blob: db313d2428a348b66fbe38c054d899378452ff11 [file] [log] [blame]
/*
* Copyright (C) 2011, 2012, 2013 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGAbstractValue_h
#define DFGAbstractValue_h
#include <wtf/Platform.h>
#if ENABLE(DFG_JIT)
#include "ArrayProfile.h"
#include "DFGFiltrationResult.h"
#include "DFGStructureAbstractValue.h"
#include "JSCell.h"
#include "SpeculatedType.h"
#include "DumpContext.h"
#include "StructureSet.h"
namespace JSC { namespace DFG {
class Graph;
struct AbstractValue {
AbstractValue()
: m_type(SpecNone)
, m_arrayModes(0)
{
}
void clear()
{
m_type = SpecNone;
m_arrayModes = 0;
m_currentKnownStructure.clear();
m_futurePossibleStructure.clear();
m_value = JSValue();
checkConsistency();
}
bool isClear() const { return m_type == SpecNone; }
bool operator!() const { return isClear(); }
void makeHeapTop()
{
makeTop(SpecHeapTop);
}
void makeBytecodeTop()
{
makeTop(SpecBytecodeTop);
}
void clobberStructures()
{
if (m_type & SpecCell) {
m_currentKnownStructure.makeTop();
clobberArrayModes();
} else {
ASSERT(m_currentKnownStructure.isClear());
ASSERT(!m_arrayModes);
}
checkConsistency();
}
void clobberValue()
{
m_value = JSValue();
}
bool isHeapTop() const
{
return (m_type | SpecHeapTop) == m_type && m_currentKnownStructure.isTop() && m_futurePossibleStructure.isTop();
}
bool valueIsTop() const
{
return !m_value && m_type;
}
JSValue value() const
{
return m_value;
}
static AbstractValue heapTop()
{
AbstractValue result;
result.makeHeapTop();
return result;
}
void setMostSpecific(Graph&, JSValue);
void set(Graph&, JSValue);
void set(Graph&, Structure*);
void setType(SpeculatedType type)
{
if (type & SpecCell) {
m_currentKnownStructure.makeTop();
m_futurePossibleStructure.makeTop();
m_arrayModes = ALL_ARRAY_MODES;
} else {
m_currentKnownStructure.clear();
m_futurePossibleStructure.clear();
m_arrayModes = 0;
}
m_type = type;
m_value = JSValue();
checkConsistency();
}
bool operator==(const AbstractValue& other) const
{
return m_type == other.m_type
&& m_arrayModes == other.m_arrayModes
&& m_currentKnownStructure == other.m_currentKnownStructure
&& m_futurePossibleStructure == other.m_futurePossibleStructure
&& m_value == other.m_value;
}
bool operator!=(const AbstractValue& other) const
{
return !(*this == other);
}
bool merge(const AbstractValue& other)
{
if (other.isClear())
return false;
#if !ASSERT_DISABLED
AbstractValue oldMe = *this;
#endif
bool result = false;
if (isClear()) {
*this = other;
result = !other.isClear();
} else {
result |= mergeSpeculation(m_type, other.m_type);
result |= mergeArrayModes(m_arrayModes, other.m_arrayModes);
result |= m_currentKnownStructure.addAll(other.m_currentKnownStructure);
result |= m_futurePossibleStructure.addAll(other.m_futurePossibleStructure);
if (m_value != other.m_value) {
result |= !!m_value;
m_value = JSValue();
}
}
checkConsistency();
ASSERT(result == (*this != oldMe));
return result;
}
void merge(SpeculatedType type)
{
mergeSpeculation(m_type, type);
if (type & SpecCell) {
m_currentKnownStructure.makeTop();
m_futurePossibleStructure.makeTop();
m_arrayModes = ALL_ARRAY_MODES;
}
m_value = JSValue();
checkConsistency();
}
bool couldBeType(SpeculatedType desiredType)
{
return !!(m_type & desiredType);
}
bool isType(SpeculatedType desiredType)
{
return !(m_type & ~desiredType);
}
FiltrationResult filter(Graph&, const StructureSet&);
FiltrationResult filterArrayModes(ArrayModes arrayModes);
FiltrationResult filter(SpeculatedType type);
FiltrationResult filterByValue(JSValue value);
bool validate(JSValue value) const
{
if (isHeapTop())
return true;
if (!!m_value && m_value != value)
return false;
if (mergeSpeculations(m_type, speculationFromValue(value)) != m_type)
return false;
if (value.isEmpty()) {
ASSERT(m_type & SpecEmpty);
return true;
}
if (!!value && value.isCell()) {
ASSERT(m_type & SpecCell);
Structure* structure = value.asCell()->structure();
return m_currentKnownStructure.contains(structure)
&& m_futurePossibleStructure.contains(structure)
&& (m_arrayModes & asArrayModes(structure->indexingType()));
}
return true;
}
Structure* bestProvenStructure() const
{
if (m_currentKnownStructure.hasSingleton())
return m_currentKnownStructure.singleton();
if (m_futurePossibleStructure.hasSingleton())
return m_futurePossibleStructure.singleton();
return 0;
}
bool hasClobberableState() const
{
return m_currentKnownStructure.isNeitherClearNorTop()
|| !arrayModesAreClearOrTop(m_arrayModes);
}
#if ASSERT_DISABLED
void checkConsistency() const { }
#else
void checkConsistency() const;
#endif
void dumpInContext(PrintStream&, DumpContext*) const;
void dump(PrintStream&) const;
// A great way to think about the difference between m_currentKnownStructure and
// m_futurePossibleStructure is to consider these four examples:
//
// 1) x = foo();
//
// In this case x's m_currentKnownStructure and m_futurePossibleStructure will
// both be TOP, since we don't know anything about x for sure, yet.
//
// 2) x = foo();
// y = x.f;
//
// Where x will later have a new property added to it, 'g'. Because of the
// known but not-yet-executed property addition, x's current structure will
// not be watchpointable; hence we have no way of statically bounding the set
// of possible structures that x may have if a clobbering event happens. So,
// x's m_currentKnownStructure will be whatever structure we check to get
// property 'f', and m_futurePossibleStructure will be TOP.
//
// 3) x = foo();
// y = x.f;
//
// Where x has a terminal structure that is still watchpointable. In this case,
// x's m_currentKnownStructure and m_futurePossibleStructure will both be
// whatever structure we checked for when getting 'f'.
//
// 4) x = foo();
// y = x.f;
// bar();
//
// Where x has a terminal structure that is still watchpointable. In this
// case, m_currentKnownStructure will be TOP because bar() may potentially
// change x's structure and we have no way of proving otherwise, but
// x's m_futurePossibleStructure will be whatever structure we had checked
// when getting property 'f'.
// NB. All fields in this struct must have trivial destructors.
// This is a proven constraint on the structures that this value can have right
// now. The structure of the current value must belong to this set. The set may
// be TOP, indicating that it is the set of all possible structures, in which
// case the current value can have any structure. The set may be BOTTOM (empty)
// in which case this value cannot be a cell. This is all subject to change
// anytime a new value is assigned to this one, anytime there is a control flow
// merge, or most crucially, anytime a side-effect or structure check happens.
// In case of a side-effect, we typically must assume that any value may have
// had its structure changed, hence contravening our proof. We make the proof
// valid again by switching this to TOP (i.e. claiming that we have proved that
// this value may have any structure). Of note is that the proof represented by
// this field is not subject to structure transition watchpoints - even if one
// fires, we can be sure that this proof is still valid.
StructureAbstractValue m_currentKnownStructure;
// This is a proven constraint on the structures that this value can have now
// or any time in the future subject to the structure transition watchpoints of
// all members of this set not having fired. This set is impervious to side-
// effects; even if one happens the side-effect can only cause the value to
// change to at worst another structure that is also a member of this set. But,
// the theorem being proved by this field is predicated upon there not being
// any new structure transitions introduced into any members of this set. In
// cases where there is no way for us to guard this happening, the set must be
// TOP. But in cases where we can guard new structure transitions (all members
// of the set have still-valid structure transition watchpoints) then this set
// will be finite. Anytime that we make use of the finite nature of this set,
// we must first issue a structure transition watchpoint, which will effectively
// result in m_currentKnownStructure being filtered according to
// m_futurePossibleStructure.
StructureAbstractValue m_futurePossibleStructure;
// This is a proven constraint on the possible types that this value can have
// now or any time in the future, unless it is reassigned. This field is
// impervious to side-effects unless the side-effect can reassign the value
// (for example if we're talking about a captured variable). The relationship
// between this field, and the structure fields above, is as follows. The
// fields above constraint the structures that a cell may have, but they say
// nothing about whether or not the value is known to be a cell. More formally,
// the m_currentKnownStructure is itself an abstract value that consists of the
// union of the set of all non-cell values and the set of cell values that have
// the given structure. This abstract value is then the intersection of the
// m_currentKnownStructure and the set of values whose type is m_type. So, for
// example if m_type is SpecFinal|SpecInt32 and m_currentKnownStructure is
// [0x12345] then this abstract value corresponds to the set of all integers
// unified with the set of all objects with structure 0x12345.
SpeculatedType m_type;
// This is a proven constraint on the possible indexing types that this value
// can have right now. It also implicitly constraints the set of structures
// that the value may have right now, since a structure has an immutable
// indexing type. This is subject to change upon reassignment, or any side
// effect that makes non-obvious changes to the heap.
ArrayModes m_arrayModes;
// This is a proven constraint on the possible values that this value can
// have now or any time in the future, unless it is reassigned. Note that this
// implies nothing about the structure. Oddly, JSValue() (i.e. the empty value)
// means either BOTTOM or TOP depending on the state of m_type: if m_type is
// BOTTOM then JSValue() means BOTTOM; if m_type is not BOTTOM then JSValue()
// means TOP.
JSValue m_value;
private:
void clobberArrayModes()
{
// FIXME: We could make this try to predict the set of array modes that this object
// could have in the future. For now, just do the simple thing.
m_arrayModes = ALL_ARRAY_MODES;
}
bool validateType(JSValue value) const
{
if (isHeapTop())
return true;
// Constant folding always represents Int52's in a double (i.e. Int52AsDouble).
// So speculationFromValue(value) for an Int52 value will return Int52AsDouble,
// and that's fine - the type validates just fine.
SpeculatedType type = m_type;
if (type & SpecInt52)
type |= SpecInt52AsDouble;
if (mergeSpeculations(type, speculationFromValue(value)) != type)
return false;
if (value.isEmpty()) {
ASSERT(m_type & SpecEmpty);
return true;
}
return true;
}
void makeTop(SpeculatedType top)
{
m_type |= top;
m_arrayModes = ALL_ARRAY_MODES;
m_currentKnownStructure.makeTop();
m_futurePossibleStructure.makeTop();
m_value = JSValue();
checkConsistency();
}
void setFuturePossibleStructure(Graph&, Structure* structure);
void filterValueByType();
void filterArrayModesByType();
bool shouldBeClear() const;
FiltrationResult normalizeClarity();
};
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
#endif // DFGAbstractValue_h