Dynamic:
case UnresolvedProperty:
case UnresolvedPropertyWithVarInjectionChecks:
RELEASE_ASSERT_NOT_REACHED();
break;
}
NEXT_OPCODE(op_put_to_scope);
}
case op_loop_hint: {
// Baseline->DFG OSR jumps between loop hints. The DFG assumes that Baseline->DFG
// OSR can only happen at basic block boundaries. Assert that these two statements
// are compatible.
RELEASE_ASSERT(m_currentIndex == blockBegin);
// We never do OSR into an inlined code block. That could not happen, since OSR
// looks up the code block that is the replacement for the baseline JIT code
// block. Hence, machine code block = true code block = not inline code block.
if (!m_inlineStackTop->m_caller)
m_currentBlock->isOSRTarget = true;
addToGraph(LoopHint);
NEXT_OPCODE(op_loop_hint);
}
case op_check_traps: {
addToGraph(CheckTraps);
NEXT_OPCODE(op_check_traps);
}
case op_nop: {
addToGraph(Check); // We add a nop here so that basic block linking doesn't break.
NEXT_OPCODE(op_nop);
}
case op_super_sampler_begin: {
addToGraph(SuperSamplerBegin);
NEXT_OPCODE(op_super_sampler_begin);
}
case op_super_sampler_end: {
addToGraph(SuperSamplerEnd);
NEXT_OPCODE(op_super_sampler_end);
}
case op_create_lexical_environment: {
VirtualRegister symbolTableRegister(currentInstruction[3].u.operand);
VirtualRegister initialValueRegister(currentInstruction[4].u.operand);
ASSERT(symbolTableRegister.isConstant() && initialValueRegister.isConstant());
FrozenValue* symbolTable = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(symbolTableRegister.offset()));
FrozenValue* initialValue = m_graph.freezeStrong(m_inlineStackTop->m_codeBlock->getConstant(initialValueRegister.offset()));
Node* scope = get(VirtualRegister(currentInstruction[2].u.operand));
Node* lexicalEnvironment = addToGraph(CreateActivation, OpInfo(symbolTable), OpInfo(initialValue), scope);
set(VirtualRegister(currentInstruction[1].u.operand), lexicalEnvironment);
NEXT_OPCODE(op_create_lexical_environment);
}
case op_push_with_scope: {
Node* currentScope = get(VirtualRegister(currentInstruction[2].u.operand));
Node* object = get(VirtualRegister(currentInstruction[3].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(PushWithScope, currentScope, object));
NEXT_OPCODE(op_push_with_scope);
}
case op_get_parent_scope: {
Node* currentScope = get(VirtualRegister(currentInstruction[2].u.operand));
Node* newScope = addToGraph(SkipScope, currentScope);
set(VirtualRegister(currentInstruction[1].u.operand), newScope);
addToGraph(Phantom, currentScope);
NEXT_OPCODE(op_get_parent_scope);
}
case op_get_scope: {
// Help the later stages a bit by doing some small constant folding here. Note that this
// only helps for the first basic block. It's extremely important not to constant fold
// loads from the scope register later, as that would prevent the DFG from tracking the
// bytecode-level liveness of the scope register.
Node* callee = get(VirtualRegister(CallFrameSlot::callee));
Node* result;
if (JSFunction* function = callee->dynamicCastConstant<JSFunction*>(*m_vm))
result = weakJSConstant(function->scope());
else
result = addToGraph(GetScope, callee);
set(VirtualRegister(currentInstruction[1].u.operand), result);
NEXT_OPCODE(op_get_scope);
}
case op_argument_count: {
Node* sub = addToGraph(ArithSub, OpInfo(Arith::Unchecked), OpInfo(SpecInt32Only), getArgumentCount(), addToGraph(JSConstant, OpInfo(m_constantOne)));
set(VirtualRegister(currentInstruction[1].u.operand), sub);
NEXT_OPCODE(op_argument_count);
}
case op_create_direct_arguments: {
noticeArgumentsUse();
Node* createArguments = addToGraph(CreateDirectArguments);
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
NEXT_OPCODE(op_create_direct_arguments);
}
case op_create_scoped_arguments: {
noticeArgumentsUse();
Node* createArguments = addToGraph(CreateScopedArguments, get(VirtualRegister(currentInstruction[2].u.operand)));
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
NEXT_OPCODE(op_create_scoped_arguments);
}
case op_create_cloned_arguments: {
noticeArgumentsUse();
Node* createArguments = addToGraph(CreateClonedArguments);
set(VirtualRegister(currentInstruction[1].u.operand), createArguments);
NEXT_OPCODE(op_create_cloned_arguments);
}
case op_get_from_arguments: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(
GetFromArguments,
OpInfo(currentInstruction[3].u.operand),
OpInfo(getPrediction()),
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_get_from_arguments);
}
case op_put_to_arguments: {
addToGraph(
PutToArguments,
OpInfo(currentInstruction[2].u.operand),
get(VirtualRegister(currentInstruction[1].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand)));
NEXT_OPCODE(op_put_to_arguments);
}
case op_get_argument: {
InlineCallFrame* inlineCallFrame = this->inlineCallFrame();
Node* argument;
int32_t argumentIndexIncludingThis = currentInstruction[2].u.operand;
if (inlineCallFrame && !inlineCallFrame->isVarargs()) {
int32_t argumentCountIncludingThisWithFixup = inlineCallFrame->argumentsWithFixup.size();
if (argumentIndexIncludingThis < argumentCountIncludingThisWithFixup)
argument = get(virtualRegisterForArgument(argumentIndexIncludingThis));
else
argument = addToGraph(JSConstant, OpInfo(m_constantUndefined));
} else
argument = addToGraph(GetArgument, OpInfo(argumentIndexIncludingThis), OpInfo(getPrediction()));
set(VirtualRegister(currentInstruction[1].u.operand), argument);
NEXT_OPCODE(op_get_argument);
}
case op_new_async_generator_func:
case op_new_func:
case op_new_generator_func:
case op_new_async_func: {
FunctionExecutable* decl = m_inlineStackTop->m_profiledBlock->functionDecl(currentInstruction[3].u.operand);
FrozenValue* frozen = m_graph.freezeStrong(decl);
NodeType op;
switch (opcodeID) {
case op_new_generator_func:
op = NewGeneratorFunction;
break;
case op_new_async_func:
op = NewAsyncFunction;
break;
case op_new_async_generator_func:
op = NewAsyncGeneratorFunction;
break;
default:
op = NewFunction;
}
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(op, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
static_assert(OPCODE_LENGTH(op_new_func) == OPCODE_LENGTH(op_new_generator_func), "The length of op_new_func should be equal to one of op_new_generator_func");
static_assert(OPCODE_LENGTH(op_new_func) == OPCODE_LENGTH(op_new_async_func), "The length of op_new_func should be equal to one of op_new_async_func");
static_assert(OPCODE_LENGTH(op_new_func) == OPCODE_LENGTH(op_new_async_generator_func), "The length of op_new_func should be equal to one of op_new_async_generator_func");
NEXT_OPCODE(op_new_func);
}
case op_new_func_exp:
case op_new_generator_func_exp:
case op_new_async_generator_func_exp:
case op_new_async_func_exp: {
FunctionExecutable* expr = m_inlineStackTop->m_profiledBlock->functionExpr(currentInstruction[3].u.operand);
FrozenValue* frozen = m_graph.freezeStrong(expr);
NodeType op;
switch (opcodeID) {
case op_new_generator_func_exp:
op = NewGeneratorFunction;
break;
case op_new_async_func_exp:
op = NewAsyncFunction;
break;
case op_new_async_generator_func_exp:
op = NewAsyncGeneratorFunction;
break;
default:
op = NewFunction;
}
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(op, OpInfo(frozen), get(VirtualRegister(currentInstruction[2].u.operand))));
static_assert(OPCODE_LENGTH(op_new_func_exp) == OPCODE_LENGTH(op_new_generator_func_exp), "The length of op_new_func_exp should be equal to one of op_new_generator_func_exp");
static_assert(OPCODE_LENGTH(op_new_func_exp) == OPCODE_LENGTH(op_new_async_func_exp), "The length of op_new_func_exp should be equal to one of op_new_async_func_exp");
static_assert(OPCODE_LENGTH(op_new_func_exp) == OPCODE_LENGTH(op_new_async_generator_func_exp), "The length of op_new_func_exp should be equal to one of op_new_async_func_exp");
NEXT_OPCODE(op_new_func_exp);
}
case op_set_function_name: {
Node* func = get(VirtualRegister(currentInstruction[1].u.operand));
Node* name = get(VirtualRegister(currentInstruction[2].u.operand));
addToGraph(SetFunctionName, func, name);
NEXT_OPCODE(op_set_function_name);
}
case op_typeof: {
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(TypeOf, get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_typeof);
}
case op_to_number: {
SpeculatedType prediction = getPrediction();
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToNumber, OpInfo(0), OpInfo(prediction), value));
NEXT_OPCODE(op_to_number);
}
case op_to_string: {
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToString, value));
NEXT_OPCODE(op_to_string);
}
case op_to_object: {
SpeculatedType prediction = getPrediction();
Node* value = get(VirtualRegister(currentInstruction[2].u.operand));
unsigned identifierNumber = m_inlineStackTop->m_identifierRemap[currentInstruction[3].u.operand];
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToObject, OpInfo(identifierNumber), OpInfo(prediction), value));
NEXT_OPCODE(op_to_object);
}
case op_in: {
ArrayMode arrayMode = getArrayMode(currentInstruction[OPCODE_LENGTH(op_in) - 1].u.arrayProfile);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(In, OpInfo(arrayMode.asWord()), get(VirtualRegister(currentInstruction[2].u.operand)), get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_in);
}
case op_get_enumerable_length: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumerableLength,
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_get_enumerable_length);
}
case op_has_generic_property: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasGenericProperty,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_has_generic_property);
}
case op_has_structure_property: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(HasStructureProperty,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand)),
get(VirtualRegister(currentInstruction[4].u.operand))));
NEXT_OPCODE(op_has_structure_property);
}
case op_has_indexed_property: {
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
ArrayMode arrayMode = getArrayMode(currentInstruction[4].u.arrayProfile, Array::Read);
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
Node* hasIterableProperty = addToGraph(HasIndexedProperty, OpInfo(arrayMode.asWord()), OpInfo(static_cast<uint32_t>(PropertySlot::InternalMethodType::GetOwnProperty)), base, property);
set(VirtualRegister(currentInstruction[1].u.operand), hasIterableProperty);
NEXT_OPCODE(op_has_indexed_property);
}
case op_get_direct_pname: {
SpeculatedType prediction = getPredictionWithoutOSRExit();
Node* base = get(VirtualRegister(currentInstruction[2].u.operand));
Node* property = get(VirtualRegister(currentInstruction[3].u.operand));
Node* index = get(VirtualRegister(currentInstruction[4].u.operand));
Node* enumerator = get(VirtualRegister(currentInstruction[5].u.operand));
addVarArgChild(base);
addVarArgChild(property);
addVarArgChild(index);
addVarArgChild(enumerator);
set(VirtualRegister(currentInstruction[1].u.operand),
addToGraph(Node::VarArg, GetDirectPname, OpInfo(0), OpInfo(prediction)));
NEXT_OPCODE(op_get_direct_pname);
}
case op_get_property_enumerator: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetPropertyEnumerator,
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_get_property_enumerator);
}
case op_enumerator_structure_pname: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorStructurePname,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_enumerator_structure_pname);
}
case op_enumerator_generic_pname: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(GetEnumeratorGenericPname,
get(VirtualRegister(currentInstruction[2].u.operand)),
get(VirtualRegister(currentInstruction[3].u.operand))));
NEXT_OPCODE(op_enumerator_generic_pname);
}
case op_to_index_string: {
set(VirtualRegister(currentInstruction[1].u.operand), addToGraph(ToIndexString,
get(VirtualRegister(currentInstruction[2].u.operand))));
NEXT_OPCODE(op_to_index_string);
}
case op_log_shadow_chicken_prologue: {
if (!m_inlineStackTop->m_inlineCallFrame)
addToGraph(LogShadowChickenPrologue, get(VirtualRegister(currentInstruction[1].u.operand)));
NEXT_OPCODE(op_log_shadow_chicken_prologue);
}
case op_log_shadow_chicken_tail: {
if (!m_inlineStackTop->m_inlineCallFrame) {
// FIXME: The right solution for inlining is to elide these whenever the tail call
// ends up being inlined.
// https://bugs.webkit.org/show_bug.cgi?id=155686
addToGraph(LogShadowChickenTail, get(VirtualRegister(currentInstruction[1].u.operand)), get(VirtualRegister(currentInstruction[2].u.operand)));
}
NEXT_OPCODE(op_log_shadow_chicken_tail);
}
case op_unreachable: {
flushForTerminal();
addToGraph(Unreachable);
LAST_OPCODE(op_unreachable);
}
default:
// Parse failed! This should not happen because the capabilities checker
// should have caught it.
RELEASE_ASSERT_NOT_REACHED();
return;
}
}
}
void ByteCodeParser::linkBlock(BasicBlock* block, Vector<BasicBlock*>& possibleTargets)
{
ASSERT(!block->isLinked);
ASSERT(!block->isEmpty());
Node* node = block->terminal();
ASSERT(node->isTerminal());
switch (node->op()) {
case Jump:
node->targetBlock() = blockForBytecodeOffset(possibleTargets, node->targetBytecodeOffsetDuringParsing());
break;
case Branch: {
BranchData* data = node->branchData();
data->taken.block = blockForBytecodeOffset(possibleTargets, data->takenBytecodeIndex());
data->notTaken.block = blockForBytecodeOffset(possibleTargets, data->notTakenBytecodeIndex());
break;
}
case Switch: {
SwitchData* data = node->switchData();
for (unsigned i = node->switchData()->cases.size(); i--;)
data->cases[i].target.block = blockForBytecodeOffset(possibleTargets, data->cases[i].target.bytecodeIndex());
data->fallThrough.block = blockForBytecodeOffset(possibleTargets, data->fallThrough.bytecodeIndex());
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
VERBOSE_LOG("Marking ", RawPointer(block), " as linked (actually did linking)\n");
block->didLink();
}
void ByteCodeParser::linkBlocks(Vector<BasicBlock*>& unlinkedBlocks, Vector<BasicBlock*>& possibleTargets)
{
for (size_t i = 0; i < unlinkedBlocks.size(); ++i) {
VERBOSE_LOG("Attempting to link ", RawPointer(unlinkedBlocks[i]), "\n");
linkBlock(unlinkedBlocks[i], possibleTargets);
}
}
ByteCodeParser::InlineStackEntry::InlineStackEntry(
ByteCodeParser* byteCodeParser,
CodeBlock* codeBlock,
CodeBlock* profiledBlock,
JSFunction* callee, // Null if this is a closure call.
VirtualRegister returnValueVR,
VirtualRegister inlineCallFrameStart,
int argumentCountIncludingThis,
InlineCallFrame::Kind kind,
BasicBlock* continuationBlock)
: m_byteCodeParser(byteCodeParser)
, m_codeBlock(codeBlock)
, m_profiledBlock(profiledBlock)
, m_continuationBlock(continuationBlock)
, m_returnValue(returnValueVR)
, m_caller(byteCodeParser->m_inlineStackTop)
{
{
m_exitProfile.initialize(m_profiledBlock->unlinkedCodeBlock());
ConcurrentJSLocker locker(m_profiledBlock->m_lock);
m_lazyOperands.initialize(locker, m_profiledBlock->lazyOperandValueProfiles());
// We do this while holding the lock because we want to encourage StructureStubInfo's
// to be potentially added to operations and because the profiled block could be in the
// middle of LLInt->JIT tier-up in which case we would be adding the info's right now.
if (m_profiledBlock->hasBaselineJITProfiling()) {
m_profiledBlock->getStubInfoMap(locker, m_stubInfos);
m_profiledBlock->getCallLinkInfoMap(locker, m_callLinkInfos);
m_profiledBlock->getByValInfoMap(locker, m_byValInfos);
}
}
int argumentCountIncludingThisWithFixup = std::max<int>(argumentCountIncludingThis, codeBlock->numParameters());
if (m_caller) {
// Inline case.
ASSERT(codeBlock != byteCodeParser->m_codeBlock);
ASSERT(inlineCallFrameStart.isValid());
m_inlineCallFrame = byteCodeParser->m_graph.m_plan.inlineCallFrames->add();
// The owner is the machine code block, and we already have a barrier on that when the
// plan finishes.
m_inlineCallFrame->baselineCodeBlock.setWithoutWriteBarrier(codeBlock->baselineVersion());
m_inlineCallFrame->setStackOffset(inlineCallFrameStart.offset() - CallFrame::headerSizeInRegisters);
m_inlineCallFrame->argumentCountIncludingThis = argumentCountIncludingThis;
if (callee) {
m_inlineCallFrame->calleeRecovery = ValueRecovery::constant(callee);
m_inlineCallFrame->isClosureCall = false;
} else
m_inlineCallFrame->isClosureCall = true;
m_inlineCallFrame->directCaller = byteCodeParser->currentCodeOrigin();
m_inlineCallFrame->argumentsWithFixup.resizeToFit(argumentCountIncludingThisWithFixup); // Set the number of arguments including this, but don't configure the value recoveries, yet.
m_inlineCallFrame->kind = kind;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i) {
UniquedStringImpl* rep = codeBlock->identifier(i).impl();
unsigned index = byteCodeParser->m_graph.identifiers().ensure(rep);
m_identifierRemap[i] = index;
}
for (unsigned i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i) {
m_switchRemap[i] = byteCodeParser->m_codeBlock->numberOfSwitchJumpTables();
byteCodeParser->m_codeBlock->addSwitchJumpTable() = codeBlock->switchJumpTable(i);
}
} else {
// Machine code block case.
ASSERT(codeBlock == byteCodeParser->m_codeBlock);
ASSERT(!callee);
ASSERT(!returnValueVR.isValid());
ASSERT(!inlineCallFrameStart.isValid());
m_inlineCallFrame = 0;
m_identifierRemap.resize(codeBlock->numberOfIdentifiers());
m_switchRemap.resize(codeBlock->numberOfSwitchJumpTables());
for (size_t i = 0; i < codeBlock->numberOfIdentifiers(); ++i)
m_identifierRemap[i] = i;
for (size_t i = 0; i < codeBlock->numberOfSwitchJumpTables(); ++i)
m_switchRemap[i] = i;
}
m_argumentPositions.resize(argumentCountIncludingThisWithFixup);
for (int i = 0; i < argumentCountIncludingThisWithFixup; ++i) {
byteCodeParser->m_graph.m_argumentPositions.append(ArgumentPosition());
ArgumentPosition* argumentPosition = &byteCodeParser->m_graph.m_argumentPositions.last();
m_argumentPositions[i] = argumentPosition;
}
byteCodeParser->m_inlineCallFrameToArgumentPositions.add(m_inlineCallFrame, m_argumentPositions);
byteCodeParser->m_inlineStackTop = this;
}
void ByteCodeParser::parseCodeBlock()
{
clearCaches();
CodeBlock* codeBlock = m_inlineStackTop->m_codeBlock;
if (UNLIKELY(m_graph.compilation())) {
m_graph.compilation()->addProfiledBytecodes(
*m_vm->m_perBytecodeProfiler, m_inlineStackTop->m_profiledBlock);
}
if (UNLIKELY(Options::dumpSourceAtDFGTime())) {
Vector<DeferredSourceDump>& deferredSourceDump = m_graph.m_plan.callback->ensureDeferredSourceDump();
if (inlineCallFrame()) {
DeferredSourceDump dump(codeBlock->baselineVersion(), m_codeBlock, JITCode::DFGJIT, inlineCallFrame()->directCaller);
deferredSourceDump.append(dump);
} else
deferredSourceDump.append(DeferredSourceDump(codeBlock->baselineVersion()));
}
if (Options::dumpBytecodeAtDFGTime()) {
dataLog("Parsing ", *codeBlock);
if (inlineCallFrame()) {
dataLog(
" for inlining at ", CodeBlockWithJITType(m_codeBlock, JITCode::DFGJIT),
" ", inlineCallFrame()->directCaller);
}
dataLog(
", isStrictMode = ", codeBlock->ownerScriptExecutable()->isStrictMode(), "\n");
codeBlock->baselineVersion()->dumpBytecode();
}
Vector<unsigned, 32> jumpTargets;
computePreciseJumpTargets(codeBlock, jumpTargets);
if (Options::dumpBytecodeAtDFGTime()) {
dataLog("Jump targets: ");
CommaPrinter comma;
for (unsigned i = 0; i < jumpTargets.size(); ++i)
dataLog(comma, jumpTargets[i]);
dataLog("\n");
}
for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= jumpTargets.size(); ++jumpTargetIndex) {
// The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions.
unsigned limit = jumpTargetIndex < jumpTargets.size() ? jumpTargets[jumpTargetIndex] : codeBlock->instructions().size();
ASSERT(m_currentIndex < limit);
// Loop until we reach the current limit (i.e. next jump target).
do {
// There may already be a currentBlock in two cases:
// - we may have just entered the loop for the first time
// - we may have just returned from an inlined callee that had some early returns and
// so allocated a continuation block, and the instruction after the call is a jump target.
// In both cases, we want to keep using it.
if (!m_currentBlock) {
m_currentBlock = allocateTargetableBlock(m_currentIndex);
// The first block is definitely an OSR target.
if (m_graph.numBlocks() == 1) {
m_currentBlock->isOSRTarget = true;
m_graph.m_roots.append(m_currentBlock);
}
prepareToParseBlock();
}
parseBlock(limit);
// We should not have gone beyond the limit.
ASSERT(m_currentIndex <= limit);
if (m_currentBlock->isEmpty()) {
// This case only happens if the last instruction was an inlined call with early returns
// or polymorphic (creating an empty continuation block),
// and then we hit the limit before putting anything in the continuation block.
ASSERT(m_currentIndex == limit);
makeBlockTargetable(m_currentBlock, m_currentIndex);
} else {
ASSERT(m_currentBlock->terminal() || (m_currentIndex == codeBlock->instructions().size() && inlineCallFrame()));
m_currentBlock = nullptr;
}
} while (m_currentIndex < limit);
}
// Should have reached the end of the instructions.
ASSERT(m_currentIndex == codeBlock->instructions().size());
VERBOSE_LOG("Done parsing ", *codeBlock, " (fell off end)\n");
}
void ByteCodeParser::parse()
{
// Set during construction.
ASSERT(!m_currentIndex);
VERBOSE_LOG("Parsing ", *m_codeBlock, "\n");
m_dfgCodeBlock = m_graph.m_plan.profiledDFGCodeBlock;
if (isFTL(m_graph.m_plan.mode) && m_dfgCodeBlock
&& Options::usePolyvariantDevirtualization()) {
if (Options::usePolyvariantCallInlining())
CallLinkStatus::computeDFGStatuses(m_dfgCodeBlock, m_callContextMap);
if (Options::usePolyvariantByIdInlining())
m_dfgCodeBlock->getStubInfoMap(m_dfgStubInfos);
}
InlineStackEntry inlineStackEntry(
this, m_codeBlock, m_profiledBlock, 0, VirtualRegister(), VirtualRegister(),
m_codeBlock->numParameters(), InlineCallFrame::Call, nullptr);
parseCodeBlock();
linkBlocks(inlineStackEntry.m_unlinkedBlocks, inlineStackEntry.m_blockLinkingTargets);
if (m_hasAnyForceOSRExits) {
InsertionSet insertionSet(m_graph);
Operands<VariableAccessData*> mapping(OperandsLike, m_graph.block(0)->variablesAtHead);
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
mapping.fill(nullptr);
if (validationEnabled()) {
// Verify that it's correct to fill mapping with nullptr.
for (unsigned i = 0; i < block->variablesAtHead.size(); ++i) {
Node* node = block->variablesAtHead.at(i);
RELEASE_ASSERT(!node);
}
}
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
if (node->hasVariableAccessData(m_graph))
mapping.operand(node->local()) = node->variableAccessData();
if (node->op() == ForceOSRExit) {
NodeOrigin endOrigin = node->origin.withExitOK(true);
if (validationEnabled()) {
// This verifies that we don't need to change any of the successors's predecessor
// list after planting the Unreachable below. At this point in the bytecode
// parser, we haven't linked up the predecessor lists yet.
for (BasicBlock* successor : block->successors())
RELEASE_ASSERT(successor->predecessors.isEmpty());
}
block->resize(nodeIndex + 1);
insertionSet.insertNode(block->size(), SpecNone, ExitOK, endOrigin);
auto insertLivenessPreservingOp = [&] (InlineCallFrame* inlineCallFrame, NodeType op, VirtualRegister operand) {
VariableAccessData* variable = mapping.operand(operand);
if (!variable) {
variable = newVariableAccessData(operand);
mapping.operand(operand) = variable;
}
VirtualRegister argument = operand - (inlineCallFrame ? inlineCallFrame->stackOffset : 0);
if (argument.isArgument() && !argument.isHeader()) {
const Vector<ArgumentPosition*>& arguments = m_inlineCallFrameToArgumentPositions.get(inlineCallFrame);
arguments[argument.toArgument()]->addVariable(variable);
}
insertionSet.insertNode(block->size(), SpecNone, op, endOrigin, OpInfo(variable));
};
auto addFlushDirect = [&] (InlineCallFrame* inlineCallFrame, VirtualRegister operand) {
insertLivenessPreservingOp(inlineCallFrame, Flush, operand);
};
auto addPhantomLocalDirect = [&] (InlineCallFrame* inlineCallFrame, VirtualRegister operand) {
insertLivenessPreservingOp(inlineCallFrame, PhantomLocal, operand);
};
flushForTerminalImpl(endOrigin.semantic, addFlushDirect, addPhantomLocalDirect);
insertionSet.insertNode(block->size(), SpecNone, Unreachable, endOrigin);
insertionSet.execute(block);
break;
}
}
}
} else if (validationEnabled()) {
// Ensure our bookkeeping for ForceOSRExit nodes is working.
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
for (Node* node : *block)
RELEASE_ASSERT(node->op() != ForceOSRExit);
}
}
m_graph.determineReachability();
m_graph.killUnreachableBlocks();
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
ASSERT(block->variablesAtHead.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals());
ASSERT(block->variablesAtHead.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments());
ASSERT(block->variablesAtTail.numberOfLocals() == m_graph.block(0)->variablesAtHead.numberOfLocals());
ASSERT(block->variablesAtTail.numberOfArguments() == m_graph.block(0)->variablesAtHead.numberOfArguments());
}
m_graph.m_localVars = m_numLocals;
m_graph.m_parameterSlots = m_parameterSlots;
}
void parse(Graph& graph)
{
ByteCodeParser(graph).parse();
}
} } // namespace JSC::DFG
#endif