| /* |
| * Copyright (C) 2017 Caio Lima <ticaiolima@gmail.com> |
| * Copyright (C) 2017-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * Parts of the implementation below: |
| * |
| * Copyright 2017 the V8 project authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| * |
| * |
| * Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] |
| * for details. All rights reserved. Use of this source code is governed by a |
| * BSD-style license that can be found in the LICENSE file [2]. |
| * |
| * [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS |
| * [2] https://github.com/dart-lang/sdk/blob/master/LICENSE |
| * |
| * Copyright 2009 The Go Authors. All rights reserved. |
| * Use of this source code is governed by a BSD-style |
| * license that can be found in the LICENSE file [3]. |
| * |
| * [3] https://golang.org/LICENSE |
| */ |
| |
| #include "config.h" |
| #include "JSBigInt.h" |
| |
| #include "BigIntObject.h" |
| #include "CatchScope.h" |
| #include "JSCInlines.h" |
| #include "MathCommon.h" |
| #include "ParseInt.h" |
| #include <algorithm> |
| #include <wtf/MathExtras.h> |
| |
| #define STATIC_ASSERT(cond) static_assert(cond, "JSBigInt assumes " #cond) |
| |
| namespace JSC { |
| |
| const ClassInfo JSBigInt::s_info = { "BigInt", nullptr, nullptr, nullptr, CREATE_METHOD_TABLE(JSBigInt) }; |
| |
| JSBigInt::JSBigInt(VM& vm, Structure* structure, unsigned length) |
| : Base(vm, structure) |
| , m_length(length) |
| { } |
| |
| void JSBigInt::initialize(InitializationType initType) |
| { |
| if (initType == InitializationType::WithZero) |
| memset(dataStorage(), 0, length() * sizeof(Digit)); |
| } |
| |
| Structure* JSBigInt::createStructure(VM& vm, JSGlobalObject* globalObject, JSValue prototype) |
| { |
| return Structure::create(vm, globalObject, prototype, TypeInfo(BigIntType, StructureFlags), info()); |
| } |
| |
| JSBigInt* JSBigInt::createZero(VM& vm) |
| { |
| JSBigInt* zeroBigInt = createWithLengthUnchecked(vm, 0); |
| return zeroBigInt; |
| } |
| |
| JSBigInt* JSBigInt::tryCreateWithLength(ExecState* exec, unsigned length) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (UNLIKELY(length > maxLength)) { |
| throwOutOfMemoryError(exec, scope); |
| return nullptr; |
| } |
| |
| scope.release(); |
| |
| return createWithLengthUnchecked(vm, length); |
| } |
| |
| JSBigInt* JSBigInt::createWithLengthUnchecked(VM& vm, unsigned length) |
| { |
| ASSERT(length <= maxLength); |
| JSBigInt* bigInt = new (NotNull, allocateCell<JSBigInt>(vm.heap, allocationSize(length))) JSBigInt(vm, vm.bigIntStructure.get(), length); |
| bigInt->finishCreation(vm); |
| return bigInt; |
| } |
| |
| JSBigInt* JSBigInt::createFrom(VM& vm, int32_t value) |
| { |
| if (!value) |
| return createZero(vm); |
| |
| JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| if (value < 0) { |
| bigInt->setDigit(0, static_cast<Digit>(-1 * static_cast<int64_t>(value))); |
| bigInt->setSign(true); |
| } else |
| bigInt->setDigit(0, static_cast<Digit>(value)); |
| |
| return bigInt; |
| } |
| |
| JSBigInt* JSBigInt::createFrom(VM& vm, uint32_t value) |
| { |
| if (!value) |
| return createZero(vm); |
| |
| JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| bigInt->setDigit(0, static_cast<Digit>(value)); |
| return bigInt; |
| } |
| |
| JSBigInt* JSBigInt::createFrom(VM& vm, int64_t value) |
| { |
| if (!value) |
| return createZero(vm); |
| |
| if (sizeof(Digit) == 8) { |
| JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| if (value < 0) { |
| bigInt->setDigit(0, static_cast<Digit>(static_cast<uint64_t>(-(value + 1)) + 1)); |
| bigInt->setSign(true); |
| } else |
| bigInt->setDigit(0, static_cast<Digit>(value)); |
| |
| return bigInt; |
| } |
| |
| JSBigInt* bigInt = createWithLengthUnchecked(vm, 2); |
| uint64_t tempValue; |
| bool sign = false; |
| if (value < 0) { |
| tempValue = static_cast<uint64_t>(-(value + 1)) + 1; |
| sign = true; |
| } else |
| tempValue = value; |
| |
| Digit lowBits = static_cast<Digit>(tempValue & 0xffffffff); |
| Digit highBits = static_cast<Digit>((tempValue >> 32) & 0xffffffff); |
| |
| bigInt->setDigit(0, lowBits); |
| bigInt->setDigit(1, highBits); |
| bigInt->setSign(sign); |
| |
| return bigInt; |
| } |
| |
| JSBigInt* JSBigInt::createFrom(VM& vm, bool value) |
| { |
| if (!value) |
| return createZero(vm); |
| |
| JSBigInt* bigInt = createWithLengthUnchecked(vm, 1); |
| bigInt->setDigit(0, static_cast<Digit>(value)); |
| return bigInt; |
| } |
| |
| JSValue JSBigInt::toPrimitive(ExecState*, PreferredPrimitiveType) const |
| { |
| return const_cast<JSBigInt*>(this); |
| } |
| |
| Optional<uint8_t> JSBigInt::singleDigitValueForString() |
| { |
| if (isZero()) |
| return 0; |
| |
| if (length() == 1 && !sign()) { |
| Digit rDigit = digit(0); |
| if (rDigit <= 9) |
| return static_cast<uint8_t>(rDigit); |
| } |
| return { }; |
| } |
| |
| JSBigInt* JSBigInt::parseInt(ExecState* exec, StringView s, ErrorParseMode parserMode) |
| { |
| if (s.is8Bit()) |
| return parseInt(exec, s.characters8(), s.length(), parserMode); |
| return parseInt(exec, s.characters16(), s.length(), parserMode); |
| } |
| |
| JSBigInt* JSBigInt::parseInt(ExecState* exec, VM& vm, StringView s, uint8_t radix, ErrorParseMode parserMode, ParseIntSign sign) |
| { |
| if (s.is8Bit()) |
| return parseInt(exec, vm, s.characters8(), s.length(), 0, radix, parserMode, sign, ParseIntMode::DisallowEmptyString); |
| return parseInt(exec, vm, s.characters16(), s.length(), 0, radix, parserMode, sign, ParseIntMode::DisallowEmptyString); |
| } |
| |
| JSBigInt* JSBigInt::stringToBigInt(ExecState* exec, StringView s) |
| { |
| return parseInt(exec, s, ErrorParseMode::IgnoreExceptions); |
| } |
| |
| String JSBigInt::toString(ExecState* exec, unsigned radix) |
| { |
| if (this->isZero()) |
| return exec->vm().smallStrings.singleCharacterStringRep('0'); |
| |
| if (hasOneBitSet(radix)) |
| return toStringBasePowerOfTwo(exec->vm(), exec, this, radix); |
| |
| return toStringGeneric(exec->vm(), exec, this, radix); |
| } |
| |
| String JSBigInt::tryGetString(VM& vm, JSBigInt* bigInt, unsigned radix) |
| { |
| if (bigInt->isZero()) |
| return vm.smallStrings.singleCharacterStringRep('0'); |
| |
| if (hasOneBitSet(radix)) |
| return toStringBasePowerOfTwo(vm, nullptr, bigInt, radix); |
| |
| return toStringGeneric(vm, nullptr, bigInt, radix); |
| } |
| |
| // Multiplies {this} with {factor} and adds {summand} to the result. |
| void JSBigInt::inplaceMultiplyAdd(Digit factor, Digit summand) |
| { |
| internalMultiplyAdd(this, factor, summand, length(), this); |
| } |
| |
| JSBigInt* JSBigInt::exponentiate(ExecState* exec, JSBigInt* base, JSBigInt* exponent) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (exponent->sign()) { |
| throwRangeError(exec, scope, "Negative exponent is not allowed"_s); |
| return nullptr; |
| } |
| |
| // 2. If base is 0n and exponent is 0n, return 1n. |
| if (exponent->isZero()) |
| return JSBigInt::createFrom(vm, 1); |
| |
| // 3. Return a BigInt representing the mathematical value of base raised |
| // to the power exponent. |
| if (base->isZero()) |
| return base; |
| |
| if (base->length() == 1 && base->digit(0) == 1) { |
| // (-1) ** even_number == 1. |
| if (base->sign() && !(exponent->digit(0) & 1)) |
| return JSBigInt::unaryMinus(vm, base); |
| |
| // (-1) ** odd_number == -1; 1 ** anything == 1. |
| return base; |
| } |
| |
| // For all bases >= 2, very large exponents would lead to unrepresentable |
| // results. |
| static_assert(maxLengthBits < std::numeric_limits<Digit>::max(), "maxLengthBits needs to be less than digit::max()"); |
| if (exponent->length() > 1) { |
| throwRangeError(exec, scope, "BigInt generated from this operation is too big"_s); |
| return nullptr; |
| } |
| |
| Digit expValue = exponent->digit(0); |
| if (expValue == 1) |
| return base; |
| if (expValue >= maxLengthBits) { |
| throwRangeError(exec, scope, "BigInt generated from this operation is too big"_s); |
| return nullptr; |
| } |
| |
| static_assert(maxLengthBits <= maxInt, "maxLengthBits needs to be <= maxInt"); |
| int n = static_cast<int>(expValue); |
| if (base->length() == 1 && base->digit(0) == 2) { |
| // Fast path for 2^n. |
| int neededDigits = 1 + (n / digitBits); |
| JSBigInt* result = JSBigInt::tryCreateWithLength(exec, neededDigits); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| result->initialize(InitializationType::WithZero); |
| // All bits are zero. Now set the n-th bit. |
| Digit msd = static_cast<Digit>(1) << (n % digitBits); |
| result->setDigit(neededDigits - 1, msd); |
| // Result is negative for odd powers of -2n. |
| if (base->sign()) |
| result->setSign(static_cast<bool>(n & 1)); |
| |
| return result; |
| } |
| |
| JSBigInt* result = nullptr; |
| JSBigInt* runningSquare = base; |
| |
| // This implicitly sets the result's sign correctly. |
| if (n & 1) |
| result = base; |
| |
| n >>= 1; |
| for (; n; n >>= 1) { |
| JSBigInt* maybeResult = JSBigInt::multiply(exec, runningSquare, runningSquare); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| runningSquare = maybeResult; |
| if (n & 1) { |
| if (!result) |
| result = runningSquare; |
| else { |
| maybeResult = JSBigInt::multiply(exec, result, runningSquare); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| result = maybeResult; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| JSBigInt* JSBigInt::multiply(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (x->isZero()) |
| return x; |
| if (y->isZero()) |
| return y; |
| |
| unsigned resultLength = x->length() + y->length(); |
| JSBigInt* result = JSBigInt::tryCreateWithLength(exec, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| result->initialize(InitializationType::WithZero); |
| |
| for (unsigned i = 0; i < x->length(); i++) |
| multiplyAccumulate(y, x->digit(i), result, i); |
| |
| result->setSign(x->sign() != y->sign()); |
| return result->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::divide(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| // 1. If y is 0n, throw a RangeError exception. |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (y->isZero()) { |
| throwRangeError(exec, scope, "0 is an invalid divisor value."_s); |
| return nullptr; |
| } |
| |
| // 2. Let quotient be the mathematical value of x divided by y. |
| // 3. Return a BigInt representing quotient rounded towards 0 to the next |
| // integral value. |
| if (absoluteCompare(x, y) == ComparisonResult::LessThan) |
| return createZero(vm); |
| |
| JSBigInt* quotient = nullptr; |
| bool resultSign = x->sign() != y->sign(); |
| if (y->length() == 1) { |
| Digit divisor = y->digit(0); |
| if (divisor == 1) |
| return resultSign == x->sign() ? x : unaryMinus(vm, x); |
| |
| Digit remainder; |
| absoluteDivWithDigitDivisor(vm, x, divisor, "ient, remainder); |
| } else { |
| absoluteDivWithBigIntDivisor(exec, x, y, "ient, nullptr); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| } |
| |
| quotient->setSign(resultSign); |
| return quotient->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::copy(VM& vm, JSBigInt* x) |
| { |
| ASSERT(!x->isZero()); |
| |
| JSBigInt* result = JSBigInt::createWithLengthUnchecked(vm, x->length()); |
| std::copy(x->dataStorage(), x->dataStorage() + x->length(), result->dataStorage()); |
| result->setSign(x->sign()); |
| return result; |
| } |
| |
| JSBigInt* JSBigInt::unaryMinus(VM& vm, JSBigInt* x) |
| { |
| if (x->isZero()) |
| return x; |
| |
| JSBigInt* result = copy(vm, x); |
| result->setSign(!x->sign()); |
| return result; |
| } |
| |
| JSBigInt* JSBigInt::remainder(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| // 1. If y is 0n, throw a RangeError exception. |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (y->isZero()) { |
| throwRangeError(exec, scope, "0 is an invalid divisor value."_s); |
| return nullptr; |
| } |
| |
| // 2. Return the JSBigInt representing x modulo y. |
| // See https://github.com/tc39/proposal-bigint/issues/84 though. |
| if (absoluteCompare(x, y) == ComparisonResult::LessThan) |
| return x; |
| |
| JSBigInt* remainder; |
| if (y->length() == 1) { |
| Digit divisor = y->digit(0); |
| if (divisor == 1) |
| return createZero(vm); |
| |
| Digit remainderDigit; |
| absoluteDivWithDigitDivisor(vm, x, divisor, nullptr, remainderDigit); |
| if (!remainderDigit) |
| return createZero(vm); |
| |
| remainder = createWithLengthUnchecked(vm, 1); |
| remainder->setDigit(0, remainderDigit); |
| } else { |
| absoluteDivWithBigIntDivisor(exec, x, y, nullptr, &remainder); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| } |
| |
| remainder->setSign(x->sign()); |
| return remainder->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::add(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| bool xSign = x->sign(); |
| |
| // x + y == x + y |
| // -x + -y == -(x + y) |
| if (xSign == y->sign()) |
| return absoluteAdd(exec, x, y, xSign); |
| |
| // x + -y == x - y == -(y - x) |
| // -x + y == y - x == -(x - y) |
| ComparisonResult comparisonResult = absoluteCompare(x, y); |
| if (comparisonResult == ComparisonResult::GreaterThan || comparisonResult == ComparisonResult::Equal) |
| return absoluteSub(vm, x, y, xSign); |
| |
| return absoluteSub(vm, y, x, !xSign); |
| } |
| |
| JSBigInt* JSBigInt::sub(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| bool xSign = x->sign(); |
| if (xSign != y->sign()) { |
| // x - (-y) == x + y |
| // (-x) - y == -(x + y) |
| return absoluteAdd(exec, x, y, xSign); |
| } |
| // x - y == -(y - x) |
| // (-x) - (-y) == y - x == -(x - y) |
| ComparisonResult comparisonResult = absoluteCompare(x, y); |
| if (comparisonResult == ComparisonResult::GreaterThan || comparisonResult == ComparisonResult::Equal) |
| return absoluteSub(vm, x, y, xSign); |
| |
| return absoluteSub(vm, y, x, !xSign); |
| } |
| |
| JSBigInt* JSBigInt::bitwiseAnd(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (!x->sign() && !y->sign()) { |
| scope.release(); |
| return absoluteAnd(vm, x, y); |
| } |
| |
| if (x->sign() && y->sign()) { |
| int resultLength = std::max(x->length(), y->length()) + 1; |
| // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1)) |
| // == -(((x-1) | (y-1)) + 1) |
| JSBigInt* result = absoluteSubOne(exec, x, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| result = absoluteOr(vm, result, y1); |
| scope.release(); |
| return absoluteAddOne(exec, result, SignOption::Signed); |
| } |
| |
| ASSERT(x->sign() != y->sign()); |
| // Assume that x is the positive BigInt. |
| if (x->sign()) |
| std::swap(x, y); |
| |
| // x & (-y) == x & ~(y-1) == x & ~(y-1) |
| JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| return absoluteAndNot(vm, x, y1); |
| } |
| |
| JSBigInt* JSBigInt::bitwiseOr(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| unsigned resultLength = std::max(x->length(), y->length()); |
| |
| if (!x->sign() && !y->sign()) { |
| scope.release(); |
| return absoluteOr(vm, x, y); |
| } |
| |
| if (x->sign() && y->sign()) { |
| // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) |
| // == -(((x-1) & (y-1)) + 1) |
| JSBigInt* result = absoluteSubOne(exec, x, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| result = absoluteAnd(vm, result, y1); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| scope.release(); |
| return absoluteAddOne(exec, result, SignOption::Signed); |
| } |
| |
| ASSERT(x->sign() != y->sign()); |
| |
| // Assume that x is the positive BigInt. |
| if (x->sign()) |
| std::swap(x, y); |
| |
| // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1) |
| JSBigInt* result = absoluteSubOne(exec, y, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| result = absoluteAndNot(vm, result, x); |
| |
| scope.release(); |
| return absoluteAddOne(exec, result, SignOption::Signed); |
| } |
| |
| JSBigInt* JSBigInt::bitwiseXor(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (!x->sign() && !y->sign()) { |
| scope.release(); |
| return absoluteXor(vm, x, y); |
| } |
| |
| if (x->sign() && y->sign()) { |
| int resultLength = std::max(x->length(), y->length()); |
| |
| // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) |
| JSBigInt* result = absoluteSubOne(exec, x, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| JSBigInt* y1 = absoluteSubOne(exec, y, y->length()); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| scope.release(); |
| return absoluteXor(vm, result, y1); |
| } |
| ASSERT(x->sign() != y->sign()); |
| int resultLength = std::max(x->length(), y->length()) + 1; |
| |
| // Assume that x is the positive BigInt. |
| if (x->sign()) |
| std::swap(x, y); |
| |
| // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) |
| JSBigInt* result = absoluteSubOne(exec, y, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| result = absoluteXor(vm, result, x); |
| scope.release(); |
| return absoluteAddOne(exec, result, SignOption::Signed); |
| } |
| |
| JSBigInt* JSBigInt::leftShift(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| if (y->isZero() || x->isZero()) |
| return x; |
| |
| if (y->sign()) |
| return rightShiftByAbsolute(exec, x, y); |
| |
| return leftShiftByAbsolute(exec, x, y); |
| } |
| |
| JSBigInt* JSBigInt::signedRightShift(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| if (y->isZero() || x->isZero()) |
| return x; |
| |
| if (y->sign()) |
| return leftShiftByAbsolute(exec, x, y); |
| |
| return rightShiftByAbsolute(exec, x, y); |
| } |
| |
| JSBigInt* JSBigInt::bitwiseNot(ExecState* exec, JSBigInt* x) |
| { |
| if (x->sign()) { |
| // ~(-x) == ~(~(x-1)) == x-1 |
| return absoluteSubOne(exec, x, x->length()); |
| } |
| // ~x == -x-1 == -(x+1) |
| return absoluteAddOne(exec, x, SignOption::Signed); |
| } |
| |
| #if USE(JSVALUE32_64) |
| #define HAVE_TWO_DIGIT 1 |
| typedef uint64_t TwoDigit; |
| #elif HAVE(INT128_T) |
| #define HAVE_TWO_DIGIT 1 |
| typedef __uint128_t TwoDigit; |
| #else |
| #define HAVE_TWO_DIGIT 0 |
| #endif |
| |
| // {carry} must point to an initialized Digit and will either be incremented |
| // by one or left alone. |
| inline JSBigInt::Digit JSBigInt::digitAdd(Digit a, Digit b, Digit& carry) |
| { |
| Digit result = a + b; |
| carry += static_cast<bool>(result < a); |
| return result; |
| } |
| |
| // {borrow} must point to an initialized Digit and will either be incremented |
| // by one or left alone. |
| inline JSBigInt::Digit JSBigInt::digitSub(Digit a, Digit b, Digit& borrow) |
| { |
| Digit result = a - b; |
| borrow += static_cast<bool>(result > a); |
| return result; |
| } |
| |
| // Returns the low half of the result. High half is in {high}. |
| inline JSBigInt::Digit JSBigInt::digitMul(Digit a, Digit b, Digit& high) |
| { |
| #if HAVE(TWO_DIGIT) |
| TwoDigit result = static_cast<TwoDigit>(a) * static_cast<TwoDigit>(b); |
| high = result >> digitBits; |
| |
| return static_cast<Digit>(result); |
| #else |
| // Multiply in half-pointer-sized chunks. |
| // For inputs [AH AL]*[BH BL], the result is: |
| // |
| // [AL*BL] // rLow |
| // + [AL*BH] // rMid1 |
| // + [AH*BL] // rMid2 |
| // + [AH*BH] // rHigh |
| // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1] |
| // |
| // Where of course we must be careful with carries between the columns. |
| Digit aLow = a & halfDigitMask; |
| Digit aHigh = a >> halfDigitBits; |
| Digit bLow = b & halfDigitMask; |
| Digit bHigh = b >> halfDigitBits; |
| |
| Digit rLow = aLow * bLow; |
| Digit rMid1 = aLow * bHigh; |
| Digit rMid2 = aHigh * bLow; |
| Digit rHigh = aHigh * bHigh; |
| |
| Digit carry = 0; |
| Digit low = digitAdd(rLow, rMid1 << halfDigitBits, carry); |
| low = digitAdd(low, rMid2 << halfDigitBits, carry); |
| |
| high = (rMid1 >> halfDigitBits) + (rMid2 >> halfDigitBits) + rHigh + carry; |
| |
| return low; |
| #endif |
| } |
| |
| // Raises {base} to the power of {exponent}. Does not check for overflow. |
| inline JSBigInt::Digit JSBigInt::digitPow(Digit base, Digit exponent) |
| { |
| Digit result = 1ull; |
| while (exponent > 0) { |
| if (exponent & 1) |
| result *= base; |
| |
| exponent >>= 1; |
| base *= base; |
| } |
| |
| return result; |
| } |
| |
| // Returns the quotient. |
| // quotient = (high << digitBits + low - remainder) / divisor |
| inline JSBigInt::Digit JSBigInt::digitDiv(Digit high, Digit low, Digit divisor, Digit& remainder) |
| { |
| ASSERT(high < divisor); |
| #if CPU(X86_64) && COMPILER(GCC_COMPATIBLE) |
| Digit quotient; |
| Digit rem; |
| __asm__("divq %[divisor]" |
| // Outputs: {quotient} will be in rax, {rem} in rdx. |
| : "=a"(quotient), "=d"(rem) |
| // Inputs: put {high} into rdx, {low} into rax, and {divisor} into |
| // any register or stack slot. |
| : "d"(high), "a"(low), [divisor] "rm"(divisor)); |
| remainder = rem; |
| return quotient; |
| #elif CPU(X86) && COMPILER(GCC_COMPATIBLE) |
| Digit quotient; |
| Digit rem; |
| __asm__("divl %[divisor]" |
| // Outputs: {quotient} will be in eax, {rem} in edx. |
| : "=a"(quotient), "=d"(rem) |
| // Inputs: put {high} into edx, {low} into eax, and {divisor} into |
| // any register or stack slot. |
| : "d"(high), "a"(low), [divisor] "rm"(divisor)); |
| remainder = rem; |
| return quotient; |
| #else |
| static constexpr Digit halfDigitBase = 1ull << halfDigitBits; |
| // Adapted from Warren, Hacker's Delight, p. 152. |
| unsigned s = clz(divisor); |
| // If {s} is digitBits here, it causes an undefined behavior. |
| // But {s} is never digitBits since {divisor} is never zero here. |
| ASSERT(s != digitBits); |
| divisor <<= s; |
| |
| Digit vn1 = divisor >> halfDigitBits; |
| Digit vn0 = divisor & halfDigitMask; |
| |
| // {sZeroMask} which is 0 if s == 0 and all 1-bits otherwise. |
| // {s} can be 0. If {s} is 0, performing "low >> (digitBits - s)" must not be done since it causes an undefined behavior |
| // since `>> digitBits` is undefied in C++. Quoted from C++ spec, "The type of the result is that of the promoted left operand. |
| // The behavior is undefined if the right operand is negative, or greater than or equal to the length in bits of the promoted |
| // left operand". We mask the right operand of the shift by {shiftMask} (`digitBits - 1`), which makes `digitBits - 0` zero. |
| // This shifting produces a value which covers 0 < {s} <= (digitBits - 1) cases. {s} == digitBits never happen as we asserted. |
| // Since {sZeroMask} clears the value in the case of {s} == 0, {s} == 0 case is also covered. |
| STATIC_ASSERT(sizeof(CPURegister) == sizeof(Digit)); |
| Digit sZeroMask = static_cast<Digit>((-static_cast<CPURegister>(s)) >> (digitBits - 1)); |
| static constexpr unsigned shiftMask = digitBits - 1; |
| Digit un32 = (high << s) | ((low >> ((digitBits - s) & shiftMask)) & sZeroMask); |
| |
| Digit un10 = low << s; |
| Digit un1 = un10 >> halfDigitBits; |
| Digit un0 = un10 & halfDigitMask; |
| Digit q1 = un32 / vn1; |
| Digit rhat = un32 - q1 * vn1; |
| |
| while (q1 >= halfDigitBase || q1 * vn0 > rhat * halfDigitBase + un1) { |
| q1--; |
| rhat += vn1; |
| if (rhat >= halfDigitBase) |
| break; |
| } |
| |
| Digit un21 = un32 * halfDigitBase + un1 - q1 * divisor; |
| Digit q0 = un21 / vn1; |
| rhat = un21 - q0 * vn1; |
| |
| while (q0 >= halfDigitBase || q0 * vn0 > rhat * halfDigitBase + un0) { |
| q0--; |
| rhat += vn1; |
| if (rhat >= halfDigitBase) |
| break; |
| } |
| |
| remainder = (un21 * halfDigitBase + un0 - q0 * divisor) >> s; |
| return q1 * halfDigitBase + q0; |
| #endif |
| } |
| |
| // Multiplies {source} with {factor} and adds {summand} to the result. |
| // {result} and {source} may be the same BigInt for inplace modification. |
| void JSBigInt::internalMultiplyAdd(JSBigInt* source, Digit factor, Digit summand, unsigned n, JSBigInt* result) |
| { |
| ASSERT(source->length() >= n); |
| ASSERT(result->length() >= n); |
| |
| Digit carry = summand; |
| Digit high = 0; |
| for (unsigned i = 0; i < n; i++) { |
| Digit current = source->digit(i); |
| Digit newCarry = 0; |
| |
| // Compute this round's multiplication. |
| Digit newHigh = 0; |
| current = digitMul(current, factor, newHigh); |
| |
| // Add last round's carryovers. |
| current = digitAdd(current, high, newCarry); |
| current = digitAdd(current, carry, newCarry); |
| |
| // Store result and prepare for next round. |
| result->setDigit(i, current); |
| carry = newCarry; |
| high = newHigh; |
| } |
| |
| if (result->length() > n) { |
| result->setDigit(n++, carry + high); |
| |
| // Current callers don't pass in such large results, but let's be robust. |
| while (n < result->length()) |
| result->setDigit(n++, 0); |
| } else |
| ASSERT(!(carry + high)); |
| } |
| |
| // Multiplies {multiplicand} with {multiplier} and adds the result to |
| // {accumulator}, starting at {accumulatorIndex} for the least-significant |
| // digit. |
| // Callers must ensure that {accumulator} is big enough to hold the result. |
| void JSBigInt::multiplyAccumulate(JSBigInt* multiplicand, Digit multiplier, JSBigInt* accumulator, unsigned accumulatorIndex) |
| { |
| ASSERT(accumulator->length() > multiplicand->length() + accumulatorIndex); |
| if (!multiplier) |
| return; |
| |
| Digit carry = 0; |
| Digit high = 0; |
| for (unsigned i = 0; i < multiplicand->length(); i++, accumulatorIndex++) { |
| Digit acc = accumulator->digit(accumulatorIndex); |
| Digit newCarry = 0; |
| |
| // Add last round's carryovers. |
| acc = digitAdd(acc, high, newCarry); |
| acc = digitAdd(acc, carry, newCarry); |
| |
| // Compute this round's multiplication. |
| Digit multiplicandDigit = multiplicand->digit(i); |
| Digit low = digitMul(multiplier, multiplicandDigit, high); |
| acc = digitAdd(acc, low, newCarry); |
| |
| // Store result and prepare for next round. |
| accumulator->setDigit(accumulatorIndex, acc); |
| carry = newCarry; |
| } |
| |
| while (carry || high) { |
| ASSERT(accumulatorIndex < accumulator->length()); |
| Digit acc = accumulator->digit(accumulatorIndex); |
| Digit newCarry = 0; |
| acc = digitAdd(acc, high, newCarry); |
| high = 0; |
| acc = digitAdd(acc, carry, newCarry); |
| accumulator->setDigit(accumulatorIndex, acc); |
| carry = newCarry; |
| accumulatorIndex++; |
| } |
| } |
| |
| bool JSBigInt::equals(JSBigInt* x, JSBigInt* y) |
| { |
| if (x->sign() != y->sign()) |
| return false; |
| |
| if (x->length() != y->length()) |
| return false; |
| |
| for (unsigned i = 0; i < x->length(); i++) { |
| if (x->digit(i) != y->digit(i)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| JSBigInt::ComparisonResult JSBigInt::compare(JSBigInt* x, JSBigInt* y) |
| { |
| bool xSign = x->sign(); |
| |
| if (xSign != y->sign()) |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| |
| ComparisonResult result = absoluteCompare(x, y); |
| if (result == ComparisonResult::GreaterThan) |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| if (result == ComparisonResult::LessThan) |
| return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| |
| return ComparisonResult::Equal; |
| } |
| |
| inline JSBigInt::ComparisonResult JSBigInt::absoluteCompare(JSBigInt* x, JSBigInt* y) |
| { |
| ASSERT(!x->length() || x->digit(x->length() - 1)); |
| ASSERT(!y->length() || y->digit(y->length() - 1)); |
| |
| int diff = x->length() - y->length(); |
| if (diff) |
| return diff < 0 ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| |
| int i = x->length() - 1; |
| while (i >= 0 && x->digit(i) == y->digit(i)) |
| i--; |
| |
| if (i < 0) |
| return ComparisonResult::Equal; |
| |
| return x->digit(i) > y->digit(i) ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| } |
| |
| JSBigInt* JSBigInt::absoluteAdd(ExecState* exec, JSBigInt* x, JSBigInt* y, bool resultSign) |
| { |
| VM& vm = exec->vm(); |
| |
| if (x->length() < y->length()) |
| return absoluteAdd(exec, y, x, resultSign); |
| |
| if (x->isZero()) { |
| ASSERT(y->isZero()); |
| return x; |
| } |
| |
| if (y->isZero()) |
| return resultSign == x->sign() ? x : unaryMinus(vm, x); |
| |
| JSBigInt* result = JSBigInt::tryCreateWithLength(exec, x->length() + 1); |
| if (!result) |
| return nullptr; |
| Digit carry = 0; |
| unsigned i = 0; |
| for (; i < y->length(); i++) { |
| Digit newCarry = 0; |
| Digit sum = digitAdd(x->digit(i), y->digit(i), newCarry); |
| sum = digitAdd(sum, carry, newCarry); |
| result->setDigit(i, sum); |
| carry = newCarry; |
| } |
| |
| for (; i < x->length(); i++) { |
| Digit newCarry = 0; |
| Digit sum = digitAdd(x->digit(i), carry, newCarry); |
| result->setDigit(i, sum); |
| carry = newCarry; |
| } |
| |
| result->setDigit(i, carry); |
| result->setSign(resultSign); |
| |
| return result->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::absoluteSub(VM& vm, JSBigInt* x, JSBigInt* y, bool resultSign) |
| { |
| ComparisonResult comparisonResult = absoluteCompare(x, y); |
| ASSERT(x->length() >= y->length()); |
| ASSERT(comparisonResult == ComparisonResult::GreaterThan || comparisonResult == ComparisonResult::Equal); |
| |
| if (x->isZero()) { |
| ASSERT(y->isZero()); |
| return x; |
| } |
| |
| if (y->isZero()) |
| return resultSign == x->sign() ? x : unaryMinus(vm, x); |
| |
| if (comparisonResult == ComparisonResult::Equal) |
| return JSBigInt::createZero(vm); |
| |
| JSBigInt* result = JSBigInt::createWithLengthUnchecked(vm, x->length()); |
| |
| Digit borrow = 0; |
| unsigned i = 0; |
| for (; i < y->length(); i++) { |
| Digit newBorrow = 0; |
| Digit difference = digitSub(x->digit(i), y->digit(i), newBorrow); |
| difference = digitSub(difference, borrow, newBorrow); |
| result->setDigit(i, difference); |
| borrow = newBorrow; |
| } |
| |
| for (; i < x->length(); i++) { |
| Digit newBorrow = 0; |
| Digit difference = digitSub(x->digit(i), borrow, newBorrow); |
| result->setDigit(i, difference); |
| borrow = newBorrow; |
| } |
| |
| ASSERT(!borrow); |
| result->setSign(resultSign); |
| return result->rightTrim(vm); |
| } |
| |
| // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}. |
| // Mathematically, the contract is: |
| // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor. |
| // If {quotient} is an empty handle, an appropriately sized BigInt will be |
| // allocated for it; otherwise the caller must ensure that it is big enough. |
| // {quotient} can be the same as {x} for an in-place division. {quotient} can |
| // also be nullptr if the caller is only interested in the remainder. |
| void JSBigInt::absoluteDivWithDigitDivisor(VM& vm, JSBigInt* x, Digit divisor, JSBigInt** quotient, Digit& remainder) |
| { |
| ASSERT(divisor); |
| |
| ASSERT(!x->isZero()); |
| remainder = 0; |
| if (divisor == 1) { |
| if (quotient != nullptr) |
| *quotient = x; |
| return; |
| } |
| |
| unsigned length = x->length(); |
| if (quotient != nullptr) { |
| if (*quotient == nullptr) |
| *quotient = JSBigInt::createWithLengthUnchecked(vm, length); |
| |
| for (int i = length - 1; i >= 0; i--) { |
| Digit q = digitDiv(remainder, x->digit(i), divisor, remainder); |
| (*quotient)->setDigit(i, q); |
| } |
| } else { |
| for (int i = length - 1; i >= 0; i--) |
| digitDiv(remainder, x->digit(i), divisor, remainder); |
| } |
| } |
| |
| // Divides {dividend} by {divisor}, returning the result in {quotient} and |
| // {remainder}. Mathematically, the contract is: |
| // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor. |
| // Both {quotient} and {remainder} are optional, for callers that are only |
| // interested in one of them. |
| // See Knuth, Volume 2, section 4.3.1, Algorithm D. |
| void JSBigInt::absoluteDivWithBigIntDivisor(ExecState* exec, JSBigInt* dividend, JSBigInt* divisor, JSBigInt** quotient, JSBigInt** remainder) |
| { |
| ASSERT(divisor->length() >= 2); |
| ASSERT(dividend->length() >= divisor->length()); |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| // The unusual variable names inside this function are consistent with |
| // Knuth's book, as well as with Go's implementation of this algorithm. |
| // Maintaining this consistency is probably more useful than trying to |
| // come up with more descriptive names for them. |
| unsigned n = divisor->length(); |
| unsigned m = dividend->length() - n; |
| |
| // The quotient to be computed. |
| JSBigInt* q = nullptr; |
| if (quotient != nullptr) |
| q = createWithLengthUnchecked(exec->vm(), m + 1); |
| |
| // In each iteration, {qhatv} holds {divisor} * {current quotient digit}. |
| // "v" is the book's name for {divisor}, "qhat" the current quotient digit. |
| JSBigInt* qhatv = tryCreateWithLength(exec, n + 1); |
| RETURN_IF_EXCEPTION(scope, void()); |
| |
| // D1. |
| // Left-shift inputs so that the divisor's MSB is set. This is necessary |
| // to prevent the digit-wise divisions (see digit_div call below) from |
| // overflowing (they take a two digits wide input, and return a one digit |
| // result). |
| Digit lastDigit = divisor->digit(n - 1); |
| unsigned shift = clz(lastDigit); |
| |
| if (shift > 0) { |
| divisor = absoluteLeftShiftAlwaysCopy(exec, divisor, shift, LeftShiftMode::SameSizeResult); |
| RETURN_IF_EXCEPTION(scope, void()); |
| } |
| |
| // Holds the (continuously updated) remaining part of the dividend, which |
| // eventually becomes the remainder. |
| JSBigInt* u = absoluteLeftShiftAlwaysCopy(exec, dividend, shift, LeftShiftMode::AlwaysAddOneDigit); |
| RETURN_IF_EXCEPTION(scope, void()); |
| |
| // D2. |
| // Iterate over the dividend's digit (like the "grad school" algorithm). |
| // {vn1} is the divisor's most significant digit. |
| Digit vn1 = divisor->digit(n - 1); |
| for (int j = m; j >= 0; j--) { |
| // D3. |
| // Estimate the current iteration's quotient digit (see Knuth for details). |
| // {qhat} is the current quotient digit. |
| Digit qhat = std::numeric_limits<Digit>::max(); |
| |
| // {ujn} is the dividend's most significant remaining digit. |
| Digit ujn = u->digit(j + n); |
| if (ujn != vn1) { |
| // {rhat} is the current iteration's remainder. |
| Digit rhat = 0; |
| // Estimate the current quotient digit by dividing the most significant |
| // digits of dividend and divisor. The result will not be too small, |
| // but could be a bit too large. |
| qhat = digitDiv(ujn, u->digit(j + n - 1), vn1, rhat); |
| |
| // Decrement the quotient estimate as needed by looking at the next |
| // digit, i.e. by testing whether |
| // qhat * v_{n-2} > (rhat << digitBits) + u_{j+n-2}. |
| Digit vn2 = divisor->digit(n - 2); |
| Digit ujn2 = u->digit(j + n - 2); |
| while (productGreaterThan(qhat, vn2, rhat, ujn2)) { |
| qhat--; |
| Digit prevRhat = rhat; |
| rhat += vn1; |
| // v[n-1] >= 0, so this tests for overflow. |
| if (rhat < prevRhat) |
| break; |
| } |
| } |
| |
| // D4. |
| // Multiply the divisor with the current quotient digit, and subtract |
| // it from the dividend. If there was "borrow", then the quotient digit |
| // was one too high, so we must correct it and undo one subtraction of |
| // the (shifted) divisor. |
| internalMultiplyAdd(divisor, qhat, 0, n, qhatv); |
| Digit c = u->absoluteInplaceSub(qhatv, j); |
| if (c) { |
| c = u->absoluteInplaceAdd(divisor, j); |
| u->setDigit(j + n, u->digit(j + n) + c); |
| qhat--; |
| } |
| |
| if (quotient != nullptr) |
| q->setDigit(j, qhat); |
| } |
| |
| if (quotient != nullptr) { |
| // Caller will right-trim. |
| *quotient = q; |
| } |
| |
| if (remainder != nullptr) { |
| u->inplaceRightShift(shift); |
| *remainder = u; |
| } |
| } |
| |
| // Returns whether (factor1 * factor2) > (high << digitBits) + low. |
| inline bool JSBigInt::productGreaterThan(Digit factor1, Digit factor2, Digit high, Digit low) |
| { |
| Digit resultHigh; |
| Digit resultLow = digitMul(factor1, factor2, resultHigh); |
| return resultHigh > high || (resultHigh == high && resultLow > low); |
| } |
| |
| // Adds {summand} onto {this}, starting with {summand}'s 0th digit |
| // at {this}'s {startIndex}'th digit. Returns the "carry" (0 or 1). |
| JSBigInt::Digit JSBigInt::absoluteInplaceAdd(JSBigInt* summand, unsigned startIndex) |
| { |
| Digit carry = 0; |
| unsigned n = summand->length(); |
| ASSERT(length() >= startIndex + n); |
| for (unsigned i = 0; i < n; i++) { |
| Digit newCarry = 0; |
| Digit sum = digitAdd(digit(startIndex + i), summand->digit(i), newCarry); |
| sum = digitAdd(sum, carry, newCarry); |
| setDigit(startIndex + i, sum); |
| carry = newCarry; |
| } |
| |
| return carry; |
| } |
| |
| // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit |
| // at {this}'s {startIndex}-th digit. Returns the "borrow" (0 or 1). |
| JSBigInt::Digit JSBigInt::absoluteInplaceSub(JSBigInt* subtrahend, unsigned startIndex) |
| { |
| Digit borrow = 0; |
| unsigned n = subtrahend->length(); |
| ASSERT(length() >= startIndex + n); |
| for (unsigned i = 0; i < n; i++) { |
| Digit newBorrow = 0; |
| Digit difference = digitSub(digit(startIndex + i), subtrahend->digit(i), newBorrow); |
| difference = digitSub(difference, borrow, newBorrow); |
| setDigit(startIndex + i, difference); |
| borrow = newBorrow; |
| } |
| |
| return borrow; |
| } |
| |
| void JSBigInt::inplaceRightShift(unsigned shift) |
| { |
| ASSERT(shift < digitBits); |
| ASSERT(!(digit(0) & ((static_cast<Digit>(1) << shift) - 1))); |
| |
| if (!shift) |
| return; |
| |
| Digit carry = digit(0) >> shift; |
| unsigned last = length() - 1; |
| for (unsigned i = 0; i < last; i++) { |
| Digit d = digit(i + 1); |
| setDigit(i, (d << (digitBits - shift)) | carry); |
| carry = d >> shift; |
| } |
| setDigit(last, carry); |
| } |
| |
| // Always copies the input, even when {shift} == 0. |
| JSBigInt* JSBigInt::absoluteLeftShiftAlwaysCopy(ExecState* exec, JSBigInt* x, unsigned shift, LeftShiftMode mode) |
| { |
| ASSERT(shift < digitBits); |
| ASSERT(!x->isZero()); |
| |
| unsigned n = x->length(); |
| unsigned resultLength = mode == LeftShiftMode::AlwaysAddOneDigit ? n + 1 : n; |
| JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| if (!result) |
| return nullptr; |
| |
| if (!shift) { |
| for (unsigned i = 0; i < n; i++) |
| result->setDigit(i, x->digit(i)); |
| if (mode == LeftShiftMode::AlwaysAddOneDigit) |
| result->setDigit(n, 0); |
| |
| return result; |
| } |
| |
| Digit carry = 0; |
| for (unsigned i = 0; i < n; i++) { |
| Digit d = x->digit(i); |
| result->setDigit(i, (d << shift) | carry); |
| carry = d >> (digitBits - shift); |
| } |
| |
| if (mode == LeftShiftMode::AlwaysAddOneDigit) |
| result->setDigit(n, carry); |
| else { |
| ASSERT(mode == LeftShiftMode::SameSizeResult); |
| ASSERT(!carry); |
| } |
| |
| return result; |
| } |
| |
| // Helper for Absolute{And,AndNot,Or,Xor}. |
| // Performs the given binary {op} on digit pairs of {x} and {y}; when the |
| // end of the shorter of the two is reached, {extraDigits} configures how |
| // remaining digits in the longer input (if {symmetric} == Symmetric, in |
| // {x} otherwise) are handled: copied to the result or ignored. |
| // Example: |
| // y: [ y2 ][ y1 ][ y0 ] |
| // x: [ x3 ][ x2 ][ x1 ][ x0 ] |
| // | | | | |
| // (Copy) (op) (op) (op) |
| // | | | | |
| // v v v v |
| // result: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ] |
| template<typename BitwiseOp> |
| inline JSBigInt* JSBigInt::absoluteBitwiseOp(VM& vm, JSBigInt* x, JSBigInt* y, ExtraDigitsHandling extraDigits, SymmetricOp symmetric, BitwiseOp&& op) |
| { |
| unsigned xLength = x->length(); |
| unsigned yLength = y->length(); |
| unsigned numPairs = yLength; |
| if (xLength < yLength) { |
| numPairs = xLength; |
| if (symmetric == SymmetricOp::Symmetric) { |
| std::swap(x, y); |
| std::swap(xLength, yLength); |
| } |
| } |
| |
| ASSERT(numPairs == std::min(xLength, yLength)); |
| unsigned resultLength = extraDigits == ExtraDigitsHandling::Copy ? xLength : numPairs; |
| JSBigInt* result = createWithLengthUnchecked(vm, resultLength); |
| unsigned i = 0; |
| for (; i < numPairs; i++) |
| result->setDigit(i, op(x->digit(i), y->digit(i))); |
| |
| if (extraDigits == ExtraDigitsHandling::Copy) { |
| for (; i < xLength; i++) |
| result->setDigit(i, x->digit(i)); |
| } |
| |
| for (; i < resultLength; i++) |
| result->setDigit(i, 0); |
| |
| return result->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::absoluteAnd(VM& vm, JSBigInt* x, JSBigInt* y) |
| { |
| auto digitOperation = [](Digit a, Digit b) { |
| return a & b; |
| }; |
| return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Skip, SymmetricOp::Symmetric, digitOperation); |
| } |
| |
| JSBigInt* JSBigInt::absoluteOr(VM& vm, JSBigInt* x, JSBigInt* y) |
| { |
| auto digitOperation = [](Digit a, Digit b) { |
| return a | b; |
| }; |
| return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Copy, SymmetricOp::Symmetric, digitOperation); |
| } |
| |
| JSBigInt* JSBigInt::absoluteAndNot(VM& vm, JSBigInt* x, JSBigInt* y) |
| { |
| auto digitOperation = [](Digit a, Digit b) { |
| return a & ~b; |
| }; |
| return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Copy, SymmetricOp::NotSymmetric, digitOperation); |
| } |
| |
| JSBigInt* JSBigInt::absoluteXor(VM& vm, JSBigInt* x, JSBigInt* y) |
| { |
| auto digitOperation = [](Digit a, Digit b) { |
| return a ^ b; |
| }; |
| return absoluteBitwiseOp(vm, x, y, ExtraDigitsHandling::Copy, SymmetricOp::Symmetric, digitOperation); |
| } |
| |
| JSBigInt* JSBigInt::absoluteAddOne(ExecState* exec, JSBigInt* x, SignOption signOption) |
| { |
| unsigned inputLength = x->length(); |
| // The addition will overflow into a new digit if all existing digits are |
| // at maximum. |
| bool willOverflow = true; |
| for (unsigned i = 0; i < inputLength; i++) { |
| if (std::numeric_limits<Digit>::max() != x->digit(i)) { |
| willOverflow = false; |
| break; |
| } |
| } |
| |
| unsigned resultLength = inputLength + willOverflow; |
| JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| if (!result) |
| return nullptr; |
| |
| Digit carry = 1; |
| for (unsigned i = 0; i < inputLength; i++) { |
| Digit newCarry = 0; |
| result->setDigit(i, digitAdd(x->digit(i), carry, newCarry)); |
| carry = newCarry; |
| } |
| if (resultLength > inputLength) |
| result->setDigit(inputLength, carry); |
| else |
| ASSERT(!carry); |
| |
| result->setSign(signOption == SignOption::Signed); |
| return result->rightTrim(exec->vm()); |
| } |
| |
| JSBigInt* JSBigInt::absoluteSubOne(ExecState* exec, JSBigInt* x, unsigned resultLength) |
| { |
| ASSERT(!x->isZero()); |
| ASSERT(resultLength >= x->length()); |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| unsigned length = x->length(); |
| Digit borrow = 1; |
| for (unsigned i = 0; i < length; i++) { |
| Digit newBorrow = 0; |
| result->setDigit(i, digitSub(x->digit(i), borrow, newBorrow)); |
| borrow = newBorrow; |
| } |
| ASSERT(!borrow); |
| for (unsigned i = length; i < resultLength; i++) |
| result->setDigit(i, borrow); |
| |
| return result->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::leftShiftByAbsolute(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| auto optionalShift = toShiftAmount(y); |
| if (!optionalShift) { |
| throwRangeError(exec, scope, "BigInt generated from this operation is too big"_s); |
| return nullptr; |
| } |
| |
| Digit shift = *optionalShift; |
| unsigned digitShift = static_cast<unsigned>(shift / digitBits); |
| unsigned bitsShift = static_cast<unsigned>(shift % digitBits); |
| unsigned length = x->length(); |
| bool grow = bitsShift && (x->digit(length - 1) >> (digitBits - bitsShift)); |
| int resultLength = length + digitShift + grow; |
| if (static_cast<unsigned>(resultLength) > maxLength) { |
| throwRangeError(exec, scope, "BigInt generated from this operation is too big"_s); |
| return nullptr; |
| } |
| |
| JSBigInt* result = tryCreateWithLength(exec, resultLength); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| if (!bitsShift) { |
| unsigned i = 0; |
| for (; i < digitShift; i++) |
| result->setDigit(i, 0ul); |
| |
| for (; i < static_cast<unsigned>(resultLength); i++) |
| result->setDigit(i, x->digit(i - digitShift)); |
| } else { |
| Digit carry = 0; |
| for (unsigned i = 0; i < digitShift; i++) |
| result->setDigit(i, 0ul); |
| |
| for (unsigned i = 0; i < length; i++) { |
| Digit d = x->digit(i); |
| result->setDigit(i + digitShift, (d << bitsShift) | carry); |
| carry = d >> (digitBits - bitsShift); |
| } |
| |
| if (grow) |
| result->setDigit(length + digitShift, carry); |
| else |
| ASSERT(!carry); |
| } |
| |
| result->setSign(x->sign()); |
| return result->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::rightShiftByAbsolute(ExecState* exec, JSBigInt* x, JSBigInt* y) |
| { |
| VM& vm = exec->vm(); |
| unsigned length = x->length(); |
| bool sign = x->sign(); |
| auto optionalShift = toShiftAmount(y); |
| if (!optionalShift) |
| return rightShiftByMaximum(vm, sign); |
| |
| Digit shift = *optionalShift; |
| unsigned digitalShift = static_cast<unsigned>(shift / digitBits); |
| unsigned bitsShift = static_cast<unsigned>(shift % digitBits); |
| int resultLength = length - digitalShift; |
| if (resultLength <= 0) |
| return rightShiftByMaximum(vm, sign); |
| |
| // For negative numbers, round down if any bit was shifted out (so that e.g. |
| // -5n >> 1n == -3n and not -2n). Check now whether this will happen and |
| // whether it can cause overflow into a new digit. If we allocate the result |
| // large enough up front, it avoids having to do a second allocation later. |
| bool mustRoundDown = false; |
| if (sign) { |
| const Digit mask = (static_cast<Digit>(1) << bitsShift) - 1; |
| if (x->digit(digitalShift) & mask) |
| mustRoundDown = true; |
| else { |
| for (unsigned i = 0; i < digitalShift; i++) { |
| if (x->digit(i)) { |
| mustRoundDown = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| // If bitsShift is non-zero, it frees up bits, preventing overflow. |
| if (mustRoundDown && !bitsShift) { |
| // Overflow cannot happen if the most significant digit has unset bits. |
| Digit msd = x->digit(length - 1); |
| bool roundingCanOverflow = !static_cast<Digit>(~msd); |
| if (roundingCanOverflow) |
| resultLength++; |
| } |
| |
| ASSERT(static_cast<unsigned>(resultLength) <= length); |
| JSBigInt* result = createWithLengthUnchecked(vm, static_cast<unsigned>(resultLength)); |
| if (!bitsShift) { |
| for (unsigned i = digitalShift; i < length; i++) |
| result->setDigit(i - digitalShift, x->digit(i)); |
| } else { |
| Digit carry = x->digit(digitalShift) >> bitsShift; |
| unsigned last = length - digitalShift - 1; |
| for (unsigned i = 0; i < last; i++) { |
| Digit d = x->digit(i + digitalShift + 1); |
| result->setDigit(i, (d << (digitBits - bitsShift)) | carry); |
| carry = d >> bitsShift; |
| } |
| result->setDigit(last, carry); |
| } |
| |
| if (sign) { |
| result->setSign(true); |
| if (mustRoundDown) { |
| // Since the result is negative, rounding down means adding one to |
| // its absolute value. This cannot overflow. |
| result = result->rightTrim(vm); |
| return absoluteAddOne(exec, result, SignOption::Signed); |
| } |
| } |
| |
| return result->rightTrim(vm); |
| } |
| |
| JSBigInt* JSBigInt::rightShiftByMaximum(VM& vm, bool sign) |
| { |
| if (sign) |
| return createFrom(vm, -1); |
| |
| return createZero(vm); |
| } |
| |
| // Lookup table for the maximum number of bits required per character of a |
| // base-N string representation of a number. To increase accuracy, the array |
| // value is the actual value multiplied by 32. To generate this table: |
| // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); } |
| constexpr uint8_t maxBitsPerCharTable[] = { |
| 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8 |
| 102, 107, 111, 115, 119, 122, 126, 128, // 9..16 |
| 131, 134, 136, 139, 141, 143, 145, 147, // 17..24 |
| 149, 151, 153, 154, 156, 158, 159, 160, // 25..32 |
| 162, 163, 165, 166, // 33..36 |
| }; |
| |
| static constexpr unsigned bitsPerCharTableShift = 5; |
| static constexpr size_t bitsPerCharTableMultiplier = 1u << bitsPerCharTableShift; |
| |
| // Compute (an overapproximation of) the length of the resulting string: |
| // Divide bit length of the BigInt by bits representable per character. |
| uint64_t JSBigInt::calculateMaximumCharactersRequired(unsigned length, unsigned radix, Digit lastDigit, bool sign) |
| { |
| unsigned leadingZeros = clz(lastDigit); |
| |
| size_t bitLength = length * digitBits - leadingZeros; |
| |
| // Maximum number of bits we can represent with one character. We'll use this |
| // to find an appropriate chunk size below. |
| uint8_t maxBitsPerChar = maxBitsPerCharTable[radix]; |
| |
| // For estimating result length, we have to be pessimistic and work with |
| // the minimum number of bits one character can represent. |
| uint8_t minBitsPerChar = maxBitsPerChar - 1; |
| |
| // Perform the following computation with uint64_t to avoid overflows. |
| uint64_t maximumCharactersRequired = bitLength; |
| maximumCharactersRequired *= bitsPerCharTableMultiplier; |
| |
| // Round up. |
| maximumCharactersRequired += minBitsPerChar - 1; |
| maximumCharactersRequired /= minBitsPerChar; |
| maximumCharactersRequired += sign; |
| |
| return maximumCharactersRequired; |
| } |
| |
| String JSBigInt::toStringBasePowerOfTwo(VM& vm, ExecState* exec, JSBigInt* x, unsigned radix) |
| { |
| ASSERT(hasOneBitSet(radix)); |
| ASSERT(radix >= 2 && radix <= 32); |
| ASSERT(!x->isZero()); |
| |
| const unsigned length = x->length(); |
| const bool sign = x->sign(); |
| const unsigned bitsPerChar = ctz(radix); |
| const unsigned charMask = radix - 1; |
| // Compute the length of the resulting string: divide the bit length of the |
| // BigInt by the number of bits representable per character (rounding up). |
| const Digit msd = x->digit(length - 1); |
| |
| const unsigned msdLeadingZeros = clz(msd); |
| |
| const size_t bitLength = length * digitBits - msdLeadingZeros; |
| const size_t charsRequired = (bitLength + bitsPerChar - 1) / bitsPerChar + sign; |
| |
| if (charsRequired > JSString::MaxLength) { |
| if (exec) { |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| throwOutOfMemoryError(exec, scope); |
| } |
| return String(); |
| } |
| |
| Vector<LChar> resultString(charsRequired); |
| Digit digit = 0; |
| // Keeps track of how many unprocessed bits there are in {digit}. |
| unsigned availableBits = 0; |
| int pos = static_cast<int>(charsRequired - 1); |
| for (unsigned i = 0; i < length - 1; i++) { |
| Digit newDigit = x->digit(i); |
| // Take any leftover bits from the last iteration into account. |
| int current = (digit | (newDigit << availableBits)) & charMask; |
| resultString[pos--] = radixDigits[current]; |
| int consumedBits = bitsPerChar - availableBits; |
| digit = newDigit >> consumedBits; |
| availableBits = digitBits - consumedBits; |
| while (availableBits >= bitsPerChar) { |
| resultString[pos--] = radixDigits[digit & charMask]; |
| digit >>= bitsPerChar; |
| availableBits -= bitsPerChar; |
| } |
| } |
| // Take any leftover bits from the last iteration into account. |
| int current = (digit | (msd << availableBits)) & charMask; |
| resultString[pos--] = radixDigits[current]; |
| digit = msd >> (bitsPerChar - availableBits); |
| while (digit) { |
| resultString[pos--] = radixDigits[digit & charMask]; |
| digit >>= bitsPerChar; |
| } |
| |
| if (sign) |
| resultString[pos--] = '-'; |
| |
| ASSERT(pos == -1); |
| return StringImpl::adopt(WTFMove(resultString)); |
| } |
| |
| String JSBigInt::toStringGeneric(VM& vm, ExecState* exec, JSBigInt* x, unsigned radix) |
| { |
| // FIXME: [JSC] Revisit usage of Vector into JSBigInt::toString |
| // https://bugs.webkit.org/show_bug.cgi?id=18067 |
| Vector<LChar> resultString; |
| |
| ASSERT(radix >= 2 && radix <= 36); |
| ASSERT(!x->isZero()); |
| |
| unsigned length = x->length(); |
| bool sign = x->sign(); |
| |
| uint8_t maxBitsPerChar = maxBitsPerCharTable[radix]; |
| uint64_t maximumCharactersRequired = calculateMaximumCharactersRequired(length, radix, x->digit(length - 1), sign); |
| |
| if (maximumCharactersRequired > JSString::MaxLength) { |
| if (exec) { |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| throwOutOfMemoryError(exec, scope); |
| } |
| return String(); |
| } |
| |
| Digit lastDigit; |
| if (length == 1) |
| lastDigit = x->digit(0); |
| else { |
| unsigned chunkChars = digitBits * bitsPerCharTableMultiplier / maxBitsPerChar; |
| Digit chunkDivisor = digitPow(radix, chunkChars); |
| |
| // By construction of chunkChars, there can't have been overflow. |
| ASSERT(chunkDivisor); |
| unsigned nonZeroDigit = length - 1; |
| ASSERT(x->digit(nonZeroDigit)); |
| |
| // {rest} holds the part of the BigInt that we haven't looked at yet. |
| // Not to be confused with "remainder"! |
| JSBigInt* rest = nullptr; |
| |
| // In the first round, divide the input, allocating a new BigInt for |
| // the result == rest; from then on divide the rest in-place. |
| JSBigInt** dividend = &x; |
| do { |
| Digit chunk; |
| absoluteDivWithDigitDivisor(vm, *dividend, chunkDivisor, &rest, chunk); |
| dividend = &rest; |
| for (unsigned i = 0; i < chunkChars; i++) { |
| resultString.append(radixDigits[chunk % radix]); |
| chunk /= radix; |
| } |
| ASSERT(!chunk); |
| |
| if (!rest->digit(nonZeroDigit)) |
| nonZeroDigit--; |
| |
| // We can never clear more than one digit per iteration, because |
| // chunkDivisor is smaller than max digit value. |
| ASSERT(rest->digit(nonZeroDigit)); |
| } while (nonZeroDigit > 0); |
| |
| lastDigit = rest->digit(0); |
| } |
| |
| do { |
| resultString.append(radixDigits[lastDigit % radix]); |
| lastDigit /= radix; |
| } while (lastDigit > 0); |
| ASSERT(resultString.size()); |
| ASSERT(resultString.size() <= static_cast<size_t>(maximumCharactersRequired)); |
| |
| // Remove leading zeroes. |
| unsigned newSizeNoLeadingZeroes = resultString.size(); |
| while (newSizeNoLeadingZeroes > 1 && resultString[newSizeNoLeadingZeroes - 1] == '0') |
| newSizeNoLeadingZeroes--; |
| |
| resultString.shrink(newSizeNoLeadingZeroes); |
| |
| if (sign) |
| resultString.append('-'); |
| |
| std::reverse(resultString.begin(), resultString.end()); |
| |
| return StringImpl::adopt(WTFMove(resultString)); |
| } |
| |
| JSBigInt* JSBigInt::rightTrim(VM& vm) |
| { |
| if (isZero()) { |
| ASSERT(!sign()); |
| return this; |
| } |
| |
| int nonZeroIndex = m_length - 1; |
| while (nonZeroIndex >= 0 && !digit(nonZeroIndex)) |
| nonZeroIndex--; |
| |
| if (nonZeroIndex < 0) |
| return createZero(vm); |
| |
| if (nonZeroIndex == static_cast<int>(m_length - 1)) |
| return this; |
| |
| unsigned newLength = nonZeroIndex + 1; |
| JSBigInt* trimmedBigInt = createWithLengthUnchecked(vm, newLength); |
| std::copy(dataStorage(), dataStorage() + newLength, trimmedBigInt->dataStorage()); |
| |
| trimmedBigInt->setSign(this->sign()); |
| |
| return trimmedBigInt; |
| } |
| |
| JSBigInt* JSBigInt::allocateFor(ExecState* exec, VM& vm, unsigned radix, unsigned charcount) |
| { |
| ASSERT(2 <= radix && radix <= 36); |
| |
| size_t bitsPerChar = maxBitsPerCharTable[radix]; |
| size_t chars = charcount; |
| const unsigned roundup = bitsPerCharTableMultiplier - 1; |
| if (chars <= (std::numeric_limits<size_t>::max() - roundup) / bitsPerChar) { |
| size_t bitsMin = bitsPerChar * chars; |
| |
| // Divide by 32 (see table), rounding up. |
| bitsMin = (bitsMin + roundup) >> bitsPerCharTableShift; |
| if (bitsMin <= static_cast<size_t>(maxInt)) { |
| // Divide by kDigitsBits, rounding up. |
| unsigned length = (bitsMin + digitBits - 1) / digitBits; |
| if (length <= maxLength) { |
| JSBigInt* result = JSBigInt::createWithLengthUnchecked(vm, length); |
| return result; |
| } |
| } |
| } |
| |
| if (exec) { |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| throwOutOfMemoryError(exec, scope); |
| } |
| return nullptr; |
| } |
| |
| size_t JSBigInt::estimatedSize(JSCell* cell, VM& vm) |
| { |
| return Base::estimatedSize(cell, vm) + jsCast<JSBigInt*>(cell)->m_length * sizeof(Digit); |
| } |
| |
| double JSBigInt::toNumber(ExecState* exec) const |
| { |
| VM& vm = exec->vm(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| throwTypeError(exec, scope, "Conversion from 'BigInt' to 'number' is not allowed."_s); |
| return 0.0; |
| } |
| |
| bool JSBigInt::getPrimitiveNumber(ExecState* exec, double& number, JSValue& result) const |
| { |
| result = this; |
| number = toNumber(exec); |
| return true; |
| } |
| |
| template <typename CharType> |
| JSBigInt* JSBigInt::parseInt(ExecState* exec, CharType* data, unsigned length, ErrorParseMode errorParseMode) |
| { |
| VM& vm = exec->vm(); |
| |
| unsigned p = 0; |
| while (p < length && isStrWhiteSpace(data[p])) |
| ++p; |
| |
| // Check Radix from frist characters |
| if (static_cast<unsigned>(p) + 1 < static_cast<unsigned>(length) && data[p] == '0') { |
| if (isASCIIAlphaCaselessEqual(data[p + 1], 'b')) |
| return parseInt(exec, vm, data, length, p + 2, 2, errorParseMode, ParseIntSign::Unsigned, ParseIntMode::DisallowEmptyString); |
| |
| if (isASCIIAlphaCaselessEqual(data[p + 1], 'x')) |
| return parseInt(exec, vm, data, length, p + 2, 16, errorParseMode, ParseIntSign::Unsigned, ParseIntMode::DisallowEmptyString); |
| |
| if (isASCIIAlphaCaselessEqual(data[p + 1], 'o')) |
| return parseInt(exec, vm, data, length, p + 2, 8, errorParseMode, ParseIntSign::Unsigned, ParseIntMode::DisallowEmptyString); |
| } |
| |
| ParseIntSign sign = ParseIntSign::Unsigned; |
| if (p < length) { |
| if (data[p] == '+') |
| ++p; |
| else if (data[p] == '-') { |
| sign = ParseIntSign::Signed; |
| ++p; |
| } |
| } |
| |
| JSBigInt* result = parseInt(exec, vm, data, length, p, 10, errorParseMode, sign); |
| |
| if (result && !result->isZero()) |
| result->setSign(sign == ParseIntSign::Signed); |
| |
| return result; |
| } |
| |
| template <typename CharType> |
| JSBigInt* JSBigInt::parseInt(ExecState* exec, VM& vm, CharType* data, unsigned length, unsigned startIndex, unsigned radix, ErrorParseMode errorParseMode, ParseIntSign sign, ParseIntMode parseMode) |
| { |
| ASSERT(length >= 0); |
| unsigned p = startIndex; |
| |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if (parseMode != ParseIntMode::AllowEmptyString && startIndex == length) { |
| ASSERT(exec); |
| if (errorParseMode == ErrorParseMode::ThrowExceptions) |
| throwVMError(exec, scope, createSyntaxError(exec, "Failed to parse String to BigInt")); |
| return nullptr; |
| } |
| |
| // Skipping leading zeros |
| while (p < length && data[p] == '0') |
| ++p; |
| |
| int endIndex = length - 1; |
| // Removing trailing spaces |
| while (endIndex >= static_cast<int>(p) && isStrWhiteSpace(data[endIndex])) |
| --endIndex; |
| |
| length = endIndex + 1; |
| |
| if (p == length) |
| return createZero(vm); |
| |
| unsigned limit0 = '0' + (radix < 10 ? radix : 10); |
| unsigned limita = 'a' + (radix - 10); |
| unsigned limitA = 'A' + (radix - 10); |
| |
| JSBigInt* result = allocateFor(exec, vm, radix, length - p); |
| RETURN_IF_EXCEPTION(scope, nullptr); |
| |
| result->initialize(InitializationType::WithZero); |
| |
| for (unsigned i = p; i < length; i++, p++) { |
| uint32_t digit; |
| if (data[i] >= '0' && data[i] < limit0) |
| digit = data[i] - '0'; |
| else if (data[i] >= 'a' && data[i] < limita) |
| digit = data[i] - 'a' + 10; |
| else if (data[i] >= 'A' && data[i] < limitA) |
| digit = data[i] - 'A' + 10; |
| else |
| break; |
| |
| result->inplaceMultiplyAdd(static_cast<Digit>(radix), static_cast<Digit>(digit)); |
| } |
| |
| result->setSign(sign == ParseIntSign::Signed ? true : false); |
| if (p == length) |
| return result->rightTrim(vm); |
| |
| ASSERT(exec); |
| if (errorParseMode == ErrorParseMode::ThrowExceptions) |
| throwVMError(exec, scope, createSyntaxError(exec, "Failed to parse String to BigInt")); |
| |
| return nullptr; |
| } |
| |
| inline JSBigInt::Digit JSBigInt::digit(unsigned n) |
| { |
| ASSERT(n < length()); |
| return dataStorage()[n]; |
| } |
| |
| inline void JSBigInt::setDigit(unsigned n, Digit value) |
| { |
| ASSERT(n < length()); |
| dataStorage()[n] = value; |
| } |
| |
| JSObject* JSBigInt::toObject(ExecState* exec, JSGlobalObject* globalObject) const |
| { |
| return BigIntObject::create(exec->vm(), globalObject, const_cast<JSBigInt*>(this)); |
| } |
| |
| bool JSBigInt::equalsToNumber(JSValue numValue) |
| { |
| ASSERT(numValue.isNumber()); |
| |
| if (numValue.isInt32()) { |
| int value = numValue.asInt32(); |
| if (!value) |
| return this->isZero(); |
| |
| return (this->length() == 1) && (this->sign() == (value < 0)) && (this->digit(0) == static_cast<Digit>(std::abs(static_cast<int64_t>(value)))); |
| } |
| |
| double value = numValue.asDouble(); |
| return compareToDouble(this, value) == ComparisonResult::Equal; |
| } |
| |
| JSBigInt::ComparisonResult JSBigInt::compareToDouble(JSBigInt* x, double y) |
| { |
| // This algorithm expect that the double format is IEEE 754 |
| |
| uint64_t doubleBits = bitwise_cast<uint64_t>(y); |
| int rawExponent = static_cast<int>(doubleBits >> 52) & 0x7FF; |
| |
| if (rawExponent == 0x7FF) { |
| if (std::isnan(y)) |
| return ComparisonResult::Undefined; |
| |
| return (y == std::numeric_limits<double>::infinity()) ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| } |
| |
| bool xSign = x->sign(); |
| |
| // Note that this is different from the double's sign bit for -0. That's |
| // intentional because -0 must be treated like 0. |
| bool ySign = y < 0; |
| if (xSign != ySign) |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| |
| if (!y) { |
| ASSERT(!xSign); |
| return x->isZero() ? ComparisonResult::Equal : ComparisonResult::GreaterThan; |
| } |
| |
| if (x->isZero()) |
| return ComparisonResult::LessThan; |
| |
| uint64_t mantissa = doubleBits & 0x000FFFFFFFFFFFFF; |
| |
| // Non-finite doubles are handled above. |
| ASSERT(rawExponent != 0x7FF); |
| int exponent = rawExponent - 0x3FF; |
| if (exponent < 0) { |
| // The absolute value of the double is less than 1. Only 0n has an |
| // absolute value smaller than that, but we've already covered that case. |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| } |
| |
| int xLength = x->length(); |
| Digit xMSD = x->digit(xLength - 1); |
| int msdLeadingZeros = clz(xMSD); |
| |
| int xBitLength = xLength * digitBits - msdLeadingZeros; |
| int yBitLength = exponent + 1; |
| if (xBitLength < yBitLength) |
| return xSign? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| |
| if (xBitLength > yBitLength) |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| |
| // At this point, we know that signs and bit lengths (i.e. position of |
| // the most significant bit in exponent-free representation) are identical. |
| // {x} is not zero, {y} is finite and not denormal. |
| // Now we virtually convert the double to an integer by shifting its |
| // mantissa according to its exponent, so it will align with the BigInt {x}, |
| // and then we compare them bit for bit until we find a difference or the |
| // least significant bit. |
| // <----- 52 ------> <-- virtual trailing zeroes --> |
| // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 |
| // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ... |
| // <--> <------> |
| // msdTopBit digitBits |
| // |
| mantissa |= 0x0010000000000000; |
| const int mantissaTopBit = 52; // 0-indexed. |
| |
| // 0-indexed position of {x}'s most significant bit within the {msd}. |
| int msdTopBit = digitBits - 1 - msdLeadingZeros; |
| ASSERT(msdTopBit == static_cast<int>((xBitLength - 1) % digitBits)); |
| |
| // Shifted chunk of {mantissa} for comparing with {digit}. |
| Digit compareMantissa; |
| |
| // Number of unprocessed bits in {mantissa}. We'll keep them shifted to |
| // the left (i.e. most significant part) of the underlying uint64_t. |
| int remainingMantissaBits = 0; |
| |
| // First, compare the most significant digit against the beginning of |
| // the mantissa and then we align them. |
| if (msdTopBit < mantissaTopBit) { |
| remainingMantissaBits = (mantissaTopBit - msdTopBit); |
| compareMantissa = static_cast<Digit>(mantissa >> remainingMantissaBits); |
| mantissa = mantissa << (64 - remainingMantissaBits); |
| } else { |
| compareMantissa = static_cast<Digit>(mantissa << (msdTopBit - mantissaTopBit)); |
| mantissa = 0; |
| } |
| |
| if (xMSD > compareMantissa) |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| |
| if (xMSD < compareMantissa) |
| return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| |
| // Then, compare additional digits against any remaining mantissa bits. |
| for (int digitIndex = xLength - 2; digitIndex >= 0; digitIndex--) { |
| if (remainingMantissaBits > 0) { |
| remainingMantissaBits -= digitBits; |
| if (sizeof(mantissa) != sizeof(xMSD)) { |
| compareMantissa = static_cast<Digit>(mantissa >> (64 - digitBits)); |
| // "& 63" to appease compilers. digitBits is 32 here anyway. |
| mantissa = mantissa << (digitBits & 63); |
| } else { |
| compareMantissa = static_cast<Digit>(mantissa); |
| mantissa = 0; |
| } |
| } else |
| compareMantissa = 0; |
| |
| Digit digit = x->digit(digitIndex); |
| if (digit > compareMantissa) |
| return xSign ? ComparisonResult::LessThan : ComparisonResult::GreaterThan; |
| if (digit < compareMantissa) |
| return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| } |
| |
| // Integer parts are equal; check whether {y} has a fractional part. |
| if (mantissa) { |
| ASSERT(remainingMantissaBits > 0); |
| return xSign ? ComparisonResult::GreaterThan : ComparisonResult::LessThan; |
| } |
| |
| return ComparisonResult::Equal; |
| } |
| |
| Optional<JSBigInt::Digit> JSBigInt::toShiftAmount(JSBigInt* x) |
| { |
| if (x->length() > 1) |
| return WTF::nullopt; |
| |
| Digit value = x->digit(0); |
| static_assert(maxLengthBits < std::numeric_limits<Digit>::max(), "maxLengthBits needs to be less than digit"); |
| |
| if (value > maxLengthBits) |
| return WTF::nullopt; |
| |
| return value; |
| } |
| |
| } // namespace JSC |