| /* |
| * Copyright (C) 2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "B3LowerToAir.h" |
| |
| #if ENABLE(B3_JIT) |
| |
| #include "AirCCallSpecial.h" |
| #include "AirCode.h" |
| #include "AirInsertionSet.h" |
| #include "AirInstInlines.h" |
| #include "AirStackSlot.h" |
| #include "B3ArgumentRegValue.h" |
| #include "B3BasicBlockInlines.h" |
| #include "B3CCallValue.h" |
| #include "B3CheckSpecial.h" |
| #include "B3Commutativity.h" |
| #include "B3IndexMap.h" |
| #include "B3IndexSet.h" |
| #include "B3MemoryValue.h" |
| #include "B3PatchpointSpecial.h" |
| #include "B3PatchpointValue.h" |
| #include "B3PhaseScope.h" |
| #include "B3Procedure.h" |
| #include "B3StackSlotValue.h" |
| #include "B3UpsilonValue.h" |
| #include "B3UseCounts.h" |
| #include "B3ValueInlines.h" |
| #include <wtf/ListDump.h> |
| |
| namespace JSC { namespace B3 { |
| |
| using namespace Air; |
| |
| namespace { |
| |
| const bool verbose = false; |
| |
| class LowerToAir { |
| public: |
| LowerToAir(Procedure& procedure, Code& code) |
| : m_valueToTmp(procedure.values().size()) |
| , m_blockToBlock(procedure.size()) |
| , m_useCounts(procedure) |
| , m_procedure(procedure) |
| , m_code(code) |
| { |
| } |
| |
| void run() |
| { |
| for (B3::BasicBlock* block : m_procedure) |
| m_blockToBlock[block] = m_code.addBlock(block->frequency()); |
| for (Value* value : m_procedure.values()) { |
| if (StackSlotValue* stackSlotValue = value->as<StackSlotValue>()) |
| m_stackToStack.add(stackSlotValue, m_code.addStackSlot(stackSlotValue)); |
| } |
| |
| m_procedure.resetValueOwners(); // Used by crossesInterference(). |
| |
| // Lower defs before uses on a global level. This is a good heuristic to lock down a |
| // hoisted address expression before we duplicate it back into the loop. |
| for (B3::BasicBlock* block : m_procedure.blocksInPreOrder()) { |
| m_block = block; |
| // Reset some state. |
| m_insts.resize(0); |
| |
| if (verbose) |
| dataLog("Lowering Block ", *block, ":\n"); |
| |
| // Process blocks in reverse order so we see uses before defs. That's what allows us |
| // to match patterns effectively. |
| for (unsigned i = block->size(); i--;) { |
| m_index = i; |
| m_value = block->at(i); |
| if (m_locked.contains(m_value)) |
| continue; |
| m_insts.append(Vector<Inst>()); |
| if (verbose) |
| dataLog("Lowering ", deepDump(m_value), ":\n"); |
| lower(); |
| if (verbose) { |
| for (Inst& inst : m_insts.last()) |
| dataLog(" ", inst, "\n"); |
| } |
| } |
| |
| // Now append the instructions. m_insts contains them in reverse order, so we process |
| // it in reverse. |
| for (unsigned i = m_insts.size(); i--;) { |
| for (Inst& inst : m_insts[i]) |
| m_blockToBlock[block]->appendInst(WTF::move(inst)); |
| } |
| |
| // Make sure that the successors are set up correctly. |
| ASSERT(block->successors().size() <= 2); |
| for (B3::BasicBlock* successor : block->successorBlocks()) |
| m_blockToBlock[block]->successors().append(m_blockToBlock[successor]); |
| } |
| |
| Air::InsertionSet insertionSet(m_code); |
| for (Inst& inst : m_prologue) |
| insertionSet.insertInst(0, WTF::move(inst)); |
| insertionSet.execute(m_code[0]); |
| } |
| |
| private: |
| bool highBitsAreZero(Value* value) |
| { |
| switch (value->opcode()) { |
| case Const32: |
| // We will use a Move immediate instruction, which may sign extend. |
| return value->asInt32() >= 0; |
| case Trunc: |
| // Trunc is copy-propagated, so the value may have garbage in the high bits. |
| return false; |
| case CCall: |
| // Calls are allowed to have garbage in their high bits. |
| return false; |
| case Patchpoint: |
| // For now, we assume that patchpoints may return garbage in the high bits. This simplifies |
| // the interface. We may revisit for performance reasons later. |
| return false; |
| case Phi: |
| // FIXME: We could do this right. |
| // https://bugs.webkit.org/show_bug.cgi?id=150845 |
| return false; |
| default: |
| // All other operations that return Int32 should lower to something that zero extends. |
| return value->type() == Int32; |
| } |
| } |
| |
| // NOTE: This entire mechanism could be done over Air, if we felt that this would be fast enough. |
| // For now we're assuming that it's faster to do this here, since analyzing B3 is so cheap. |
| bool shouldCopyPropagate(Value* value) |
| { |
| switch (value->opcode()) { |
| case Trunc: |
| case Identity: |
| return true; |
| case ZExt32: |
| return highBitsAreZero(value->child(0)); |
| default: |
| return false; |
| } |
| } |
| |
| class ArgPromise { |
| public: |
| ArgPromise() { } |
| |
| ArgPromise(const Arg& arg, Value* valueToLock = nullptr) |
| : m_arg(arg) |
| , m_value(valueToLock) |
| { |
| } |
| |
| static ArgPromise tmp(Value* value) |
| { |
| ArgPromise result; |
| result.m_value = value; |
| return result; |
| } |
| |
| explicit operator bool() const { return m_arg || m_value; } |
| |
| Arg::Kind kind() const |
| { |
| if (!m_arg && m_value) |
| return Arg::Tmp; |
| return m_arg.kind(); |
| } |
| |
| const Arg& peek() const |
| { |
| return m_arg; |
| } |
| |
| Arg consume(LowerToAir& lower) const |
| { |
| if (!m_arg && m_value) |
| return lower.tmp(m_value); |
| if (m_value) |
| lower.commitInternal(m_value); |
| return m_arg; |
| } |
| |
| private: |
| // Three forms: |
| // Everything null: invalid. |
| // Arg non-null, value null: just use the arg, nothing special. |
| // Arg null, value non-null: it's a tmp, pin it when necessary. |
| // Arg non-null, value non-null: use the arg, lock the value. |
| Arg m_arg; |
| Value* m_value; |
| }; |
| |
| // Consider using tmpPromise() in cases where you aren't sure that you want to pin the value yet. |
| // Here are three canonical ways of using tmp() and tmpPromise(): |
| // |
| // Idiom #1: You know that you want a tmp() and you know that it will be valid for the |
| // instruction you're emitting. |
| // |
| // append(Foo, tmp(bar)); |
| // |
| // Idiom #2: You don't know if you want to use a tmp() because you haven't determined if the |
| // instruction will accept it, so you query first. Note that the call to tmp() happens only after |
| // you are sure that you will use it. |
| // |
| // if (isValidForm(Foo, Arg::Tmp)) |
| // append(Foo, tmp(bar)) |
| // |
| // Idiom #3: Same as Idiom #2, but using tmpPromise. Notice that this calls consume() only after |
| // it's sure it will use the tmp. That's deliberate. |
| // |
| // ArgPromise promise = tmpPromise(bar); |
| // if (isValidForm(Foo, promise.kind())) |
| // append(Foo, promise.consume(*this)) |
| // |
| // In both idiom #2 and idiom #3, we don't pin the value to a temporary except when we actually |
| // emit the instruction. Both tmp() and tmpPromise().consume(*this) will pin it. Pinning means |
| // that we will henceforth require that the value of 'bar' is generated as a separate |
| // instruction. We don't want to pin the value to a temporary if we might change our minds, and |
| // pass an address operand representing 'bar' to Foo instead. |
| // |
| // Because tmp() pins, the following is not an idiom you should use: |
| // |
| // Tmp tmp = this->tmp(bar); |
| // if (isValidForm(Foo, tmp.kind())) |
| // append(Foo, tmp); |
| // |
| // That's because if isValidForm() returns false, you will have already pinned the 'bar' to a |
| // temporary. You might later want to try to do something like loadPromise(), and that will fail. |
| // This arises in operations that have both a Addr,Tmp and Tmp,Addr forms. The following code |
| // seems right, but will actually fail to ever match the Tmp,Addr form because by then, the right |
| // value is already pinned. |
| // |
| // auto tryThings = [this] (const Arg& left, const Arg& right) { |
| // if (isValidForm(Foo, left.kind(), right.kind())) |
| // return Inst(Foo, m_value, left, right); |
| // return Inst(); |
| // }; |
| // if (Inst result = tryThings(loadAddr(left), tmp(right))) |
| // return result; |
| // if (Inst result = tryThings(tmp(left), loadAddr(right))) // this never succeeds. |
| // return result; |
| // return Inst(Foo, m_value, tmp(left), tmp(right)); |
| // |
| // If you imagine that loadAddr(value) is just loadPromise(value).consume(*this), then this code |
| // will run correctly - it will generate OK code - but the second form is never matched. |
| // loadAddr(right) will never succeed because it will observe that 'right' is already pinned. |
| // Of course, it's exactly because of the risky nature of such code that we don't have a |
| // loadAddr() helper and require you to balance ArgPromise's in code like this. Such code will |
| // work fine if written as: |
| // |
| // auto tryThings = [this] (const ArgPromise& left, const ArgPromise& right) { |
| // if (isValidForm(Foo, left.kind(), right.kind())) |
| // return Inst(Foo, m_value, left.consume(*this), right.consume(*this)); |
| // return Inst(); |
| // }; |
| // if (Inst result = tryThings(loadPromise(left), tmpPromise(right))) |
| // return result; |
| // if (Inst result = tryThings(tmpPromise(left), loadPromise(right))) |
| // return result; |
| // return Inst(Foo, m_value, tmp(left), tmp(right)); |
| // |
| // Notice that we did use tmp in the fall-back case at the end, because by then, we know for sure |
| // that we want a tmp. But using tmpPromise in the tryThings() calls ensures that doing so |
| // doesn't prevent us from trying loadPromise on the same value. |
| Tmp tmp(Value* value) |
| { |
| Tmp& tmp = m_valueToTmp[value]; |
| if (!tmp) { |
| while (shouldCopyPropagate(value)) |
| value = value->child(0); |
| Tmp& realTmp = m_valueToTmp[value]; |
| if (!realTmp) |
| realTmp = m_code.newTmp(Arg::typeForB3Type(value->type())); |
| tmp = realTmp; |
| } |
| return tmp; |
| } |
| |
| ArgPromise tmpPromise(Value* value) |
| { |
| return ArgPromise::tmp(value); |
| } |
| |
| bool canBeInternal(Value* value) |
| { |
| // If one of the internal things has already been computed, then we don't want to cause |
| // it to be recomputed again. |
| if (m_valueToTmp[value]) |
| return false; |
| |
| // We require internals to have only one use - us. |
| if (m_useCounts[value] != 1) |
| return false; |
| |
| return true; |
| } |
| |
| // If you ask canBeInternal() and then construct something from that, and you commit to emitting |
| // that code, then you must commitInternal() on that value. This is tricky, and you only need to |
| // do it if you're pattern matching by hand rather than using the patterns language. Long story |
| // short, you should avoid this by using the pattern matcher to match patterns. |
| void commitInternal(Value* value) |
| { |
| m_locked.add(value); |
| } |
| |
| bool crossesInterference(Value* value) |
| { |
| // If it's in a foreign block, then be conservative. We could handle this if we were |
| // willing to do heavier analysis. For example, if we had liveness, then we could label |
| // values as "crossing interference" if they interfere with anything that they are live |
| // across. But, it's not clear how useful this would be. |
| if (value->owner != m_value->owner) |
| return true; |
| |
| Effects effects = value->effects(); |
| |
| for (unsigned i = m_index; i--;) { |
| Value* otherValue = m_block->at(i); |
| if (otherValue == value) |
| return false; |
| if (effects.interferes(otherValue->effects())) |
| return true; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return true; |
| } |
| |
| // This turns the given operand into an address. |
| Arg effectiveAddr(Value* address) |
| { |
| // FIXME: Consider matching an address expression even if we've already assigned a |
| // Tmp to it. https://bugs.webkit.org/show_bug.cgi?id=150777 |
| if (m_valueToTmp[address]) |
| return Arg::addr(tmp(address)); |
| |
| switch (address->opcode()) { |
| case Add: { |
| Value* left = address->child(0); |
| Value* right = address->child(1); |
| |
| auto tryIndex = [&] (Value* index, Value* offset) -> Arg { |
| if (index->opcode() != Shl) |
| return Arg(); |
| if (m_locked.contains(index->child(0)) || m_locked.contains(offset)) |
| return Arg(); |
| if (!index->child(1)->hasInt32()) |
| return Arg(); |
| |
| unsigned scale = 1 << (index->child(1)->asInt32() & 31); |
| if (!Arg::isValidScale(scale)) |
| return Arg(); |
| |
| return Arg::index(tmp(offset), tmp(index->child(0)), scale); |
| }; |
| |
| if (Arg result = tryIndex(left, right)) |
| return result; |
| if (Arg result = tryIndex(right, left)) |
| return result; |
| |
| if (m_locked.contains(left) || m_locked.contains(right)) |
| return Arg::addr(tmp(address)); |
| |
| return Arg::index(tmp(left), tmp(right)); |
| } |
| |
| case FramePointer: |
| return Arg::addr(Tmp(GPRInfo::callFrameRegister)); |
| |
| case B3::StackSlot: |
| return Arg::stack(m_stackToStack.get(address->as<StackSlotValue>())); |
| |
| default: |
| return Arg::addr(tmp(address)); |
| } |
| } |
| |
| // This gives you the address of the given Load or Store. If it's not a Load or Store, then |
| // it returns Arg(). |
| Arg addr(Value* memoryValue) |
| { |
| MemoryValue* value = memoryValue->as<MemoryValue>(); |
| if (!value) |
| return Arg(); |
| |
| Arg result = effectiveAddr(value->lastChild()); |
| ASSERT(result); |
| |
| int32_t offset = memoryValue->as<MemoryValue>()->offset(); |
| Arg offsetResult = result.withOffset(offset); |
| if (!offsetResult) |
| return Arg::addr(tmp(value->lastChild()), offset); |
| return offsetResult; |
| } |
| |
| ArgPromise loadPromise(Value* loadValue, B3::Opcode loadOpcode) |
| { |
| if (loadValue->opcode() != loadOpcode) |
| return Arg(); |
| if (!canBeInternal(loadValue)) |
| return Arg(); |
| if (crossesInterference(loadValue)) |
| return Arg(); |
| return ArgPromise(addr(loadValue), loadValue); |
| } |
| |
| ArgPromise loadPromise(Value* loadValue) |
| { |
| return loadPromise(loadValue, Load); |
| } |
| |
| Arg imm(Value* value) |
| { |
| if (value->hasInt() && value->representableAs<int32_t>()) |
| return Arg::imm(value->asNumber<int32_t>()); |
| return Arg(); |
| } |
| |
| Arg immOrTmp(Value* value) |
| { |
| if (Arg result = imm(value)) |
| return result; |
| return tmp(value); |
| } |
| |
| // By convention, we use Oops to mean "I don't know". |
| Air::Opcode tryOpcodeForType( |
| Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Type type) |
| { |
| Air::Opcode opcode; |
| switch (type) { |
| case Int32: |
| opcode = opcode32; |
| break; |
| case Int64: |
| opcode = opcode64; |
| break; |
| case Double: |
| opcode = opcodeDouble; |
| break; |
| default: |
| opcode = Air::Oops; |
| break; |
| } |
| |
| return opcode; |
| } |
| |
| Air::Opcode opcodeForType( |
| Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, Type type) |
| { |
| Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, opcodeDouble, type); |
| RELEASE_ASSERT(opcode != Air::Oops); |
| return opcode; |
| } |
| |
| template<Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble> |
| void appendUnOp(Value* value) |
| { |
| Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, value->type()); |
| |
| Tmp result = tmp(m_value); |
| |
| // Two operand forms like: |
| // Op a, b |
| // mean something like: |
| // b = Op a |
| |
| if (isValidForm(opcode, Arg::Tmp, Arg::Tmp)) { |
| append(opcode, tmp(value), result); |
| return; |
| } |
| |
| append(relaxedMoveForType(m_value->type()), tmp(value), result); |
| append(opcode, result); |
| } |
| |
| template< |
| Air::Opcode opcode32, Air::Opcode opcode64, Air::Opcode opcodeDouble, |
| Commutativity commutativity = NotCommutative> |
| void appendBinOp(Value* left, Value* right) |
| { |
| Air::Opcode opcode = opcodeForType(opcode32, opcode64, opcodeDouble, left->type()); |
| |
| Tmp result = tmp(m_value); |
| |
| // Three-operand forms like: |
| // Op a, b, c |
| // mean something like: |
| // c = a Op b |
| |
| if (isValidForm(opcode, Arg::Imm, Arg::Tmp, Arg::Tmp)) { |
| if (commutativity == Commutative) { |
| if (imm(right)) { |
| append(opcode, imm(right), tmp(left), result); |
| return; |
| } |
| } else { |
| // A non-commutative operation could have an immediate in left. |
| if (imm(left)) { |
| append(opcode, imm(left), tmp(right), result); |
| return; |
| } |
| } |
| } |
| |
| if (imm(right) && isValidForm(opcode, Arg::Tmp, Arg::Imm, Arg::Tmp)) { |
| append(opcode, tmp(left), imm(right), result); |
| return; |
| } |
| |
| // Note that no known architecture has a three-operand form of binary operations that also |
| // load from memory. If such an abomination did exist, we would handle it somewhere around |
| // here. |
| |
| // Two-operand forms like: |
| // Op a, b |
| // mean something like: |
| // b = b Op a |
| |
| // At this point, we prefer versions of the operation that have a fused load or an immediate |
| // over three operand forms. |
| |
| if (commutativity == Commutative) { |
| ArgPromise leftAddr = loadPromise(left); |
| if (isValidForm(opcode, leftAddr.kind(), Arg::Tmp)) { |
| append(relaxedMoveForType(m_value->type()), tmp(right), result); |
| append(opcode, leftAddr.consume(*this), result); |
| return; |
| } |
| } |
| |
| ArgPromise rightAddr = loadPromise(right); |
| if (isValidForm(opcode, rightAddr.kind(), Arg::Tmp)) { |
| append(relaxedMoveForType(m_value->type()), tmp(left), result); |
| append(opcode, rightAddr.consume(*this), result); |
| return; |
| } |
| |
| if (imm(right) && isValidForm(opcode, Arg::Imm, Arg::Tmp)) { |
| append(relaxedMoveForType(m_value->type()), tmp(left), result); |
| append(opcode, imm(right), result); |
| return; |
| } |
| |
| if (isValidForm(opcode, Arg::Tmp, Arg::Tmp, Arg::Tmp)) { |
| append(opcode, tmp(left), tmp(right), result); |
| return; |
| } |
| |
| append(relaxedMoveForType(m_value->type()), tmp(left), result); |
| append(opcode, tmp(right), result); |
| } |
| |
| template<Air::Opcode opcode32, Air::Opcode opcode64> |
| void appendShift(Value* value, Value* amount) |
| { |
| Air::Opcode opcode = opcodeForType(opcode32, opcode64, Air::Oops, value->type()); |
| |
| if (imm(amount)) { |
| append(Move, tmp(value), tmp(m_value)); |
| append(opcode, imm(amount), tmp(m_value)); |
| return; |
| } |
| |
| append(Move, tmp(value), tmp(m_value)); |
| append(Move, tmp(amount), Tmp(X86Registers::ecx)); |
| append(opcode, Tmp(X86Registers::ecx), tmp(m_value)); |
| } |
| |
| template<Air::Opcode opcode32, Air::Opcode opcode64> |
| bool tryAppendStoreUnOp(Value* value) |
| { |
| Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, Air::Oops, value->type()); |
| if (opcode == Air::Oops) |
| return false; |
| |
| Arg storeAddr = addr(m_value); |
| ASSERT(storeAddr); |
| |
| ArgPromise loadPromise = this->loadPromise(value); |
| if (loadPromise.peek() != storeAddr) |
| return false; |
| |
| if (!isValidForm(opcode, storeAddr.kind())) |
| return false; |
| |
| loadPromise.consume(*this); |
| append(opcode, storeAddr); |
| return true; |
| } |
| |
| template< |
| Air::Opcode opcode32, Air::Opcode opcode64, Commutativity commutativity = NotCommutative> |
| bool tryAppendStoreBinOp(Value* left, Value* right) |
| { |
| Air::Opcode opcode = tryOpcodeForType(opcode32, opcode64, Air::Oops, left->type()); |
| if (opcode == Air::Oops) |
| return false; |
| |
| Arg storeAddr = addr(m_value); |
| ASSERT(storeAddr); |
| |
| ArgPromise loadPromise; |
| Value* otherValue = nullptr; |
| |
| loadPromise = this->loadPromise(left); |
| if (loadPromise.peek() == storeAddr) |
| otherValue = right; |
| else if (commutativity == Commutative) { |
| loadPromise = this->loadPromise(right); |
| if (loadPromise.peek() == storeAddr) |
| otherValue = left; |
| } |
| |
| if (!otherValue) |
| return false; |
| |
| if (isValidForm(opcode, Arg::Imm, storeAddr.kind()) && imm(otherValue)) { |
| loadPromise.consume(*this); |
| append(opcode, imm(otherValue), storeAddr); |
| return true; |
| } |
| |
| if (!isValidForm(opcode, Arg::Tmp, storeAddr.kind())) |
| return false; |
| |
| loadPromise.consume(*this); |
| append(opcode, tmp(otherValue), storeAddr); |
| return true; |
| } |
| |
| Inst createStore(Value* value, const Arg& dest) |
| { |
| Air::Opcode move = moveForType(value->type()); |
| |
| if (imm(value) && isValidForm(move, Arg::Imm, dest.kind())) |
| return Inst(move, m_value, imm(value), dest); |
| |
| return Inst(move, m_value, tmp(value), dest); |
| } |
| |
| void appendStore(Value* value, const Arg& dest) |
| { |
| m_insts.last().append(createStore(value, dest)); |
| } |
| |
| Air::Opcode moveForType(Type type) |
| { |
| switch (type) { |
| case Int32: |
| return Move32; |
| case Int64: |
| RELEASE_ASSERT(is64Bit()); |
| return Move; |
| case Double: |
| return MoveDouble; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| Air::Opcode relaxedMoveForType(Type type) |
| { |
| switch (type) { |
| case Int32: |
| case Int64: |
| return Move; |
| case Double: |
| return MoveDouble; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| template<typename... Arguments> |
| void append(Air::Opcode opcode, Arguments&&... arguments) |
| { |
| m_insts.last().append(Inst(opcode, m_value, std::forward<Arguments>(arguments)...)); |
| } |
| |
| template<typename T, typename... Arguments> |
| T* ensureSpecial(T*& field, Arguments&&... arguments) |
| { |
| if (!field) { |
| field = static_cast<T*>( |
| m_code.addSpecial(std::make_unique<T>(std::forward<Arguments>(arguments)...))); |
| } |
| return field; |
| } |
| |
| void fillStackmap(Inst& inst, StackmapValue* stackmap, unsigned numSkipped) |
| { |
| for (unsigned i = numSkipped; i < stackmap->numChildren(); ++i) { |
| ConstrainedValue value = stackmap->constrainedChild(i); |
| |
| Arg arg; |
| switch (value.rep().kind()) { |
| case ValueRep::Any: |
| if (imm(value.value())) |
| arg = imm(value.value()); |
| else if (value.value()->hasInt64()) |
| arg = Arg::imm64(value.value()->asInt64()); |
| else if (value.value()->hasDouble()) |
| arg = Arg::imm64(bitwise_cast<int64_t>(value.value()->asDouble())); |
| else |
| arg = tmp(value.value()); |
| break; |
| case ValueRep::SomeRegister: |
| arg = tmp(value.value()); |
| break; |
| case ValueRep::Register: |
| arg = Tmp(value.rep().reg()); |
| append(Move, immOrTmp(value.value()), arg); |
| break; |
| case ValueRep::StackArgument: |
| arg = Arg::callArg(value.rep().offsetFromSP()); |
| appendStore(value.value(), arg); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| inst.args.append(arg); |
| } |
| } |
| |
| // Create an Inst to do the comparison specified by the given value. |
| template<typename CompareFunctor, typename TestFunctor, typename CompareDoubleFunctor> |
| Inst createGenericCompare( |
| Value* value, |
| const CompareFunctor& compare, // Signature: (Arg::Width, Arg relCond, Arg, Arg) -> Inst |
| const TestFunctor& test, // Signature: (Arg::Width, Arg resCond, Arg, Arg) -> Inst |
| const CompareDoubleFunctor& compareDouble, // Signature: (Arg doubleCond, Arg, Arg) -> Inst |
| bool inverted = false) |
| { |
| // Chew through any negations. It's not strictly necessary for this to be a loop, but we like |
| // to follow the rule that the instruction selector reduces strength whenever it doesn't |
| // require making things more complicated. |
| for (;;) { |
| if (!canBeInternal(value) && value != m_value) |
| break; |
| bool shouldInvert = |
| (value->opcode() == BitXor && value->child(1)->isInt(1) && value->child(0)->returnsBool()) |
| || (value->opcode() == Equal && value->child(1)->isInt(0)); |
| if (!shouldInvert) |
| break; |
| value = value->child(0); |
| inverted = !inverted; |
| commitInternal(value); |
| } |
| |
| auto createRelCond = [&] ( |
| MacroAssembler::RelationalCondition relationalCondition, |
| MacroAssembler::DoubleCondition doubleCondition) { |
| Arg relCond = Arg::relCond(relationalCondition).inverted(inverted); |
| Arg doubleCond = Arg::doubleCond(doubleCondition).inverted(inverted); |
| Value* left = value->child(0); |
| Value* right = value->child(1); |
| |
| if (isInt(value->child(0)->type())) { |
| // FIXME: We wouldn't have to worry about leftImm if we canonicalized integer |
| // comparisons. |
| // https://bugs.webkit.org/show_bug.cgi?id=150958 |
| |
| Arg leftImm = imm(left); |
| Arg rightImm = imm(right); |
| |
| auto tryCompare = [&] ( |
| Arg::Width width, const ArgPromise& left, const ArgPromise& right) -> Inst { |
| if (Inst result = compare(width, relCond, left, right)) |
| return result; |
| if (Inst result = compare(width, relCond.flipped(), right, left)) |
| return result; |
| return Inst(); |
| }; |
| |
| auto tryCompareLoadImm = [&] ( |
| Arg::Width width, B3::Opcode loadOpcode, Arg::Signedness signedness) -> Inst { |
| if (rightImm && rightImm.isRepresentableAs(width, signedness)) { |
| if (Inst result = tryCompare(width, loadPromise(left, loadOpcode), rightImm)) { |
| commitInternal(left); |
| return result; |
| } |
| } |
| if (leftImm && leftImm.isRepresentableAs(width, signedness)) { |
| if (Inst result = tryCompare(width, leftImm, loadPromise(right, loadOpcode))) { |
| commitInternal(right); |
| return result; |
| } |
| } |
| return Inst(); |
| }; |
| |
| // First handle compares that involve fewer bits than B3's type system supports. |
| // This is pretty important. For example, we want this to be a single instruction: |
| // |
| // @1 = Load8S(...) |
| // @2 = Const32(...) |
| // @3 = LessThan(@1, @2) |
| // Branch(@3) |
| |
| if (relCond.isSignedCond()) { |
| if (Inst result = tryCompareLoadImm(Arg::Width8, Load8S, Arg::Signed)) |
| return result; |
| } |
| |
| if (relCond.isUnsignedCond()) { |
| if (Inst result = tryCompareLoadImm(Arg::Width8, Load8Z, Arg::Unsigned)) |
| return result; |
| } |
| |
| if (relCond.isSignedCond()) { |
| if (Inst result = tryCompareLoadImm(Arg::Width16, Load16S, Arg::Signed)) |
| return result; |
| } |
| |
| if (relCond.isUnsignedCond()) { |
| if (Inst result = tryCompareLoadImm(Arg::Width16, Load16Z, Arg::Unsigned)) |
| return result; |
| } |
| |
| // Now handle compares that involve a load and an immediate. |
| |
| Arg::Width width = Arg::widthForB3Type(value->child(0)->type()); |
| if (Inst result = tryCompareLoadImm(width, Load, Arg::Signed)) |
| return result; |
| |
| // Now handle compares that involve a load. It's not obvious that it's better to |
| // handle this before the immediate cases or not. Probably doesn't matter. |
| |
| if (Inst result = tryCompare(width, loadPromise(left), tmpPromise(right))) { |
| commitInternal(left); |
| return result; |
| } |
| |
| if (Inst result = tryCompare(width, tmpPromise(left), loadPromise(right))) { |
| commitInternal(right); |
| return result; |
| } |
| |
| // Now handle compares that involve an immediate and a tmp. |
| |
| if (leftImm && leftImm.isRepresentableAs<int32_t>()) { |
| if (Inst result = tryCompare(width, leftImm, tmpPromise(right))) |
| return result; |
| } |
| |
| if (rightImm && rightImm.isRepresentableAs<int32_t>()) { |
| if (Inst result = tryCompare(width, tmpPromise(left), rightImm)) |
| return result; |
| } |
| |
| // Finally, handle comparison between tmps. |
| return tryCompare(width, tmpPromise(left), tmpPromise(right)); |
| } |
| |
| // Double comparisons can't really do anything smart. |
| return compareDouble(doubleCond, tmpPromise(left), tmpPromise(right)); |
| }; |
| |
| Arg::Width width = Arg::widthForB3Type(value->type()); |
| Arg resCond = Arg::resCond(MacroAssembler::NonZero).inverted(inverted); |
| |
| auto attemptFused = [&] () -> Inst { |
| switch (value->opcode()) { |
| case NotEqual: |
| return createRelCond(MacroAssembler::NotEqual, MacroAssembler::DoubleNotEqualOrUnordered); |
| case Equal: |
| return createRelCond(MacroAssembler::Equal, MacroAssembler::DoubleEqual); |
| case LessThan: |
| return createRelCond(MacroAssembler::LessThan, MacroAssembler::DoubleLessThan); |
| case GreaterThan: |
| return createRelCond(MacroAssembler::GreaterThan, MacroAssembler::DoubleGreaterThan); |
| case LessEqual: |
| return createRelCond(MacroAssembler::LessThanOrEqual, MacroAssembler::DoubleLessThanOrEqual); |
| case GreaterEqual: |
| return createRelCond(MacroAssembler::GreaterThanOrEqual, MacroAssembler::DoubleGreaterThanOrEqual); |
| case Above: |
| // We use a bogus double condition because these integer comparisons won't got down that |
| // path anyway. |
| return createRelCond(MacroAssembler::Above, MacroAssembler::DoubleEqual); |
| case Below: |
| return createRelCond(MacroAssembler::Below, MacroAssembler::DoubleEqual); |
| case AboveEqual: |
| return createRelCond(MacroAssembler::AboveOrEqual, MacroAssembler::DoubleEqual); |
| case BelowEqual: |
| return createRelCond(MacroAssembler::BelowOrEqual, MacroAssembler::DoubleEqual); |
| case BitAnd: { |
| Value* left = value->child(0); |
| Value* right = value->child(1); |
| |
| // FIXME: We don't actually have to worry about leftImm. |
| // https://bugs.webkit.org/show_bug.cgi?id=150954 |
| |
| Arg leftImm = imm(left); |
| Arg rightImm = imm(right); |
| |
| auto tryTest = [&] ( |
| Arg::Width width, const ArgPromise& left, const ArgPromise& right) -> Inst { |
| if (Inst result = test(width, resCond, left, right)) |
| return result; |
| if (Inst result = test(width, resCond, right, left)) |
| return result; |
| return Inst(); |
| }; |
| |
| auto tryTestLoadImm = [&] (Arg::Width width, B3::Opcode loadOpcode) -> Inst { |
| if (rightImm && rightImm.isRepresentableAs(width, Arg::Unsigned)) { |
| if (Inst result = tryTest(width, loadPromise(left, loadOpcode), rightImm)) { |
| commitInternal(left); |
| return result; |
| } |
| } |
| if (leftImm && leftImm.isRepresentableAs(width, Arg::Unsigned)) { |
| if (Inst result = tryTest(width, leftImm, loadPromise(right, loadOpcode))) { |
| commitInternal(right); |
| return result; |
| } |
| } |
| return Inst(); |
| }; |
| |
| // First handle test's that involve fewer bits than B3's type system supports. |
| |
| if (Inst result = tryTestLoadImm(Arg::Width8, Load8Z)) |
| return result; |
| |
| if (Inst result = tryTestLoadImm(Arg::Width8, Load8S)) |
| return result; |
| |
| if (Inst result = tryTestLoadImm(Arg::Width16, Load16Z)) |
| return result; |
| |
| if (Inst result = tryTestLoadImm(Arg::Width16, Load16S)) |
| return result; |
| |
| // Now handle test's that involve a load and an immediate. Note that immediates are |
| // 32-bit, and we want zero-extension. Hence, the immediate form is compiled as a |
| // 32-bit test. Note that this spits on the grave of inferior endians, such as the |
| // big one. |
| |
| if (Inst result = tryTestLoadImm(Arg::Width32, Load)) |
| return result; |
| |
| // Now handle test's that involve a load. |
| |
| Arg::Width width = Arg::widthForB3Type(value->child(0)->type()); |
| if (Inst result = tryTest(width, loadPromise(left), tmpPromise(right))) { |
| commitInternal(left); |
| return result; |
| } |
| |
| if (Inst result = tryTest(width, tmpPromise(left), loadPromise(right))) { |
| commitInternal(right); |
| return result; |
| } |
| |
| // Now handle test's that involve an immediate and a tmp. |
| |
| if (leftImm && leftImm.isRepresentableAs<uint32_t>()) { |
| if (Inst result = tryTest(Arg::Width32, leftImm, tmpPromise(right))) |
| return result; |
| } |
| |
| if (rightImm && rightImm.isRepresentableAs<uint32_t>()) { |
| if (Inst result = tryTest(Arg::Width32, tmpPromise(left), rightImm)) |
| return result; |
| } |
| |
| // Finally, just do tmp's. |
| return tryTest(width, tmpPromise(left), tmpPromise(right)); |
| } |
| default: |
| return Inst(); |
| } |
| }; |
| |
| if (canBeInternal(value) || value == m_value) { |
| if (Inst result = attemptFused()) { |
| commitInternal(value); |
| return result; |
| } |
| } |
| |
| if (Inst result = test(width, resCond, tmpPromise(value), Arg::imm(-1))) |
| return result; |
| |
| // Sometimes this is the only form of test available. We prefer not to use this because |
| // it's less canonical. |
| return test(width, resCond, tmpPromise(value), tmpPromise(value)); |
| } |
| |
| Inst createBranch(Value* value, bool inverted = false) |
| { |
| return createGenericCompare( |
| value, |
| [this] ( |
| Arg::Width width, const Arg& relCond, |
| const ArgPromise& left, const ArgPromise& right) -> Inst { |
| switch (width) { |
| case Arg::Width8: |
| if (isValidForm(Branch8, Arg::RelCond, left.kind(), right.kind())) { |
| return Inst( |
| Branch8, m_value, relCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| case Arg::Width16: |
| return Inst(); |
| case Arg::Width32: |
| if (isValidForm(Branch32, Arg::RelCond, left.kind(), right.kind())) { |
| return Inst( |
| Branch32, m_value, relCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| case Arg::Width64: |
| if (isValidForm(Branch64, Arg::RelCond, left.kind(), right.kind())) { |
| return Inst( |
| Branch64, m_value, relCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| } |
| }, |
| [this] ( |
| Arg::Width width, const Arg& resCond, |
| const ArgPromise& left, const ArgPromise& right) -> Inst { |
| switch (width) { |
| case Arg::Width8: |
| if (isValidForm(BranchTest8, Arg::ResCond, left.kind(), right.kind())) { |
| return Inst( |
| BranchTest8, m_value, resCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| case Arg::Width16: |
| return Inst(); |
| case Arg::Width32: |
| if (isValidForm(BranchTest32, Arg::ResCond, left.kind(), right.kind())) { |
| return Inst( |
| BranchTest32, m_value, resCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| case Arg::Width64: |
| if (isValidForm(BranchTest64, Arg::ResCond, left.kind(), right.kind())) { |
| return Inst( |
| BranchTest64, m_value, resCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| } |
| }, |
| [this] (Arg doubleCond, const ArgPromise& left, const ArgPromise& right) -> Inst { |
| if (isValidForm(BranchDouble, Arg::DoubleCond, left.kind(), right.kind())) { |
| return Inst( |
| BranchDouble, m_value, doubleCond, |
| left.consume(*this), right.consume(*this)); |
| } |
| return Inst(); |
| }, |
| inverted); |
| } |
| |
| Inst createCompare(Value* value, bool inverted = false) |
| { |
| return createGenericCompare( |
| value, |
| [this] ( |
| Arg::Width width, const Arg& relCond, |
| const ArgPromise& left, const ArgPromise& right) -> Inst { |
| switch (width) { |
| case Arg::Width8: |
| case Arg::Width16: |
| return Inst(); |
| case Arg::Width32: |
| if (isValidForm(Compare32, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) { |
| return Inst( |
| Compare32, m_value, relCond, |
| left.consume(*this), right.consume(*this), tmp(m_value)); |
| } |
| return Inst(); |
| case Arg::Width64: |
| if (isValidForm(Compare64, Arg::RelCond, left.kind(), right.kind(), Arg::Tmp)) { |
| return Inst( |
| Compare64, m_value, relCond, |
| left.consume(*this), right.consume(*this), tmp(m_value)); |
| } |
| return Inst(); |
| } |
| }, |
| [this] ( |
| Arg::Width width, const Arg& resCond, |
| const ArgPromise& left, const ArgPromise& right) -> Inst { |
| switch (width) { |
| case Arg::Width8: |
| case Arg::Width16: |
| return Inst(); |
| case Arg::Width32: |
| if (isValidForm(Test32, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) { |
| return Inst( |
| Test32, m_value, resCond, |
| left.consume(*this), right.consume(*this), tmp(m_value)); |
| } |
| return Inst(); |
| case Arg::Width64: |
| if (isValidForm(Test64, Arg::ResCond, left.kind(), right.kind(), Arg::Tmp)) { |
| return Inst( |
| Test64, m_value, resCond, |
| left.consume(*this), right.consume(*this), tmp(m_value)); |
| } |
| return Inst(); |
| } |
| }, |
| [this] (const Arg&, const ArgPromise&, const ArgPromise&) -> Inst { |
| // FIXME: Implement this. |
| // https://bugs.webkit.org/show_bug.cgi?id=150903 |
| return Inst(); |
| }, |
| inverted); |
| } |
| |
| template<typename BankInfo> |
| Arg marshallCCallArgument(unsigned& argumentCount, unsigned& stackCount, Value* child) |
| { |
| unsigned argumentIndex = argumentCount++; |
| if (argumentIndex < BankInfo::numberOfArgumentRegisters) { |
| Tmp result = Tmp(BankInfo::toArgumentRegister(argumentIndex)); |
| append(relaxedMoveForType(child->type()), immOrTmp(child), result); |
| return result; |
| } |
| |
| // Compute the place that this goes onto the stack. On X86_64 and probably other calling |
| // conventions that don't involve obsolete computers and operating systems, sub-pointer-size |
| // arguments are still given a full pointer-sized stack slot. Hence we don't have to consider |
| // the type of the argument when deducing the stack index. |
| unsigned stackIndex = stackCount++; |
| |
| Arg result = Arg::callArg(stackIndex * sizeof(void*)); |
| |
| // Put the code for storing the argument before anything else. This significantly eases the |
| // burden on the register allocator. If we could, we'd hoist these stores as far as |
| // possible. |
| // FIXME: Add a phase to hoist stores as high as possible to relieve register pressure. |
| // https://bugs.webkit.org/show_bug.cgi?id=151063 |
| m_insts.last().insert(0, createStore(child, result)); |
| |
| return result; |
| } |
| |
| void lower() |
| { |
| switch (m_value->opcode()) { |
| case B3::Nop: { |
| // Yes, we will totally see Nop's because some phases will replaceWithNop() instead of |
| // properly removing things. |
| return; |
| } |
| |
| case Load: { |
| append( |
| moveForType(m_value->type()), |
| addr(m_value), tmp(m_value)); |
| return; |
| } |
| |
| case Load8S: { |
| append(Load8SignedExtendTo32, addr(m_value), tmp(m_value)); |
| return; |
| } |
| |
| case Load8Z: { |
| append(Load8, addr(m_value), tmp(m_value)); |
| return; |
| } |
| |
| case Load16S: { |
| append(Load16SignedExtendTo32, addr(m_value), tmp(m_value)); |
| return; |
| } |
| |
| case Load16Z: { |
| append(Load16, addr(m_value), tmp(m_value)); |
| return; |
| } |
| |
| case Add: { |
| // FIXME: Need a story for doubles. |
| // https://bugs.webkit.org/show_bug.cgi?id=150991 |
| appendBinOp<Add32, Add64, Air::Oops, Commutative>( |
| m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case Sub: { |
| if (m_value->child(0)->isInt(0)) |
| appendUnOp<Neg32, Neg64, Air::Oops>(m_value->child(1)); |
| else |
| appendBinOp<Sub32, Sub64, Air::Oops>(m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case Div: { |
| if (isInt(m_value->type())) { |
| Tmp eax = Tmp(X86Registers::eax); |
| Tmp edx = Tmp(X86Registers::edx); |
| |
| Air::Opcode convertToDoubleWord; |
| Air::Opcode div; |
| switch (m_value->type()) { |
| case Int32: |
| convertToDoubleWord = X86ConvertToDoubleWord32; |
| div = X86Div32; |
| break; |
| case Int64: |
| convertToDoubleWord = X86ConvertToQuadWord64; |
| div = X86Div64; |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return; |
| } |
| |
| append(Move, tmp(m_value->child(0)), eax); |
| append(convertToDoubleWord, eax, edx); |
| append(div, eax, edx, tmp(m_value->child(1))); |
| append(Move, eax, tmp(m_value)); |
| return; |
| } |
| |
| // FIXME: Support doubles. |
| // https://bugs.webkit.org/show_bug.cgi?id=150991 |
| RELEASE_ASSERT_NOT_REACHED(); |
| return; |
| } |
| |
| case BitAnd: { |
| appendBinOp<And32, And64, Air::Oops, Commutative>( |
| m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case BitOr: { |
| appendBinOp<Or32, Or64, Air::Oops, Commutative>( |
| m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case BitXor: { |
| appendBinOp<Xor32, Xor64, Air::Oops, Commutative>( |
| m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case Shl: { |
| appendShift<Lshift32, Lshift64>(m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case SShr: { |
| appendShift<Rshift32, Rshift64>(m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case ZShr: { |
| appendShift<Urshift32, Urshift64>(m_value->child(0), m_value->child(1)); |
| return; |
| } |
| |
| case Store: { |
| Value* valueToStore = m_value->child(0); |
| if (canBeInternal(valueToStore)) { |
| bool matched = false; |
| switch (valueToStore->opcode()) { |
| case Add: |
| matched = tryAppendStoreBinOp<Add32, Add64, Commutative>( |
| valueToStore->child(0), valueToStore->child(1)); |
| break; |
| case Sub: |
| if (valueToStore->child(0)->isInt(0)) { |
| matched = tryAppendStoreUnOp<Neg32, Neg64>(valueToStore->child(1)); |
| break; |
| } |
| matched = tryAppendStoreBinOp<Sub32, Sub64>( |
| valueToStore->child(0), valueToStore->child(1)); |
| break; |
| case BitAnd: |
| matched = tryAppendStoreBinOp<And32, And64, Commutative>( |
| valueToStore->child(0), valueToStore->child(1)); |
| break; |
| default: |
| break; |
| } |
| if (matched) { |
| commitInternal(valueToStore); |
| return; |
| } |
| } |
| |
| appendStore(valueToStore, addr(m_value)); |
| return; |
| } |
| |
| case Trunc: { |
| ASSERT(tmp(m_value->child(0)) == tmp(m_value)); |
| return; |
| } |
| |
| case ZExt32: { |
| if (highBitsAreZero(m_value->child(0))) { |
| ASSERT(tmp(m_value->child(0)) == tmp(m_value)); |
| return; |
| } |
| |
| append(Move32, tmp(m_value->child(0)), tmp(m_value)); |
| return; |
| } |
| |
| case ArgumentReg: { |
| m_prologue.append(Inst( |
| moveForType(m_value->type()), m_value, |
| Tmp(m_value->as<ArgumentRegValue>()->argumentReg()), |
| tmp(m_value))); |
| return; |
| } |
| |
| case Const32: { |
| append(Move, imm(m_value), tmp(m_value)); |
| return; |
| } |
| case Const64: { |
| if (imm(m_value)) |
| append(Move, imm(m_value), tmp(m_value)); |
| else |
| append(Move, Arg::imm64(m_value->asInt64()), tmp(m_value)); |
| return; |
| } |
| |
| case ConstDouble: { |
| // We expect that the moveConstants() phase has run. |
| RELEASE_ASSERT(isIdentical(m_value->asDouble(), 0.0)); |
| append(MoveZeroToDouble, tmp(m_value)); |
| return; |
| } |
| |
| case FramePointer: { |
| append(Move, Tmp(GPRInfo::callFrameRegister), tmp(m_value)); |
| return; |
| } |
| |
| case B3::StackSlot: { |
| append( |
| Lea, |
| Arg::stack(m_stackToStack.get(m_value->as<StackSlotValue>())), |
| tmp(m_value)); |
| return; |
| } |
| |
| case Equal: |
| case NotEqual: |
| case LessThan: |
| case GreaterThan: |
| case LessEqual: |
| case GreaterEqual: |
| case Above: |
| case Below: |
| case AboveEqual: |
| case BelowEqual: { |
| m_insts.last().append(createCompare(m_value)); |
| return; |
| } |
| |
| case CCall: { |
| CCallValue* cCall = m_value->as<CCallValue>(); |
| Inst inst(Patch, cCall, Arg::special(m_code.cCallSpecial())); |
| |
| // This is a bit weird - we have a super intense contract with Arg::CCallSpecial. It might |
| // be better if we factored Air::CCallSpecial out of the Air namespace and made it a B3 |
| // thing. |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=151045 |
| |
| // We have a ton of flexibility regarding the callee argument, but currently, we don't |
| // use it yet. It gets weird for reasons: |
| // 1) We probably will never take advantage of this. We don't have C calls to locations |
| // loaded from addresses. We have JS calls like that, but those use Patchpoints. |
| // 2) On X86_64 we still don't support call with BaseIndex. |
| // 3) On non-X86, we don't natively support any kind of loading from address. |
| // 4) We don't have an isValidForm() for the CCallSpecial so we have no smart way to |
| // decide. |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=151052 |
| inst.args.append(tmp(cCall->child(0))); |
| |
| // We need to tell Air what registers this defines. |
| inst.args.append(Tmp(GPRInfo::returnValueGPR)); |
| inst.args.append(Tmp(GPRInfo::returnValueGPR2)); |
| inst.args.append(Tmp(FPRInfo::returnValueFPR)); |
| |
| // Now marshall the arguments. This is where we implement the C calling convention. After |
| // this, Air does not know what the convention is; it just takes our word for it. |
| unsigned gpArgumentCount = 0; |
| unsigned fpArgumentCount = 0; |
| unsigned stackCount = 0; |
| for (unsigned i = 1; i < cCall->numChildren(); ++i) { |
| Value* argChild = cCall->child(i); |
| Arg arg; |
| |
| switch (Arg::typeForB3Type(argChild->type())) { |
| case Arg::GP: |
| arg = marshallCCallArgument<GPRInfo>(gpArgumentCount, stackCount, argChild); |
| break; |
| |
| case Arg::FP: |
| arg = marshallCCallArgument<FPRInfo>(fpArgumentCount, stackCount, argChild); |
| break; |
| } |
| |
| if (arg.isTmp()) |
| inst.args.append(arg); |
| } |
| |
| m_insts.last().append(WTF::move(inst)); |
| |
| switch (cCall->type()) { |
| case Void: |
| break; |
| case Int32: |
| case Int64: |
| append(Move, Tmp(GPRInfo::returnValueGPR), tmp(cCall)); |
| break; |
| case Double: |
| append(MoveDouble, Tmp(FPRInfo::returnValueFPR), tmp(cCall)); |
| break; |
| } |
| return; |
| } |
| |
| case Patchpoint: { |
| PatchpointValue* patchpointValue = m_value->as<PatchpointValue>(); |
| ensureSpecial(m_patchpointSpecial); |
| |
| Inst inst(Patch, patchpointValue, Arg::special(m_patchpointSpecial)); |
| |
| if (patchpointValue->type() != Void) |
| inst.args.append(tmp(patchpointValue)); |
| |
| fillStackmap(inst, patchpointValue, 0); |
| |
| m_insts.last().append(WTF::move(inst)); |
| return; |
| } |
| |
| case Check: { |
| Inst branch = createBranch(m_value->child(0)); |
| |
| CheckSpecial::Key key(branch); |
| auto result = m_checkSpecials.add(key, nullptr); |
| Special* special = ensureSpecial(result.iterator->value, key); |
| |
| CheckValue* checkValue = m_value->as<CheckValue>(); |
| |
| Inst inst(Patch, checkValue, Arg::special(special)); |
| inst.args.appendVector(branch.args); |
| |
| fillStackmap(inst, checkValue, 1); |
| |
| m_insts.last().append(WTF::move(inst)); |
| return; |
| } |
| |
| case Upsilon: { |
| Value* value = m_value->child(0); |
| append( |
| relaxedMoveForType(value->type()), immOrTmp(value), |
| tmp(m_value->as<UpsilonValue>()->phi())); |
| return; |
| } |
| |
| case Phi: { |
| // Our semantics are determined by Upsilons, so we have nothing to do here. |
| return; |
| } |
| |
| case Branch: { |
| m_insts.last().append(createBranch(m_value->child(0))); |
| return; |
| } |
| |
| case B3::Jump: { |
| append(Air::Jump); |
| return; |
| } |
| |
| case Identity: { |
| ASSERT(tmp(m_value->child(0)) == tmp(m_value)); |
| return; |
| } |
| |
| case Return: { |
| Value* value = m_value->child(0); |
| Air::Opcode move; |
| Tmp dest; |
| if (isInt(value->type())) { |
| move = Move; |
| dest = Tmp(GPRInfo::returnValueGPR); |
| } else { |
| move = MoveDouble; |
| dest = Tmp(FPRInfo::returnValueFPR); |
| } |
| append(move, immOrTmp(value), dest); |
| append(Ret); |
| return; |
| } |
| |
| default: |
| break; |
| } |
| |
| dataLog("FATAL: could not lower ", deepDump(m_value), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| IndexSet<Value> m_locked; // These are values that will have no Tmp in Air. |
| IndexMap<Value, Tmp> m_valueToTmp; // These are values that must have a Tmp in Air. We say that a Value* with a non-null Tmp is "pinned". |
| IndexMap<B3::BasicBlock, Air::BasicBlock*> m_blockToBlock; |
| HashMap<StackSlotValue*, Air::StackSlot*> m_stackToStack; |
| |
| UseCounts m_useCounts; |
| |
| Vector<Vector<Inst, 4>> m_insts; |
| Vector<Inst> m_prologue; |
| |
| B3::BasicBlock* m_block; |
| unsigned m_index; |
| Value* m_value; |
| |
| PatchpointSpecial* m_patchpointSpecial { nullptr }; |
| HashMap<CheckSpecial::Key, CheckSpecial*> m_checkSpecials; |
| |
| Procedure& m_procedure; |
| Code& m_code; |
| }; |
| |
| } // anonymous namespace |
| |
| void lowerToAir(Procedure& procedure, Code& code) |
| { |
| PhaseScope phaseScope(procedure, "lowerToAir"); |
| LowerToAir lowerToAir(procedure, code); |
| lowerToAir.run(); |
| } |
| |
| } } // namespace JSC::B3 |
| |
| #endif // ENABLE(B3_JIT) |
| |