blob: 4ab2e460c4d7987550c6ef3d182bb3262fbce40d [file] [log] [blame]
/*
* Copyright (C) 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef B3Opcode_h
#define B3Opcode_h
#if ENABLE(B3_JIT)
#include "B3Type.h"
#include <wtf/Optional.h>
#include <wtf/StdLibExtras.h>
namespace JSC { namespace B3 {
enum Opcode : int16_t {
// A no-op that returns Void, useful for when you want to remove a value.
Nop,
// Polymorphic identity, usable with any value type.
Identity,
// Constants. Use the ConstValue* classes. Constants exist in the control flow, so that we can
// reason about where we would construct them. Large constants are expensive to create.
Const32,
Const64,
ConstDouble,
// The magical stack slot. This is viewed as executing at the top of the program regardless of
// where in control flow you put it. Each instance of a StackSlot Value gets a disjoint range of
// stack memory. Use the StackSlotValue class.
StackSlot,
// The magical argument register. This is viewed as executing at the top of the program
// regardless of where in control flow you put it, and the compiler takes care to ensure that we
// don't clobber the value by register allocation or calls (either by saving the argument to the
// stack or preserving it in a callee-save register). Use the ArgumentRegValue class. The return
// type is either pointer() (for GPRs) or Double (for FPRs).
ArgumentReg,
// The frame pointer. You can put this anywhere in control flow but it will always yield the
// frame pointer, with a caveat: if our compiler changes the frame pointer temporarily for some
// silly reason, the FramePointer intrinsic will return where the frame pointer *should* be not
// where it happens to be right now.
FramePointer,
// Polymorphic math, usable with any value type.
Add,
Sub,
Mul,
Div, // All bets are off as to what will happen when you execute this for -2^31/-1 and x/0.
// Integer math.
ChillDiv, // doesn't trap ever, behaves like JS (x/y)|0.
Mod,
BitAnd,
BitOr,
BitXor,
Shl,
SShr, // Arithmetic Shift.
ZShr, // Logical Shift.
// Casts and such.
// Takes and returns Int32:
SExt8,
SExt16,
// Takes Int32 and returns Int64:
SExt32,
ZExt32,
// Takes Int64 and returns Int32:
Trunc,
// Takes and returns Double:
FRound,
// Takes ints and returns Double:
IToD,
// Takes Double and returns Int32:
DToI32,
// Polymorphic comparisons, usable with any value type. Returns int32 0 or 1. Note that "Not"
// is just Equal(x, 0), and "ToBoolean" is just NotEqual(x, 0).
Equal,
NotEqual,
LessThan,
GreaterThan,
LessEqual,
GreaterEqual,
// Integer comparisons. Returns int32 0 or 1.
Above,
Below,
AboveEqual,
BelowEqual,
// Memory loads. Opcode indicates how we load and the loaded type. These use MemoryValue.
// These return Int32:
Load8Z,
Load8S,
Load16Z,
Load16S,
// This returns Double:
LoadFloat,
// This returns whatever the return type is:
Load,
// Memory stores. Opcode indicates how the value is stored. These use MemoryValue.
// These take an Int32 value:
Store8,
Store16,
// This takes a Double value:
StoreFloat,
// This is a polymorphic store for Int32, Int64, and Double:
Store,
// This is a regular ordinary C function call, using the system C calling convention. Make sure
// that the arguments are passed using the right types. The first argument is the callee.
CCall,
// This is a patchpoint. Use the PatchpointValue class. This is viewed as behaving like a call,
// but only emits code via a code generation callback. That callback gets to emit code inline.
// You can pass a stackmap along with constraints on how each stackmap argument must be passed.
// It's legal to request that a stackmap argument is in some register and it's legal to request
// that a stackmap argument is at some offset from the top of the argument passing area on the
// stack.
Patchpoint,
// Checked math. Use the CheckValue class. Like a Patchpoint, this takes a code generation
// callback. That callback gets to emit some code after the epilogue, and gets to link the jump
// from the check, and the choice of registers. You also get to supply a stackmap. Note that you
// are not allowed to jump back into the mainline code from your slow path, since the compiler
// will assume that the execution of these instructions proves that overflow didn't happen. For
// example, if you have two CheckAdd's:
//
// a = CheckAdd(x, y)
// b = CheckAdd(x, y)
//
// Then it's valid to change this to:
//
// a = CheckAdd(x, y)
// b = Identity(a)
//
// This is valid regardless of the callbacks used by the two CheckAdds. They may have different
// callbacks. Yet, this transformation is valid even if they are different because we know that
// after the first CheckAdd executes, the second CheckAdd could not have possibly taken slow
// path. Therefore, the second CheckAdd's callback is irrelevant.
CheckAdd,
CheckSub,
CheckMul,
// Check that side-exits. Use the CheckValue class. Like CheckAdd and friends, this has a
// stackmap with a generation callback. This takes an int argument that this branches on, with
// full branch fusion in the instruction selector. A true value jumps to the generator's slow
// path.
Check,
// SSA support, in the style of DFG SSA.
Upsilon, // This uses the UpsilonValue class.
Phi,
// Jump. Uses the ControlValue class.
Jump,
// Polymorphic branch, usable with any integer type. Branches if not equal to zero. Uses the
// ControlValue class, with the 0-index successor being the true successor.
Branch,
// Switch. Switches over either Int32 or Int64. Uses the SwitchValue class.
Switch,
// Return. Note that B3 procedures don't know their return type, so this can just return any
// type. Uses the ControlValue class.
Return,
// This is a terminal that indicates that we will never get here. Uses the ControlValue class.
Oops
};
inline bool isCheckMath(Opcode opcode)
{
switch (opcode) {
case CheckAdd:
case CheckSub:
case CheckMul:
return true;
default:
return false;
}
}
Optional<Opcode> invertedCompare(Opcode, Type);
inline Opcode constPtrOpcode()
{
if (is64Bit())
return Const64;
return Const32;
}
} } // namespace JSC::B3
namespace WTF {
class PrintStream;
void printInternal(PrintStream&, JSC::B3::Opcode);
} // namespace WTF
#endif // ENABLE(B3_JIT)
#endif // B3Opcode_h