blob: c70d8cd976a559eb68f3c502df4b89d271c1c715 [file] [log] [blame]
/*
* Copyright (C) 2013, 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FTLOutput_h
#define FTLOutput_h
#if ENABLE(FTL_JIT)
#include "DFGCommon.h"
#include "FTLAbbreviations.h"
#include "FTLAbstractHeapRepository.h"
#include "FTLCommonValues.h"
#include "FTLIntrinsicRepository.h"
#include "FTLState.h"
#include "FTLSwitchCase.h"
#include "FTLTypedPointer.h"
#include "FTLWeight.h"
#include "FTLWeightedTarget.h"
#include <wtf/StringPrintStream.h>
namespace JSC { namespace FTL {
// Idiomatic LLVM IR builder specifically designed for FTL. This uses our own lowering
// terminology, and has some of its own notions:
//
// We say that a "reference" is what LLVM considers to be a "pointer". That is, it has
// an element type and can be passed directly to memory access instructions. Note that
// broadly speaking the users of FTL::Output should only use references for alloca'd
// slots for mutable local variables.
//
// We say that a "pointer" is what LLVM considers to be a pointer-width integer.
//
// We say that a "typed pointer" is a pointer that carries TBAA meta-data (i.e. an
// AbstractHeap). These should usually not have further computation performed on them
// prior to access, though there are exceptions (like offsetting into the payload of
// a typed pointer to a JSValue).
//
// We say that "get" and "set" are what LLVM considers to be "load" and "store". Get
// and set take references.
//
// We say that "load" and "store" are operations that take a typed pointer. These
// operations translate the pointer into a reference (or, a pointer in LLVM-speak),
// emit get or set on the reference (or, load and store in LLVM-speak), and apply the
// TBAA meta-data to the get or set.
enum Scale { ScaleOne, ScaleTwo, ScaleFour, ScaleEight, ScalePtr };
class Output : public IntrinsicRepository {
public:
Output(LContext);
~Output();
void initialize(LModule, LValue, AbstractHeapRepository&);
LBasicBlock insertNewBlocksBefore(LBasicBlock nextBlock)
{
LBasicBlock lastNextBlock = m_nextBlock;
m_nextBlock = nextBlock;
return lastNextBlock;
}
LBasicBlock appendTo(LBasicBlock, LBasicBlock nextBlock);
void appendTo(LBasicBlock);
LBasicBlock newBlock(const char* name = "");
LValue param(unsigned index) { return getParam(m_function, index); }
LValue constBool(bool value) { return constInt(boolean, value); }
LValue constInt8(int8_t value) { return constInt(int8, value); }
LValue constInt32(int32_t value) { return constInt(int32, value); }
template<typename T>
LValue constIntPtr(T* value) { return constInt(intPtr, bitwise_cast<intptr_t>(value)); }
template<typename T>
LValue constIntPtr(T value) { return constInt(intPtr, static_cast<intptr_t>(value)); }
LValue constInt64(int64_t value) { return constInt(int64, value); }
LValue constDouble(double value) { return constReal(doubleType, value); }
LValue phi(LType type) { return buildPhi(m_builder, type); }
template<typename... Params>
LValue phi(LType type, ValueFromBlock value, Params... theRest)
{
LValue result = phi(type, theRest...);
addIncoming(result, value);
return result;
}
template<typename VectorType>
LValue phi(LType type, const VectorType& vector)
{
LValue result = phi(type);
for (unsigned i = 0; i < vector.size(); ++i)
addIncoming(result, vector[i]);
return result;
}
LValue add(LValue left, LValue right) { return buildAdd(m_builder, left, right); }
LValue sub(LValue left, LValue right) { return buildSub(m_builder, left, right); }
LValue mul(LValue left, LValue right) { return buildMul(m_builder, left, right); }
LValue div(LValue left, LValue right) { return buildDiv(m_builder, left, right); }
LValue rem(LValue left, LValue right) { return buildRem(m_builder, left, right); }
LValue neg(LValue value) { return buildNeg(m_builder, value); }
LValue doubleAdd(LValue left, LValue right) { return buildFAdd(m_builder, left, right); }
LValue doubleSub(LValue left, LValue right) { return buildFSub(m_builder, left, right); }
LValue doubleMul(LValue left, LValue right) { return buildFMul(m_builder, left, right); }
LValue doubleDiv(LValue left, LValue right) { return buildFDiv(m_builder, left, right); }
LValue doubleRem(LValue left, LValue right) { return buildFRem(m_builder, left, right); }
LValue doubleNeg(LValue value) { return buildFNeg(m_builder, value); }
LValue bitAnd(LValue left, LValue right) { return buildAnd(m_builder, left, right); }
LValue bitOr(LValue left, LValue right) { return buildOr(m_builder, left, right); }
LValue bitXor(LValue left, LValue right) { return buildXor(m_builder, left, right); }
LValue shl(LValue left, LValue right) { return buildShl(m_builder, left, right); }
LValue aShr(LValue left, LValue right) { return buildAShr(m_builder, left, right); }
LValue lShr(LValue left, LValue right) { return buildLShr(m_builder, left, right); }
LValue bitNot(LValue value) { return buildNot(m_builder, value); }
LValue insertElement(LValue vector, LValue element, LValue index) { return buildInsertElement(m_builder, vector, element, index); }
LValue addWithOverflow32(LValue left, LValue right)
{
return call(addWithOverflow32Intrinsic(), left, right);
}
LValue subWithOverflow32(LValue left, LValue right)
{
return call(subWithOverflow32Intrinsic(), left, right);
}
LValue mulWithOverflow32(LValue left, LValue right)
{
return call(mulWithOverflow32Intrinsic(), left, right);
}
LValue addWithOverflow64(LValue left, LValue right)
{
return call(addWithOverflow64Intrinsic(), left, right);
}
LValue subWithOverflow64(LValue left, LValue right)
{
return call(subWithOverflow64Intrinsic(), left, right);
}
LValue mulWithOverflow64(LValue left, LValue right)
{
return call(mulWithOverflow64Intrinsic(), left, right);
}
LValue doubleAbs(LValue value)
{
return call(doubleAbsIntrinsic(), value);
}
LValue doubleSin(LValue value)
{
return call(doubleSinIntrinsic(), value);
}
LValue doubleCos(LValue value)
{
return call(doubleCosIntrinsic(), value);
}
LValue doubleSqrt(LValue value)
{
return call(doubleSqrtIntrinsic(), value);
}
static bool hasSensibleDoubleToInt() { return isX86(); }
LValue sensibleDoubleToInt(LValue);
LValue signExt(LValue value, LType type) { return buildSExt(m_builder, value, type); }
LValue zeroExt(LValue value, LType type) { return buildZExt(m_builder, value, type); }
LValue fpToInt(LValue value, LType type) { return buildFPToSI(m_builder, value, type); }
LValue fpToUInt(LValue value, LType type) { return buildFPToUI(m_builder, value, type); }
LValue fpToInt32(LValue value) { return fpToInt(value, int32); }
LValue fpToUInt32(LValue value) { return fpToUInt(value, int32); }
LValue intToFP(LValue value, LType type) { return buildSIToFP(m_builder, value, type); }
LValue intToDouble(LValue value) { return intToFP(value, doubleType); }
LValue unsignedToFP(LValue value, LType type) { return buildUIToFP(m_builder, value, type); }
LValue unsignedToDouble(LValue value) { return unsignedToFP(value, doubleType); }
LValue intCast(LValue value, LType type) { return buildIntCast(m_builder, value, type); }
LValue castToInt32(LValue value) { return intCast(value, int32); }
LValue fpCast(LValue value, LType type) { return buildFPCast(m_builder, value, type); }
LValue intToPtr(LValue value, LType type) { return buildIntToPtr(m_builder, value, type); }
LValue ptrToInt(LValue value, LType type) { return buildPtrToInt(m_builder, value, type); }
LValue bitCast(LValue value, LType type) { return buildBitCast(m_builder, value, type); }
LValue alloca(LType type) { return buildAlloca(m_builder, type); }
// Access the value of an alloca. Also used as a low-level implementation primitive for
// load(). Never use this to load from "pointers" in the FTL sense, since FTL pointers
// are actually integers. This requires an LLVM pointer. Broadly speaking, you don't
// have any LLVM pointers even if you really think you do. A TypedPointer is not an
// LLVM pointer. See comment block at top of this file to understand the distinction
// between LLVM pointers, FTL pointers, and FTL references.
LValue get(LValue reference) { return buildLoad(m_builder, reference); }
// Similar to get() but for storing to the value in an alloca.
LValue set(LValue value, LValue reference) { return buildStore(m_builder, value, reference); }
LValue load(TypedPointer, LType refType);
void store(LValue, TypedPointer, LType refType);
LValue load8(TypedPointer pointer) { return load(pointer, ref8); }
LValue load16(TypedPointer pointer) { return load(pointer, ref16); }
LValue load32(TypedPointer pointer) { return load(pointer, ref32); }
LValue load64(TypedPointer pointer) { return load(pointer, ref64); }
LValue loadPtr(TypedPointer pointer) { return load(pointer, refPtr); }
LValue loadFloat(TypedPointer pointer) { return load(pointer, refFloat); }
LValue loadDouble(TypedPointer pointer) { return load(pointer, refDouble); }
void store8(LValue value, TypedPointer pointer) { store(value, pointer, ref8); }
void store16(LValue value, TypedPointer pointer) { store(value, pointer, ref16); }
void store32(LValue value, TypedPointer pointer) { store(value, pointer, ref32); }
void store64(LValue value, TypedPointer pointer) { store(value, pointer, ref64); }
void storePtr(LValue value, TypedPointer pointer) { store(value, pointer, refPtr); }
void storeFloat(LValue value, TypedPointer pointer) { store(value, pointer, refFloat); }
void storeDouble(LValue value, TypedPointer pointer) { store(value, pointer, refDouble); }
LValue addPtr(LValue value, ptrdiff_t immediate = 0)
{
if (!immediate)
return value;
return add(value, constIntPtr(immediate));
}
// Construct an address by offsetting base by the requested amount and ascribing
// the requested abstract heap to it.
TypedPointer address(const AbstractHeap& heap, LValue base, ptrdiff_t offset = 0)
{
return TypedPointer(heap, addPtr(base, offset));
}
// Construct an address by offsetting base by the amount specified by the field,
// and optionally an additional amount (use this with care), and then creating
// a TypedPointer with the given field as the heap.
TypedPointer address(LValue base, const AbstractField& field, ptrdiff_t offset = 0)
{
return address(field, base, offset + field.offset());
}
LValue baseIndex(LValue base, LValue index, Scale, ptrdiff_t offset = 0);
TypedPointer baseIndex(const AbstractHeap& heap, LValue base, LValue index, Scale scale, ptrdiff_t offset = 0)
{
return TypedPointer(heap, baseIndex(base, index, scale, offset));
}
TypedPointer baseIndex(IndexedAbstractHeap& heap, LValue base, LValue index, JSValue indexAsConstant = JSValue(), ptrdiff_t offset = 0)
{
return heap.baseIndex(*this, base, index, indexAsConstant, offset);
}
TypedPointer absolute(void* address)
{
return TypedPointer(m_heaps->absolute[address], constIntPtr(address));
}
LValue load8(LValue base, const AbstractField& field) { return load8(address(base, field)); }
LValue load16(LValue base, const AbstractField& field) { return load16(address(base, field)); }
LValue load32(LValue base, const AbstractField& field) { return load32(address(base, field)); }
LValue load64(LValue base, const AbstractField& field) { return load64(address(base, field)); }
LValue loadPtr(LValue base, const AbstractField& field) { return loadPtr(address(base, field)); }
LValue loadDouble(LValue base, const AbstractField& field) { return loadDouble(address(base, field)); }
void store8(LValue value, LValue base, const AbstractField& field) { store8(value, address(base, field)); }
void store32(LValue value, LValue base, const AbstractField& field) { store32(value, address(base, field)); }
void store64(LValue value, LValue base, const AbstractField& field) { store64(value, address(base, field)); }
void storePtr(LValue value, LValue base, const AbstractField& field) { storePtr(value, address(base, field)); }
void storeDouble(LValue value, LValue base, const AbstractField& field) { storeDouble(value, address(base, field)); }
void ascribeRange(LValue loadInstruction, const ValueRange& range)
{
range.decorateInstruction(m_context, loadInstruction, rangeKind);
}
LValue nonNegative32(LValue loadInstruction)
{
ascribeRange(loadInstruction, nonNegativeInt32);
return loadInstruction;
}
LValue load32NonNegative(TypedPointer pointer) { return nonNegative32(load32(pointer)); }
LValue load32NonNegative(LValue base, const AbstractField& field) { return nonNegative32(load32(base, field)); }
LValue icmp(LIntPredicate cond, LValue left, LValue right) { return buildICmp(m_builder, cond, left, right); }
LValue equal(LValue left, LValue right) { return icmp(LLVMIntEQ, left, right); }
LValue notEqual(LValue left, LValue right) { return icmp(LLVMIntNE, left, right); }
LValue above(LValue left, LValue right) { return icmp(LLVMIntUGT, left, right); }
LValue aboveOrEqual(LValue left, LValue right) { return icmp(LLVMIntUGE, left, right); }
LValue below(LValue left, LValue right) { return icmp(LLVMIntULT, left, right); }
LValue belowOrEqual(LValue left, LValue right) { return icmp(LLVMIntULE, left, right); }
LValue greaterThan(LValue left, LValue right) { return icmp(LLVMIntSGT, left, right); }
LValue greaterThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSGE, left, right); }
LValue lessThan(LValue left, LValue right) { return icmp(LLVMIntSLT, left, right); }
LValue lessThanOrEqual(LValue left, LValue right) { return icmp(LLVMIntSLE, left, right); }
LValue fcmp(LRealPredicate cond, LValue left, LValue right) { return buildFCmp(m_builder, cond, left, right); }
LValue doubleEqual(LValue left, LValue right) { return fcmp(LLVMRealOEQ, left, right); }
LValue doubleNotEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUNE, left, right); }
LValue doubleLessThan(LValue left, LValue right) { return fcmp(LLVMRealOLT, left, right); }
LValue doubleLessThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOLE, left, right); }
LValue doubleGreaterThan(LValue left, LValue right) { return fcmp(LLVMRealOGT, left, right); }
LValue doubleGreaterThanOrEqual(LValue left, LValue right) { return fcmp(LLVMRealOGE, left, right); }
LValue doubleEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUEQ, left, right); }
LValue doubleNotEqual(LValue left, LValue right) { return fcmp(LLVMRealONE, left, right); }
LValue doubleLessThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULT, left, right); }
LValue doubleLessThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealULE, left, right); }
LValue doubleGreaterThanOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGT, left, right); }
LValue doubleGreaterThanOrEqualOrUnordered(LValue left, LValue right) { return fcmp(LLVMRealUGE, left, right); }
LValue isZero8(LValue value) { return equal(value, int8Zero); }
LValue notZero8(LValue value) { return notEqual(value, int8Zero); }
LValue isZero32(LValue value) { return equal(value, int32Zero); }
LValue notZero32(LValue value) { return notEqual(value, int32Zero); }
LValue isZero64(LValue value) { return equal(value, int64Zero); }
LValue notZero64(LValue value) { return notEqual(value, int64Zero); }
LValue isNull(LValue value) { return equal(value, intPtrZero); }
LValue notNull(LValue value) { return notEqual(value, intPtrZero); }
LValue testIsZero8(LValue value, LValue mask) { return isZero8(bitAnd(value, mask)); }
LValue testNonZero8(LValue value, LValue mask) { return notZero8(bitAnd(value, mask)); }
LValue testIsZero32(LValue value, LValue mask) { return isZero32(bitAnd(value, mask)); }
LValue testNonZero32(LValue value, LValue mask) { return notZero32(bitAnd(value, mask)); }
LValue testIsZero64(LValue value, LValue mask) { return isZero64(bitAnd(value, mask)); }
LValue testNonZero64(LValue value, LValue mask) { return notZero64(bitAnd(value, mask)); }
LValue select(LValue value, LValue taken, LValue notTaken) { return buildSelect(m_builder, value, taken, notTaken); }
LValue extractValue(LValue aggVal, unsigned index) { return buildExtractValue(m_builder, aggVal, index); }
LValue fence(LAtomicOrdering ordering = LLVMAtomicOrderingSequentiallyConsistent, SynchronizationScope scope = CrossThread) { return buildFence(m_builder, ordering, scope); }
LValue fenceAcqRel() { return fence(LLVMAtomicOrderingAcquireRelease); }
template<typename VectorType>
LValue call(LValue function, const VectorType& vector) { return buildCall(m_builder, function, vector); }
LValue call(LValue function) { return buildCall(m_builder, function); }
LValue call(LValue function, LValue arg1) { return buildCall(m_builder, function, arg1); }
LValue call(LValue function, LValue arg1, LValue arg2) { return buildCall(m_builder, function, arg1, arg2); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3) { return buildCall(m_builder, function, arg1, arg2, arg3); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7); }
LValue call(LValue function, LValue arg1, LValue arg2, LValue arg3, LValue arg4, LValue arg5, LValue arg6, LValue arg7, LValue arg8) { return buildCall(m_builder, function, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); }
template<typename FunctionType>
LValue operation(FunctionType function)
{
return intToPtr(constIntPtr(function), pointerType(operationType(function)));
}
void jump(LBasicBlock destination) { buildBr(m_builder, destination); }
void branch(LValue condition, LBasicBlock taken, Weight takenWeight, LBasicBlock notTaken, Weight notTakenWeight);
void branch(LValue condition, WeightedTarget taken, WeightedTarget notTaken)
{
branch(condition, taken.target(), taken.weight(), notTaken.target(), notTaken.weight());
}
template<typename VectorType>
void switchInstruction(LValue value, const VectorType& cases, LBasicBlock fallThrough, Weight fallThroughWeight)
{
LValue inst = buildSwitch(m_builder, value, cases, fallThrough);
double total = 0;
if (!fallThroughWeight)
return;
total += fallThroughWeight.value();
for (unsigned i = cases.size(); i--;) {
if (!cases[i].weight())
return;
total += cases[i].weight().value();
}
Vector<LValue> mdArgs;
mdArgs.append(branchWeights);
mdArgs.append(constInt32(fallThroughWeight.scaleToTotal(total)));
for (unsigned i = 0; i < cases.size(); ++i)
mdArgs.append(constInt32(cases[i].weight().scaleToTotal(total)));
setMetadata(inst, profKind, mdNode(m_context, mdArgs));
}
void ret(LValue value) { buildRet(m_builder, value); }
void unreachable() { buildUnreachable(m_builder); }
void trap()
{
call(trapIntrinsic());
}
ValueFromBlock anchor(LValue value)
{
return ValueFromBlock(value, m_block);
}
LValue m_function;
AbstractHeapRepository* m_heaps;
LBuilder m_builder;
LBasicBlock m_block;
LBasicBlock m_nextBlock;
};
#define FTL_NEW_BLOCK(output, nameArguments) \
(LIKELY(!verboseCompilationEnabled()) \
? (output).newBlock() \
: (output).newBlock((toCString nameArguments).data()))
} } // namespace JSC::FTL
#endif // ENABLE(FTL_JIT)
#endif // FTLOutput_h