blob: 7f3d46b7dd88e6628c5085c993dd49fe85ee3dc3 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2000 Dirk Mueller (mueller@kde.org)
* (C) 2004 Allan Sandfeld Jensen (kde@carewolf.com)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2011, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
* Copyright (C) 2009 Torch Mobile Inc. All rights reserved. (http://www.torchmobile.com/)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "RenderObject.h"
#include "AXObjectCache.h"
#include "CSSAnimationController.h"
#include "Editing.h"
#include "FloatQuad.h"
#include "Frame.h"
#include "FrameSelection.h"
#include "FrameView.h"
#include "GeometryUtilities.h"
#include "GraphicsContext.h"
#include "HTMLElement.h"
#include "HTMLNames.h"
#include "HTMLTableCellElement.h"
#include "HTMLTableElement.h"
#include "HitTestResult.h"
#include "LogicalSelectionOffsetCaches.h"
#include "Page.h"
#include "PseudoElement.h"
#include "RenderChildIterator.h"
#include "RenderCounter.h"
#include "RenderFragmentedFlow.h"
#include "RenderGeometryMap.h"
#include "RenderInline.h"
#include "RenderIterator.h"
#include "RenderLayer.h"
#include "RenderLayerBacking.h"
#include "RenderMultiColumnFlow.h"
#include "RenderRuby.h"
#include "RenderSVGBlock.h"
#include "RenderSVGInline.h"
#include "RenderSVGModelObject.h"
#include "RenderSVGResourceContainer.h"
#include "RenderSVGRoot.h"
#include "RenderScrollbarPart.h"
#include "RenderTableRow.h"
#include "RenderTheme.h"
#include "RenderTreeBuilder.h"
#include "RenderView.h"
#include "RenderWidget.h"
#include "SVGRenderSupport.h"
#include "StyleResolver.h"
#include "TransformState.h"
#include <algorithm>
#include <stdio.h>
#include <wtf/IsoMallocInlines.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/text/TextStream.h>
#if PLATFORM(IOS)
#include "SelectionRect.h"
#endif
namespace WebCore {
using namespace HTMLNames;
WTF_MAKE_ISO_ALLOCATED_IMPL(RenderObject);
#ifndef NDEBUG
RenderObject::SetLayoutNeededForbiddenScope::SetLayoutNeededForbiddenScope(RenderObject* renderObject, bool isForbidden)
: m_renderObject(renderObject)
, m_preexistingForbidden(m_renderObject->isSetNeedsLayoutForbidden())
{
m_renderObject->setNeedsLayoutIsForbidden(isForbidden);
}
RenderObject::SetLayoutNeededForbiddenScope::~SetLayoutNeededForbiddenScope()
{
m_renderObject->setNeedsLayoutIsForbidden(m_preexistingForbidden);
}
#endif
struct SameSizeAsRenderObject {
virtual ~SameSizeAsRenderObject() = default; // Allocate vtable pointer.
void* pointers[5];
#ifndef NDEBUG
unsigned m_debugBitfields : 2;
#endif
unsigned m_bitfields;
};
COMPILE_ASSERT(sizeof(RenderObject) == sizeof(SameSizeAsRenderObject), RenderObject_should_stay_small);
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, renderObjectCounter, ("RenderObject"));
void RenderObjectDeleter::operator() (RenderObject* renderer) const
{
renderer->destroy();
}
RenderObject::RenderObject(Node& node)
: CachedImageClient()
, m_node(node)
, m_parent(nullptr)
, m_previous(nullptr)
, m_next(nullptr)
#ifndef NDEBUG
, m_hasAXObject(false)
, m_setNeedsLayoutForbidden(false)
#endif
, m_bitfields(node)
{
if (RenderView* renderView = node.document().renderView())
renderView->didCreateRenderer();
#ifndef NDEBUG
renderObjectCounter.increment();
#endif
}
RenderObject::~RenderObject()
{
view().didDestroyRenderer();
#ifndef NDEBUG
ASSERT(!m_hasAXObject);
renderObjectCounter.decrement();
#endif
ASSERT(!hasRareData());
}
RenderTheme& RenderObject::theme() const
{
return RenderTheme::singleton();
}
bool RenderObject::isDescendantOf(const RenderObject* ancestor) const
{
for (const RenderObject* renderer = this; renderer; renderer = renderer->m_parent) {
if (renderer == ancestor)
return true;
}
return false;
}
bool RenderObject::isLegend() const
{
return node() && node()->hasTagName(legendTag);
}
bool RenderObject::isFieldset() const
{
return node() && node()->hasTagName(fieldsetTag);
}
bool RenderObject::isHTMLMarquee() const
{
return node() && node()->renderer() == this && node()->hasTagName(marqueeTag);
}
void RenderObject::setFragmentedFlowStateIncludingDescendants(FragmentedFlowState state)
{
setFragmentedFlowState(state);
if (!is<RenderElement>(*this))
return;
for (auto& child : childrenOfType<RenderObject>(downcast<RenderElement>(*this))) {
// If the child is a fragmentation context it already updated the descendants flag accordingly.
if (child.isRenderFragmentedFlow())
continue;
ASSERT(state != child.fragmentedFlowState());
child.setFragmentedFlowStateIncludingDescendants(state);
}
}
RenderObject::FragmentedFlowState RenderObject::computedFragmentedFlowState(const RenderObject& renderer)
{
if (!renderer.parent())
return renderer.fragmentedFlowState();
if (is<RenderMultiColumnFlow>(renderer)) {
// Multicolumn flows do not inherit the flow state.
return InsideInFragmentedFlow;
}
auto inheritedFlowState = RenderObject::NotInsideFragmentedFlow;
if (is<RenderText>(renderer))
inheritedFlowState = renderer.parent()->fragmentedFlowState();
else if (is<RenderSVGBlock>(renderer) || is<RenderSVGInline>(renderer) || is<RenderSVGModelObject>(renderer)) {
// containingBlock() skips svg boundary (SVG root is a RenderReplaced).
if (auto* svgRoot = SVGRenderSupport::findTreeRootObject(downcast<RenderElement>(renderer)))
inheritedFlowState = svgRoot->fragmentedFlowState();
} else if (auto* container = renderer.container())
inheritedFlowState = container->fragmentedFlowState();
else {
// Splitting lines or doing continuation, so just keep the current state.
inheritedFlowState = renderer.fragmentedFlowState();
}
return inheritedFlowState;
}
void RenderObject::initializeFragmentedFlowStateOnInsertion()
{
ASSERT(parent());
// A RenderFragmentedFlow is always considered to be inside itself, so it never has to change its state in response to parent changes.
if (isRenderFragmentedFlow())
return;
auto computedState = computedFragmentedFlowState(*this);
if (fragmentedFlowState() == computedState)
return;
setFragmentedFlowStateIncludingDescendants(computedState);
}
void RenderObject::resetFragmentedFlowStateOnRemoval()
{
if (fragmentedFlowState() == NotInsideFragmentedFlow)
return;
if (!renderTreeBeingDestroyed() && is<RenderElement>(*this)) {
downcast<RenderElement>(*this).removeFromRenderFragmentedFlow();
return;
}
// A RenderFragmentedFlow is always considered to be inside itself, so it never has to change its state in response to parent changes.
if (isRenderFragmentedFlow())
return;
setFragmentedFlowStateIncludingDescendants(NotInsideFragmentedFlow);
}
void RenderObject::setParent(RenderElement* parent)
{
m_parent = parent;
}
RenderObject* RenderObject::nextInPreOrder() const
{
if (RenderObject* o = firstChildSlow())
return o;
return nextInPreOrderAfterChildren();
}
RenderObject* RenderObject::nextInPreOrderAfterChildren() const
{
RenderObject* o;
if (!(o = nextSibling())) {
o = parent();
while (o && !o->nextSibling())
o = o->parent();
if (o)
o = o->nextSibling();
}
return o;
}
RenderObject* RenderObject::nextInPreOrder(const RenderObject* stayWithin) const
{
if (RenderObject* o = firstChildSlow())
return o;
return nextInPreOrderAfterChildren(stayWithin);
}
RenderObject* RenderObject::nextInPreOrderAfterChildren(const RenderObject* stayWithin) const
{
if (this == stayWithin)
return nullptr;
const RenderObject* current = this;
RenderObject* next;
while (!(next = current->nextSibling())) {
current = current->parent();
if (!current || current == stayWithin)
return nullptr;
}
return next;
}
RenderObject* RenderObject::previousInPreOrder() const
{
if (RenderObject* o = previousSibling()) {
while (RenderObject* last = o->lastChildSlow())
o = last;
return o;
}
return parent();
}
RenderObject* RenderObject::previousInPreOrder(const RenderObject* stayWithin) const
{
if (this == stayWithin)
return nullptr;
return previousInPreOrder();
}
RenderObject* RenderObject::childAt(unsigned index) const
{
RenderObject* child = firstChildSlow();
for (unsigned i = 0; child && i < index; i++)
child = child->nextSibling();
return child;
}
RenderObject* RenderObject::firstLeafChild() const
{
RenderObject* r = firstChildSlow();
while (r) {
RenderObject* n = nullptr;
n = r->firstChildSlow();
if (!n)
break;
r = n;
}
return r;
}
RenderObject* RenderObject::lastLeafChild() const
{
RenderObject* r = lastChildSlow();
while (r) {
RenderObject* n = nullptr;
n = r->lastChildSlow();
if (!n)
break;
r = n;
}
return r;
}
#if ENABLE(TEXT_AUTOSIZING)
// Non-recursive version of the DFS search.
RenderObject* RenderObject::traverseNext(const RenderObject* stayWithin, HeightTypeTraverseNextInclusionFunction inclusionFunction, int& currentDepth, int& newFixedDepth) const
{
BlockContentHeightType overflowType;
// Check for suitable children.
for (RenderObject* child = firstChildSlow(); child; child = child->nextSibling()) {
overflowType = inclusionFunction(*child);
if (overflowType != FixedHeight) {
currentDepth++;
if (overflowType == OverflowHeight)
newFixedDepth = currentDepth;
ASSERT(!stayWithin || child->isDescendantOf(stayWithin));
return child;
}
}
if (this == stayWithin)
return nullptr;
// Now we traverse other nodes if they exist, otherwise
// we go to the parent node and try doing the same.
const RenderObject* n = this;
while (n) {
while (n && !n->nextSibling() && (!stayWithin || n->parent() != stayWithin)) {
n = n->parent();
currentDepth--;
}
if (!n)
return nullptr;
for (RenderObject* sibling = n->nextSibling(); sibling; sibling = sibling->nextSibling()) {
overflowType = inclusionFunction(*sibling);
if (overflowType != FixedHeight) {
if (overflowType == OverflowHeight)
newFixedDepth = currentDepth;
ASSERT(!stayWithin || !n->nextSibling() || n->nextSibling()->isDescendantOf(stayWithin));
return sibling;
}
}
if (!stayWithin || n->parent() != stayWithin) {
n = n->parent();
currentDepth--;
} else
return nullptr;
}
return nullptr;
}
#endif // ENABLE(TEXT_AUTOSIZING)
RenderLayer* RenderObject::enclosingLayer() const
{
for (auto& renderer : lineageOfType<RenderLayerModelObject>(*this)) {
if (renderer.hasLayer())
return renderer.layer();
}
return nullptr;
}
bool RenderObject::scrollRectToVisible(SelectionRevealMode revealMode, const LayoutRect& absoluteRect, bool insideFixed, const ScrollAlignment& alignX, const ScrollAlignment& alignY)
{
if (revealMode == SelectionRevealMode::DoNotReveal)
return false;
RenderLayer* enclosingLayer = this->enclosingLayer();
if (!enclosingLayer)
return false;
enclosingLayer->scrollRectToVisible(revealMode, absoluteRect, insideFixed, alignX, alignY);
return true;
}
RenderBox& RenderObject::enclosingBox() const
{
return *lineageOfType<RenderBox>(const_cast<RenderObject&>(*this)).first();
}
RenderBoxModelObject& RenderObject::enclosingBoxModelObject() const
{
return *lineageOfType<RenderBoxModelObject>(const_cast<RenderObject&>(*this)).first();
}
RenderBlock* RenderObject::firstLineBlock() const
{
return nullptr;
}
static inline bool objectIsRelayoutBoundary(const RenderElement* object)
{
// FIXME: In future it may be possible to broaden these conditions in order to improve performance.
if (object->isRenderView())
return true;
if (object->isTextControl())
return true;
if (object->isSVGRoot())
return true;
if (!object->hasOverflowClip())
return false;
if (object->style().width().isIntrinsicOrAuto() || object->style().height().isIntrinsicOrAuto() || object->style().height().isPercentOrCalculated())
return false;
// Table parts can't be relayout roots since the table is responsible for layouting all the parts.
if (object->isTablePart())
return false;
return true;
}
void RenderObject::clearNeedsLayout()
{
m_bitfields.setNeedsLayout(false);
setEverHadLayout(true);
setPosChildNeedsLayoutBit(false);
setNeedsSimplifiedNormalFlowLayoutBit(false);
setNormalChildNeedsLayoutBit(false);
setNeedsPositionedMovementLayoutBit(false);
if (is<RenderElement>(*this))
downcast<RenderElement>(*this).setAncestorLineBoxDirty(false);
#ifndef NDEBUG
checkBlockPositionedObjectsNeedLayout();
#endif
}
static void scheduleRelayoutForSubtree(RenderElement& renderer)
{
if (is<RenderView>(renderer)) {
downcast<RenderView>(renderer).frameView().layoutContext().scheduleLayout();
return;
}
if (renderer.isRooted())
renderer.view().frameView().layoutContext().scheduleSubtreeLayout(renderer);
}
void RenderObject::markContainingBlocksForLayout(ScheduleRelayout scheduleRelayout, RenderElement* newRoot)
{
ASSERT(scheduleRelayout == ScheduleRelayout::No || !newRoot);
ASSERT(!isSetNeedsLayoutForbidden());
auto ancestor = container();
bool simplifiedNormalFlowLayout = needsSimplifiedNormalFlowLayout() && !selfNeedsLayout() && !normalChildNeedsLayout();
bool hasOutOfFlowPosition = !isText() && style().hasOutOfFlowPosition();
while (ancestor) {
#ifndef NDEBUG
// FIXME: Remove this once we remove the special cases for counters, quotes and mathml
// calling setNeedsLayout during preferred width computation.
SetLayoutNeededForbiddenScope layoutForbiddenScope(ancestor, isSetNeedsLayoutForbidden());
#endif
// Don't mark the outermost object of an unrooted subtree. That object will be
// marked when the subtree is added to the document.
auto container = ancestor->container();
if (!container && !ancestor->isRenderView())
return;
if (hasOutOfFlowPosition) {
bool willSkipRelativelyPositionedInlines = !ancestor->isRenderBlock() || ancestor->isAnonymousBlock();
// Skip relatively positioned inlines and anonymous blocks to get to the enclosing RenderBlock.
while (ancestor && (!ancestor->isRenderBlock() || ancestor->isAnonymousBlock()))
ancestor = ancestor->container();
if (!ancestor || ancestor->posChildNeedsLayout())
return;
if (willSkipRelativelyPositionedInlines)
container = ancestor->container();
ancestor->setPosChildNeedsLayoutBit(true);
simplifiedNormalFlowLayout = true;
} else if (simplifiedNormalFlowLayout) {
if (ancestor->needsSimplifiedNormalFlowLayout())
return;
ancestor->setNeedsSimplifiedNormalFlowLayoutBit(true);
} else {
if (ancestor->normalChildNeedsLayout())
return;
ancestor->setNormalChildNeedsLayoutBit(true);
}
ASSERT(!ancestor->isSetNeedsLayoutForbidden());
if (ancestor == newRoot)
return;
if (scheduleRelayout == ScheduleRelayout::Yes && objectIsRelayoutBoundary(ancestor))
break;
hasOutOfFlowPosition = ancestor->style().hasOutOfFlowPosition();
ancestor = container;
}
if (scheduleRelayout == ScheduleRelayout::Yes && ancestor)
scheduleRelayoutForSubtree(*ancestor);
}
#ifndef NDEBUG
void RenderObject::checkBlockPositionedObjectsNeedLayout()
{
ASSERT(!needsLayout());
if (is<RenderBlock>(*this))
downcast<RenderBlock>(*this).checkPositionedObjectsNeedLayout();
}
#endif
void RenderObject::setPreferredLogicalWidthsDirty(bool shouldBeDirty, MarkingBehavior markParents)
{
bool alreadyDirty = preferredLogicalWidthsDirty();
m_bitfields.setPreferredLogicalWidthsDirty(shouldBeDirty);
if (shouldBeDirty && !alreadyDirty && markParents == MarkContainingBlockChain && (isText() || !style().hasOutOfFlowPosition()))
invalidateContainerPreferredLogicalWidths();
}
void RenderObject::invalidateContainerPreferredLogicalWidths()
{
// In order to avoid pathological behavior when inlines are deeply nested, we do include them
// in the chain that we mark dirty (even though they're kind of irrelevant).
auto o = isTableCell() ? containingBlock() : container();
while (o && !o->preferredLogicalWidthsDirty()) {
// Don't invalidate the outermost object of an unrooted subtree. That object will be
// invalidated when the subtree is added to the document.
auto container = o->isTableCell() ? o->containingBlock() : o->container();
if (!container && !o->isRenderView())
break;
o->m_bitfields.setPreferredLogicalWidthsDirty(true);
if (o->style().hasOutOfFlowPosition())
// A positioned object has no effect on the min/max width of its containing block ever.
// We can optimize this case and not go up any further.
break;
o = container;
}
}
void RenderObject::setLayerNeedsFullRepaint()
{
ASSERT(hasLayer());
downcast<RenderLayerModelObject>(*this).layer()->setRepaintStatus(NeedsFullRepaint);
}
void RenderObject::setLayerNeedsFullRepaintForPositionedMovementLayout()
{
ASSERT(hasLayer());
downcast<RenderLayerModelObject>(*this).layer()->setRepaintStatus(NeedsFullRepaintForPositionedMovementLayout);
}
RenderBlock* RenderObject::containingBlock() const
{
auto containingBlockForRenderer = [](const RenderElement& renderer)
{
if (renderer.isAbsolutelyPositioned())
return renderer.containingBlockForAbsolutePosition();
if (renderer.isFixedPositioned())
return renderer.containingBlockForFixedPosition();
return renderer.containingBlockForObjectInFlow();
};
if (is<RenderText>(*this))
return containingBlockForObjectInFlow();
if (!parent() && is<RenderScrollbarPart>(*this)) {
if (auto* scrollbarPart = downcast<RenderScrollbarPart>(*this).rendererOwningScrollbar())
return containingBlockForRenderer(*scrollbarPart);
return nullptr;
}
return containingBlockForRenderer(downcast<RenderElement>(*this));
}
RenderBlock* RenderObject::containingBlockForObjectInFlow() const
{
auto* renderer = parent();
while (renderer && ((renderer->isInline() && !renderer->isReplaced()) || !renderer->isRenderBlock()))
renderer = renderer->parent();
return downcast<RenderBlock>(renderer);
}
void RenderObject::addPDFURLRect(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
Vector<LayoutRect> focusRingRects;
addFocusRingRects(focusRingRects, paintOffset, paintInfo.paintContainer);
LayoutRect urlRect = unionRect(focusRingRects);
if (urlRect.isEmpty())
return;
Node* node = this->node();
if (!is<Element>(node) || !node->isLink())
return;
Element& element = downcast<Element>(*node);
const AtomicString& href = element.getAttribute(hrefAttr);
if (href.isNull())
return;
if (paintInfo.context().supportsInternalLinks()) {
String outAnchorName;
Element* linkTarget = element.findAnchorElementForLink(outAnchorName);
if (linkTarget) {
paintInfo.context().setDestinationForRect(outAnchorName, urlRect);
return;
}
}
paintInfo.context().setURLForRect(node->document().completeURL(href), urlRect);
}
#if PLATFORM(IOS)
// This function is similar in spirit to RenderText::absoluteRectsForRange, but returns rectangles
// which are annotated with additional state which helps iOS draw selections in its unique way.
// No annotations are added in this class.
// FIXME: Move to RenderText with absoluteRectsForRange()?
void RenderObject::collectSelectionRects(Vector<SelectionRect>& rects, unsigned start, unsigned end)
{
Vector<FloatQuad> quads;
if (!firstChildSlow()) {
// FIXME: WebKit's position for an empty span after a BR is incorrect, so we can't trust
// quads for them. We don't need selection rects for those anyway though, since they
// are just empty containers. See <https://bugs.webkit.org/show_bug.cgi?id=49358>.
RenderObject* previous = previousSibling();
Node* node = this->node();
if (!previous || !previous->isBR() || !node || !node->isContainerNode() || !isInline()) {
// For inline elements we don't use absoluteQuads, since it takes into account continuations and leads to wrong results.
absoluteQuadsForSelection(quads);
}
} else {
unsigned offset = start;
for (RenderObject* child = childAt(start); child && offset < end; child = child->nextSibling(), ++offset)
child->absoluteQuads(quads);
}
unsigned numberOfQuads = quads.size();
for (unsigned i = 0; i < numberOfQuads; ++i)
rects.append(SelectionRect(quads[i].enclosingBoundingBox(), isHorizontalWritingMode(), view().pageNumberForBlockProgressionOffset(quads[i].enclosingBoundingBox().x())));
}
#endif
IntRect RenderObject::absoluteBoundingBoxRect(bool useTransforms, bool* wasFixed) const
{
if (useTransforms) {
Vector<FloatQuad> quads;
absoluteQuads(quads, wasFixed);
size_t n = quads.size();
if (!n)
return IntRect();
IntRect result = quads[0].enclosingBoundingBox();
for (size_t i = 1; i < n; ++i)
result.unite(quads[i].enclosingBoundingBox());
return result;
}
FloatPoint absPos = localToAbsolute(FloatPoint(), 0 /* ignore transforms */, wasFixed);
Vector<IntRect> rects;
absoluteRects(rects, flooredLayoutPoint(absPos));
size_t n = rects.size();
if (!n)
return IntRect();
LayoutRect result = rects[0];
for (size_t i = 1; i < n; ++i)
result.unite(rects[i]);
return snappedIntRect(result);
}
void RenderObject::absoluteFocusRingQuads(Vector<FloatQuad>& quads)
{
Vector<LayoutRect> rects;
// FIXME: addFocusRingRects() needs to be passed this transform-unaware
// localToAbsolute() offset here because RenderInline::addFocusRingRects()
// implicitly assumes that. This doesn't work correctly with transformed
// descendants.
FloatPoint absolutePoint = localToAbsolute();
addFocusRingRects(rects, flooredLayoutPoint(absolutePoint));
float deviceScaleFactor = document().deviceScaleFactor();
for (auto rect : rects) {
rect.moveBy(LayoutPoint(-absolutePoint));
quads.append(localToAbsoluteQuad(FloatQuad(snapRectToDevicePixels(rect, deviceScaleFactor))));
}
}
FloatRect RenderObject::absoluteBoundingBoxRectForRange(const Range* range)
{
if (!range)
return FloatRect();
range->ownerDocument().updateLayout();
Vector<FloatQuad> quads;
range->absoluteTextQuads(quads);
if (quads.isEmpty())
return FloatRect();
FloatRect result = quads[0].boundingBox();
for (size_t i = 1; i < quads.size(); ++i)
result.uniteEvenIfEmpty(quads[i].boundingBox());
return result;
}
void RenderObject::addAbsoluteRectForLayer(LayoutRect& result)
{
if (hasLayer())
result.unite(absoluteBoundingBoxRectIgnoringTransforms());
if (!is<RenderElement>(*this))
return;
for (auto& child : childrenOfType<RenderObject>(downcast<RenderElement>(*this)))
child.addAbsoluteRectForLayer(result);
}
// FIXME: change this to use the subtreePaint terminology
LayoutRect RenderObject::paintingRootRect(LayoutRect& topLevelRect)
{
LayoutRect result = absoluteBoundingBoxRectIgnoringTransforms();
topLevelRect = result;
if (is<RenderElement>(*this)) {
for (auto& child : childrenOfType<RenderObject>(downcast<RenderElement>(*this)))
child.addAbsoluteRectForLayer(result);
}
return result;
}
RenderLayerModelObject* RenderObject::containerForRepaint() const
{
RenderLayerModelObject* repaintContainer = nullptr;
if (view().usesCompositing()) {
if (RenderLayer* parentLayer = enclosingLayer()) {
RenderLayer* compLayer = parentLayer->enclosingCompositingLayerForRepaint();
if (compLayer)
repaintContainer = &compLayer->renderer();
}
}
if (view().hasSoftwareFilters()) {
if (RenderLayer* parentLayer = enclosingLayer()) {
RenderLayer* enclosingFilterLayer = parentLayer->enclosingFilterLayer();
if (enclosingFilterLayer)
return &enclosingFilterLayer->renderer();
}
}
// If we have a flow thread, then we need to do individual repaints within the RenderFragmentContainers instead.
// Return the flow thread as a repaint container in order to create a chokepoint that allows us to change
// repainting to do individual region repaints.
RenderFragmentedFlow* parentRenderFragmentedFlow = enclosingFragmentedFlow();
if (parentRenderFragmentedFlow) {
// If we have already found a repaint container then we will repaint into that container only if it is part of the same
// flow thread. Otherwise we will need to catch the repaint call and send it to the flow thread.
RenderFragmentedFlow* repaintContainerFragmentedFlow = repaintContainer ? repaintContainer->enclosingFragmentedFlow() : nullptr;
if (!repaintContainerFragmentedFlow || repaintContainerFragmentedFlow != parentRenderFragmentedFlow)
repaintContainer = parentRenderFragmentedFlow;
}
return repaintContainer;
}
void RenderObject::propagateRepaintToParentWithOutlineAutoIfNeeded(const RenderLayerModelObject& repaintContainer, const LayoutRect& repaintRect) const
{
if (!hasOutlineAutoAncestor())
return;
// FIXME: We should really propagate only when the child renderer sticks out.
bool repaintRectNeedsConverting = false;
// Issue repaint on the renderer with outline: auto.
for (const auto* renderer = this; renderer; renderer = renderer->parent()) {
bool rendererHasOutlineAutoAncestor = renderer->hasOutlineAutoAncestor();
ASSERT(rendererHasOutlineAutoAncestor
|| renderer->outlineStyleForRepaint().outlineStyleIsAuto()
|| (is<RenderBoxModelObject>(*renderer) && downcast<RenderBoxModelObject>(*renderer).isContinuation()));
if (renderer == &repaintContainer && rendererHasOutlineAutoAncestor)
repaintRectNeedsConverting = true;
if (rendererHasOutlineAutoAncestor)
continue;
// Issue repaint on the correct repaint container.
LayoutRect adjustedRepaintRect = repaintRect;
adjustedRepaintRect.inflate(renderer->outlineStyleForRepaint().outlineSize());
if (!repaintRectNeedsConverting)
repaintContainer.repaintRectangle(adjustedRepaintRect);
else if (is<RenderLayerModelObject>(renderer)) {
const auto& rendererWithOutline = downcast<RenderLayerModelObject>(*renderer);
adjustedRepaintRect = LayoutRect(repaintContainer.localToContainerQuad(FloatRect(adjustedRepaintRect), &rendererWithOutline).boundingBox());
rendererWithOutline.repaintRectangle(adjustedRepaintRect);
}
return;
}
ASSERT_NOT_REACHED();
}
void RenderObject::repaintUsingContainer(const RenderLayerModelObject* repaintContainer, const LayoutRect& r, bool shouldClipToLayer) const
{
if (r.isEmpty())
return;
if (!repaintContainer)
repaintContainer = &view();
if (is<RenderFragmentedFlow>(*repaintContainer)) {
downcast<RenderFragmentedFlow>(*repaintContainer).repaintRectangleInFragments(r);
return;
}
propagateRepaintToParentWithOutlineAutoIfNeeded(*repaintContainer, r);
if (repaintContainer->hasFilter() && repaintContainer->layer() && repaintContainer->layer()->requiresFullLayerImageForFilters()) {
repaintContainer->layer()->setFilterBackendNeedsRepaintingInRect(r);
return;
}
if (repaintContainer->isRenderView()) {
RenderView& view = this->view();
ASSERT(repaintContainer == &view);
bool viewHasCompositedLayer = view.isComposited();
if (!viewHasCompositedLayer || view.layer()->backing()->paintsIntoWindow()) {
LayoutRect rect = r;
if (viewHasCompositedLayer && view.layer()->transform())
rect = LayoutRect(view.layer()->transform()->mapRect(snapRectToDevicePixels(rect, document().deviceScaleFactor())));
view.repaintViewRectangle(rect);
return;
}
}
if (view().usesCompositing()) {
ASSERT(repaintContainer->isComposited());
repaintContainer->layer()->setBackingNeedsRepaintInRect(r, shouldClipToLayer ? GraphicsLayer::ClipToLayer : GraphicsLayer::DoNotClipToLayer);
}
}
void RenderObject::repaint() const
{
// Don't repaint if we're unrooted (note that view() still returns the view when unrooted)
if (!isRooted())
return;
const RenderView& view = this->view();
if (view.printing())
return;
RenderLayerModelObject* repaintContainer = containerForRepaint();
repaintUsingContainer(repaintContainer, clippedOverflowRectForRepaint(repaintContainer));
}
void RenderObject::repaintRectangle(const LayoutRect& r, bool shouldClipToLayer) const
{
// Don't repaint if we're unrooted (note that view() still returns the view when unrooted)
if (!isRooted())
return;
const RenderView& view = this->view();
if (view.printing())
return;
LayoutRect dirtyRect(r);
// FIXME: layoutDelta needs to be applied in parts before/after transforms and
// repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308
dirtyRect.move(view.frameView().layoutContext().layoutDelta());
RenderLayerModelObject* repaintContainer = containerForRepaint();
repaintUsingContainer(repaintContainer, computeRectForRepaint(dirtyRect, repaintContainer), shouldClipToLayer);
}
void RenderObject::repaintSlowRepaintObject() const
{
// Don't repaint if we're unrooted (note that view() still returns the view when unrooted)
if (!isRooted())
return;
const RenderView& view = this->view();
if (view.printing())
return;
const RenderLayerModelObject* repaintContainer = containerForRepaint();
bool shouldClipToLayer = true;
IntRect repaintRect;
// If this is the root background, we need to check if there is an extended background rect. If
// there is, then we should not allow painting to clip to the layer size.
if (isDocumentElementRenderer() || isBody()) {
shouldClipToLayer = !view.frameView().hasExtendedBackgroundRectForPainting();
repaintRect = snappedIntRect(view.backgroundRect());
} else
repaintRect = snappedIntRect(clippedOverflowRectForRepaint(repaintContainer));
repaintUsingContainer(repaintContainer, repaintRect, shouldClipToLayer);
}
IntRect RenderObject::pixelSnappedAbsoluteClippedOverflowRect() const
{
return snappedIntRect(absoluteClippedOverflowRect());
}
LayoutRect RenderObject::rectWithOutlineForRepaint(const RenderLayerModelObject* repaintContainer, LayoutUnit outlineWidth) const
{
LayoutRect r(clippedOverflowRectForRepaint(repaintContainer));
r.inflate(outlineWidth);
return r;
}
LayoutRect RenderObject::clippedOverflowRectForRepaint(const RenderLayerModelObject*) const
{
ASSERT_NOT_REACHED();
return LayoutRect();
}
LayoutRect RenderObject::computeRectForRepaint(const LayoutRect& rect, const RenderLayerModelObject* repaintContainer, RepaintContext context) const
{
if (repaintContainer == this)
return rect;
auto* parent = this->parent();
if (!parent)
return rect;
LayoutRect adjustedRect = rect;
if (parent->hasOverflowClip()) {
downcast<RenderBox>(*parent).applyCachedClipAndScrollPositionForRepaint(adjustedRect);
if (adjustedRect.isEmpty())
return adjustedRect;
}
return parent->computeRectForRepaint(adjustedRect, repaintContainer, context);
}
FloatRect RenderObject::computeFloatRectForRepaint(const FloatRect&, const RenderLayerModelObject*, bool) const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
#if ENABLE(TREE_DEBUGGING)
static void outputRenderTreeLegend(TextStream& stream)
{
stream.nextLine();
stream << "(B)lock/(I)nline/I(N)line-block, (A)bsolute/Fi(X)ed/(R)elative/Stic(K)y, (F)loating, (O)verflow clip, Anon(Y)mous, (G)enerated, has(L)ayer, (C)omposited, (+)Dirty style, (+)Dirty layout";
stream.nextLine();
}
void RenderObject::showNodeTreeForThis() const
{
if (!node())
return;
node()->showTreeForThis();
}
void RenderObject::showRenderTreeForThis() const
{
const WebCore::RenderObject* root = this;
while (root->parent())
root = root->parent();
TextStream stream(TextStream::LineMode::MultipleLine, TextStream::Formatting::SVGStyleRect);
outputRenderTreeLegend(stream);
root->outputRenderSubTreeAndMark(stream, this, 1);
WTFLogAlways("%s", stream.release().utf8().data());
}
void RenderObject::showLineTreeForThis() const
{
if (!is<RenderBlockFlow>(*this))
return;
TextStream stream(TextStream::LineMode::MultipleLine, TextStream::Formatting::SVGStyleRect);
outputRenderTreeLegend(stream);
outputRenderObject(stream, false, 1);
downcast<RenderBlockFlow>(*this).outputLineTreeAndMark(stream, nullptr, 2);
WTFLogAlways("%s", stream.release().utf8().data());
}
static const RenderFragmentedFlow* enclosingFragmentedFlowFromRenderer(const RenderObject* renderer)
{
if (!renderer)
return nullptr;
if (renderer->fragmentedFlowState() == RenderObject::NotInsideFragmentedFlow)
return nullptr;
if (is<RenderFragmentedFlow>(*renderer))
return downcast<RenderFragmentedFlow>(renderer);
if (is<RenderBlock>(*renderer))
return downcast<RenderBlock>(*renderer).cachedEnclosingFragmentedFlow();
return nullptr;
}
void RenderObject::outputRegionsInformation(TextStream& stream) const
{
const RenderFragmentedFlow* ftcb = enclosingFragmentedFlowFromRenderer(this);
if (!ftcb) {
// Only the boxes have region range information.
// Try to get the flow thread containing block information
// from the containing block of this box.
if (is<RenderBox>(*this))
ftcb = enclosingFragmentedFlowFromRenderer(containingBlock());
}
if (!ftcb)
return;
RenderFragmentContainer* startRegion = nullptr;
RenderFragmentContainer* endRegion = nullptr;
ftcb->getFragmentRangeForBox(downcast<RenderBox>(this), startRegion, endRegion);
stream << " [Rs:" << startRegion << " Re:" << endRegion << "]";
}
void RenderObject::outputRenderObject(TextStream& stream, bool mark, int depth) const
{
if (isInlineBlockOrInlineTable())
stream << "N";
else if (isInline())
stream << "I";
else
stream << "B";
if (isPositioned()) {
if (isRelativelyPositioned())
stream << "R";
else if (isStickilyPositioned())
stream << "K";
else if (isOutOfFlowPositioned()) {
if (isAbsolutelyPositioned())
stream << "A";
else
stream << "X";
}
} else
stream << "-";
if (isFloating())
stream << "F";
else
stream << "-";
if (hasOverflowClip())
stream << "O";
else
stream << "-";
if (isAnonymous())
stream << "Y";
else
stream << "-";
if (isPseudoElement() || isAnonymous())
stream << "G";
else
stream << "-";
if (hasLayer())
stream << "L";
else
stream << "-";
if (isComposited())
stream << "C";
else
stream << "-";
stream << " ";
if (node() && node()->needsStyleRecalc())
stream << "+";
else
stream << "-";
if (needsLayout())
stream << "+";
else
stream << "-";
int printedCharacters = 0;
if (mark) {
stream << "*";
++printedCharacters;
}
while (++printedCharacters <= depth * 2)
stream << " ";
if (node())
stream << node()->nodeName().utf8().data() << " ";
String name = renderName();
// FIXME: Renderer's name should not include property value listing.
int pos = name.find('(');
if (pos > 0)
stream << name.left(pos - 1).utf8().data();
else
stream << name.utf8().data();
if (is<RenderBox>(*this)) {
auto& renderBox = downcast<RenderBox>(*this);
FloatRect boxRect = renderBox.frameRect();
if (renderBox.isInFlowPositioned())
boxRect.move(renderBox.offsetForInFlowPosition());
stream << " " << boxRect;
} else if (is<RenderInline>(*this) && isInFlowPositioned()) {
FloatSize inlineOffset = downcast<RenderInline>(*this).offsetForInFlowPosition();
stream << " (" << inlineOffset.width() << ", " << inlineOffset.height() << ")";
}
stream << " renderer->(" << this << ")";
if (node()) {
stream << " node->(" << node() << ")";
if (node()->isTextNode()) {
String value = node()->nodeValue();
stream << " length->(" << value.length() << ")";
value.replaceWithLiteral('\\', "\\\\");
value.replaceWithLiteral('\n', "\\n");
const int maxPrintedLength = 80;
if (value.length() > maxPrintedLength) {
String substring = value.substring(0, maxPrintedLength);
stream << " \"" << substring.utf8().data() << "\"...";
} else
stream << " \"" << value.utf8().data() << "\"";
}
}
if (is<RenderBoxModelObject>(*this)) {
auto& renderer = downcast<RenderBoxModelObject>(*this);
if (renderer.continuation())
stream << " continuation->(" << renderer.continuation() << ")";
}
outputRegionsInformation(stream);
if (needsLayout()) {
stream << " layout->";
if (selfNeedsLayout())
stream << "[self]";
if (normalChildNeedsLayout())
stream << "[normal child]";
if (posChildNeedsLayout())
stream << "[positioned child]";
if (needsSimplifiedNormalFlowLayout())
stream << "[simplified]";
if (needsPositionedMovementLayout())
stream << "[positioned movement]";
}
stream.nextLine();
}
void RenderObject::outputRenderSubTreeAndMark(TextStream& stream, const RenderObject* markedObject, int depth) const
{
outputRenderObject(stream, markedObject == this, depth);
if (is<RenderBlockFlow>(*this))
downcast<RenderBlockFlow>(*this).outputLineTreeAndMark(stream, nullptr, depth + 1);
for (auto* child = firstChildSlow(); child; child = child->nextSibling())
child->outputRenderSubTreeAndMark(stream, markedObject, depth + 1);
}
#endif // NDEBUG
FloatPoint RenderObject::localToAbsolute(const FloatPoint& localPoint, MapCoordinatesFlags mode, bool* wasFixed) const
{
TransformState transformState(TransformState::ApplyTransformDirection, localPoint);
mapLocalToContainer(nullptr, transformState, mode | ApplyContainerFlip, wasFixed);
transformState.flatten();
return transformState.lastPlanarPoint();
}
FloatPoint RenderObject::absoluteToLocal(const FloatPoint& containerPoint, MapCoordinatesFlags mode) const
{
TransformState transformState(TransformState::UnapplyInverseTransformDirection, containerPoint);
mapAbsoluteToLocalPoint(mode, transformState);
transformState.flatten();
return transformState.lastPlanarPoint();
}
FloatQuad RenderObject::absoluteToLocalQuad(const FloatQuad& quad, MapCoordinatesFlags mode) const
{
TransformState transformState(TransformState::UnapplyInverseTransformDirection, quad.boundingBox().center(), quad);
mapAbsoluteToLocalPoint(mode, transformState);
transformState.flatten();
return transformState.lastPlanarQuad();
}
void RenderObject::mapLocalToContainer(const RenderLayerModelObject* repaintContainer, TransformState& transformState, MapCoordinatesFlags mode, bool* wasFixed) const
{
if (repaintContainer == this)
return;
auto* parent = this->parent();
if (!parent)
return;
// FIXME: this should call offsetFromContainer to share code, but I'm not sure it's ever called.
LayoutPoint centerPoint(transformState.mappedPoint());
if (mode & ApplyContainerFlip && is<RenderBox>(*parent)) {
if (parent->style().isFlippedBlocksWritingMode())
transformState.move(downcast<RenderBox>(parent)->flipForWritingMode(LayoutPoint(transformState.mappedPoint())) - centerPoint);
mode &= ~ApplyContainerFlip;
}
if (is<RenderBox>(*parent))
transformState.move(-toLayoutSize(downcast<RenderBox>(*parent).scrollPosition()));
parent->mapLocalToContainer(repaintContainer, transformState, mode, wasFixed);
}
const RenderObject* RenderObject::pushMappingToContainer(const RenderLayerModelObject* ancestorToStopAt, RenderGeometryMap& geometryMap) const
{
ASSERT_UNUSED(ancestorToStopAt, ancestorToStopAt != this);
auto* container = parent();
if (!container)
return nullptr;
// FIXME: this should call offsetFromContainer to share code, but I'm not sure it's ever called.
LayoutSize offset;
if (is<RenderBox>(*container))
offset = -toLayoutSize(downcast<RenderBox>(*container).scrollPosition());
geometryMap.push(this, offset, false);
return container;
}
void RenderObject::mapAbsoluteToLocalPoint(MapCoordinatesFlags mode, TransformState& transformState) const
{
if (auto* parent = this->parent()) {
parent->mapAbsoluteToLocalPoint(mode, transformState);
if (is<RenderBox>(*parent))
transformState.move(toLayoutSize(downcast<RenderBox>(*parent).scrollPosition()));
}
}
bool RenderObject::shouldUseTransformFromContainer(const RenderObject* containerObject) const
{
#if ENABLE(3D_TRANSFORMS)
return hasTransform() || (containerObject && containerObject->style().hasPerspective());
#else
UNUSED_PARAM(containerObject);
return hasTransform();
#endif
}
void RenderObject::getTransformFromContainer(const RenderObject* containerObject, const LayoutSize& offsetInContainer, TransformationMatrix& transform) const
{
transform.makeIdentity();
transform.translate(offsetInContainer.width(), offsetInContainer.height());
RenderLayer* layer;
if (hasLayer() && (layer = downcast<RenderLayerModelObject>(*this).layer()) && layer->transform())
transform.multiply(layer->currentTransform());
#if ENABLE(3D_TRANSFORMS)
if (containerObject && containerObject->hasLayer() && containerObject->style().hasPerspective()) {
// Perpsective on the container affects us, so we have to factor it in here.
ASSERT(containerObject->hasLayer());
FloatPoint perspectiveOrigin = downcast<RenderLayerModelObject>(*containerObject).layer()->perspectiveOrigin();
TransformationMatrix perspectiveMatrix;
perspectiveMatrix.applyPerspective(containerObject->style().perspective());
transform.translateRight3d(-perspectiveOrigin.x(), -perspectiveOrigin.y(), 0);
transform = perspectiveMatrix * transform;
transform.translateRight3d(perspectiveOrigin.x(), perspectiveOrigin.y(), 0);
}
#else
UNUSED_PARAM(containerObject);
#endif
}
FloatQuad RenderObject::localToContainerQuad(const FloatQuad& localQuad, const RenderLayerModelObject* repaintContainer, MapCoordinatesFlags mode, bool* wasFixed) const
{
// Track the point at the center of the quad's bounding box. As mapLocalToContainer() calls offsetFromContainer(),
// it will use that point as the reference point to decide which column's transform to apply in multiple-column blocks.
TransformState transformState(TransformState::ApplyTransformDirection, localQuad.boundingBox().center(), localQuad);
mapLocalToContainer(repaintContainer, transformState, mode | ApplyContainerFlip, wasFixed);
transformState.flatten();
return transformState.lastPlanarQuad();
}
FloatPoint RenderObject::localToContainerPoint(const FloatPoint& localPoint, const RenderLayerModelObject* repaintContainer, MapCoordinatesFlags mode, bool* wasFixed) const
{
TransformState transformState(TransformState::ApplyTransformDirection, localPoint);
mapLocalToContainer(repaintContainer, transformState, mode | ApplyContainerFlip, wasFixed);
transformState.flatten();
return transformState.lastPlanarPoint();
}
LayoutSize RenderObject::offsetFromContainer(RenderElement& container, const LayoutPoint&, bool* offsetDependsOnPoint) const
{
ASSERT(&container == this->container());
LayoutSize offset;
if (is<RenderBox>(container))
offset -= toLayoutSize(downcast<RenderBox>(container).scrollPosition());
if (offsetDependsOnPoint)
*offsetDependsOnPoint = is<RenderFragmentedFlow>(container);
return offset;
}
LayoutSize RenderObject::offsetFromAncestorContainer(RenderElement& container) const
{
LayoutSize offset;
LayoutPoint referencePoint;
const RenderObject* currContainer = this;
do {
RenderElement* nextContainer = currContainer->container();
ASSERT(nextContainer); // This means we reached the top without finding container.
if (!nextContainer)
break;
ASSERT(!currContainer->hasTransform());
LayoutSize currentOffset = currContainer->offsetFromContainer(*nextContainer, referencePoint);
offset += currentOffset;
referencePoint.move(currentOffset);
currContainer = nextContainer;
} while (currContainer != &container);
return offset;
}
LayoutRect RenderObject::localCaretRect(InlineBox*, unsigned, LayoutUnit* extraWidthToEndOfLine)
{
if (extraWidthToEndOfLine)
*extraWidthToEndOfLine = 0;
return LayoutRect();
}
bool RenderObject::isRooted() const
{
return isDescendantOf(&view());
}
static inline RenderElement* containerForElement(const RenderObject& renderer, const RenderLayerModelObject* repaintContainer, bool* repaintContainerSkipped)
{
// This method is extremely similar to containingBlock(), but with a few notable
// exceptions.
// (1) For normal flow elements, it just returns the parent.
// (2) For absolute positioned elements, it will return a relative positioned inline, while
// containingBlock() skips to the non-anonymous containing block.
// This does mean that computePositionedLogicalWidth and computePositionedLogicalHeight have to use container().
EPosition pos = renderer.style().position();
auto* parent = renderer.parent();
if (is<RenderText>(renderer) || (pos != FixedPosition && pos != AbsolutePosition))
return parent;
for (; parent && (pos == AbsolutePosition ? !parent->canContainAbsolutelyPositionedObjects() : !parent->canContainFixedPositionObjects()); parent = parent->parent()) {
if (repaintContainerSkipped && repaintContainer == parent)
*repaintContainerSkipped = true;
}
return parent;
}
RenderElement* RenderObject::container() const
{
return containerForElement(*this, nullptr, nullptr);
}
RenderElement* RenderObject::container(const RenderLayerModelObject* repaintContainer, bool& repaintContainerSkipped) const
{
repaintContainerSkipped = false;
return containerForElement(*this, repaintContainer, &repaintContainerSkipped);
}
bool RenderObject::isSelectionBorder() const
{
SelectionState st = selectionState();
return st == SelectionStart
|| st == SelectionEnd
|| st == SelectionBoth
|| view().selection().start() == this
|| view().selection().end() == this;
}
void RenderObject::willBeDestroyed()
{
ASSERT(!m_parent);
ASSERT(renderTreeBeingDestroyed() || !is<RenderElement>(*this) || !view().frameView().hasSlowRepaintObject(downcast<RenderElement>(*this)));
if (AXObjectCache* cache = document().existingAXObjectCache())
cache->remove(this);
if (auto* node = this->node()) {
// FIXME: Continuations should be anonymous.
ASSERT(!node->renderer() || node->renderer() == this || (is<RenderElement>(*this) && downcast<RenderElement>(*this).isContinuation()));
if (node->renderer() == this)
node->setRenderer(nullptr);
}
removeRareData();
}
void RenderObject::insertedIntoTree()
{
// FIXME: We should ASSERT(isRooted()) here but generated content makes some out-of-order insertion.
if (!isFloating() && parent()->childrenInline())
parent()->dirtyLinesFromChangedChild(*this);
}
void RenderObject::willBeRemovedFromTree()
{
// FIXME: We should ASSERT(isRooted()) but we have some out-of-order removals which would need to be fixed first.
// Update cached boundaries in SVG renderers, if a child is removed.
parent()->setNeedsBoundariesUpdate();
}
void RenderObject::destroy()
{
RELEASE_ASSERT(!m_parent);
RELEASE_ASSERT(!m_next);
RELEASE_ASSERT(!m_previous);
RELEASE_ASSERT(!m_bitfields.beingDestroyed());
m_bitfields.setBeingDestroyed(true);
#if PLATFORM(IOS)
if (hasLayer())
downcast<RenderBoxModelObject>(*this).layer()->willBeDestroyed();
#endif
willBeDestroyed();
if (is<RenderWidget>(*this)) {
downcast<RenderWidget>(*this).deref();
return;
}
delete this;
}
Position RenderObject::positionForPoint(const LayoutPoint& point)
{
// FIXME: This should just create a Position object instead (webkit.org/b/168566).
return positionForPoint(point, nullptr).deepEquivalent();
}
VisiblePosition RenderObject::positionForPoint(const LayoutPoint&, const RenderFragmentContainer*)
{
return createVisiblePosition(caretMinOffset(), DOWNSTREAM);
}
void RenderObject::updateDragState(bool dragOn)
{
bool valueChanged = (dragOn != isDragging());
setIsDragging(dragOn);
if (!is<RenderElement>(*this))
return;
auto& renderElement = downcast<RenderElement>(*this);
if (valueChanged && renderElement.element() && (style().affectedByDrag() || renderElement.element()->childrenAffectedByDrag()))
renderElement.element()->invalidateStyleForSubtree();
for (auto& child : childrenOfType<RenderObject>(renderElement))
child.updateDragState(dragOn);
}
bool RenderObject::isComposited() const
{
return hasLayer() && downcast<RenderLayerModelObject>(*this).layer()->isComposited();
}
bool RenderObject::hitTest(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestFilter hitTestFilter)
{
bool inside = false;
if (hitTestFilter != HitTestSelf) {
// First test the foreground layer (lines and inlines).
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestForeground);
// Test floats next.
if (!inside)
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestFloat);
// Finally test to see if the mouse is in the background (within a child block's background).
if (!inside)
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestChildBlockBackgrounds);
}
// See if the mouse is inside us but not any of our descendants
if (hitTestFilter != HitTestDescendants && !inside)
inside = nodeAtPoint(request, result, locationInContainer, accumulatedOffset, HitTestBlockBackground);
return inside;
}
void RenderObject::updateHitTestResult(HitTestResult& result, const LayoutPoint& point)
{
if (result.innerNode())
return;
Node* node = this->node();
// If we hit the anonymous renderers inside generated content we should
// actually hit the generated content so walk up to the PseudoElement.
if (!node && parent() && parent()->isBeforeOrAfterContent()) {
for (auto* renderer = parent(); renderer && !node; renderer = renderer->parent())
node = renderer->element();
}
if (node) {
result.setInnerNode(node);
if (!result.innerNonSharedNode())
result.setInnerNonSharedNode(node);
result.setLocalPoint(point);
}
}
bool RenderObject::nodeAtPoint(const HitTestRequest&, HitTestResult&, const HitTestLocation& /*locationInContainer*/, const LayoutPoint& /*accumulatedOffset*/, HitTestAction)
{
return false;
}
int RenderObject::innerLineHeight() const
{
return style().computedLineHeight();
}
#if ENABLE(DASHBOARD_SUPPORT)
void RenderObject::addAnnotatedRegions(Vector<AnnotatedRegionValue>& regions)
{
// Convert the style regions to absolute coordinates.
if (style().visibility() != VISIBLE || !is<RenderBox>(*this))
return;
auto& box = downcast<RenderBox>(*this);
FloatPoint absPos = localToAbsolute();
const Vector<StyleDashboardRegion>& styleRegions = style().dashboardRegions();
for (const auto& styleRegion : styleRegions) {
LayoutUnit w = box.width();
LayoutUnit h = box.height();
AnnotatedRegionValue region;
region.label = styleRegion.label;
region.bounds = LayoutRect(styleRegion.offset.left().value(),
styleRegion.offset.top().value(),
w - styleRegion.offset.left().value() - styleRegion.offset.right().value(),
h - styleRegion.offset.top().value() - styleRegion.offset.bottom().value());
region.type = styleRegion.type;
region.clip = computeAbsoluteRepaintRect(region.bounds);
if (region.clip.height() < 0) {
region.clip.setHeight(0);
region.clip.setWidth(0);
}
region.bounds.setX(absPos.x() + styleRegion.offset.left().value());
region.bounds.setY(absPos.y() + styleRegion.offset.top().value());
regions.append(region);
}
}
void RenderObject::collectAnnotatedRegions(Vector<AnnotatedRegionValue>& regions)
{
// RenderTexts don't have their own style, they just use their parent's style,
// so we don't want to include them.
if (is<RenderText>(*this))
return;
addAnnotatedRegions(regions);
for (RenderObject* current = downcast<RenderElement>(*this).firstChild(); current; current = current->nextSibling())
current->collectAnnotatedRegions(regions);
}
#endif
int RenderObject::caretMinOffset() const
{
return 0;
}
int RenderObject::caretMaxOffset() const
{
if (isReplaced())
return node() ? std::max(1U, node()->countChildNodes()) : 1;
if (isHR())
return 1;
return 0;
}
int RenderObject::previousOffset(int current) const
{
return current - 1;
}
int RenderObject::previousOffsetForBackwardDeletion(int current) const
{
return current - 1;
}
int RenderObject::nextOffset(int current) const
{
return current + 1;
}
void RenderObject::adjustRectForOutlineAndShadow(LayoutRect& rect) const
{
LayoutUnit outlineSize = outlineStyleForRepaint().outlineSize();
if (const ShadowData* boxShadow = style().boxShadow()) {
boxShadow->adjustRectForShadow(rect, outlineSize);
return;
}
rect.inflate(outlineSize);
}
void RenderObject::imageChanged(CachedImage* image, const IntRect* rect)
{
imageChanged(static_cast<WrappedImagePtr>(image), rect);
}
RenderBoxModelObject* RenderObject::offsetParent() const
{
// If any of the following holds true return null and stop this algorithm:
// A is the root element.
// A is the HTML body element.
// The computed value of the position property for element A is fixed.
if (isDocumentElementRenderer() || isBody() || isFixedPositioned())
return nullptr;
// If A is an area HTML element which has a map HTML element somewhere in the ancestor
// chain return the nearest ancestor map HTML element and stop this algorithm.
// FIXME: Implement!
// Return the nearest ancestor element of A for which at least one of the following is
// true and stop this algorithm if such an ancestor is found:
// * The computed value of the position property is not static.
// * It is the HTML body element.
// * The computed value of the position property of A is static and the ancestor
// is one of the following HTML elements: td, th, or table.
// * Our own extension: if there is a difference in the effective zoom
bool skipTables = isPositioned();
float currZoom = style().effectiveZoom();
auto current = parent();
while (current && (!current->element() || (!current->isPositioned() && !current->isBody()))) {
Element* element = current->element();
if (!skipTables && element && (is<HTMLTableElement>(*element) || is<HTMLTableCellElement>(*element)))
break;
float newZoom = current->style().effectiveZoom();
if (currZoom != newZoom)
break;
currZoom = newZoom;
current = current->parent();
}
return is<RenderBoxModelObject>(current) ? downcast<RenderBoxModelObject>(current) : nullptr;
}
VisiblePosition RenderObject::createVisiblePosition(int offset, EAffinity affinity) const
{
// If this is a non-anonymous renderer in an editable area, then it's simple.
if (Node* node = nonPseudoNode()) {
if (!node->hasEditableStyle()) {
// If it can be found, we prefer a visually equivalent position that is editable.
Position position = createLegacyEditingPosition(node, offset);
Position candidate = position.downstream(CanCrossEditingBoundary);
if (candidate.deprecatedNode()->hasEditableStyle())
return VisiblePosition(candidate, affinity);
candidate = position.upstream(CanCrossEditingBoundary);
if (candidate.deprecatedNode()->hasEditableStyle())
return VisiblePosition(candidate, affinity);
}
// FIXME: Eliminate legacy editing positions
return VisiblePosition(createLegacyEditingPosition(node, offset), affinity);
}
// We don't want to cross the boundary between editable and non-editable
// regions of the document, but that is either impossible or at least
// extremely unlikely in any normal case because we stop as soon as we
// find a single non-anonymous renderer.
// Find a nearby non-anonymous renderer.
const RenderObject* child = this;
while (const auto parent = child->parent()) {
// Find non-anonymous content after.
const RenderObject* renderer = child;
while ((renderer = renderer->nextInPreOrder(parent))) {
if (Node* node = renderer->nonPseudoNode())
return VisiblePosition(firstPositionInOrBeforeNode(node), DOWNSTREAM);
}
// Find non-anonymous content before.
renderer = child;
while ((renderer = renderer->previousInPreOrder())) {
if (renderer == parent)
break;
if (Node* node = renderer->nonPseudoNode())
return VisiblePosition(lastPositionInOrAfterNode(node), DOWNSTREAM);
}
// Use the parent itself unless it too is anonymous.
if (Element* element = parent->nonPseudoElement())
return VisiblePosition(firstPositionInOrBeforeNode(element), DOWNSTREAM);
// Repeat at the next level up.
child = parent;
}
// Everything was anonymous. Give up.
return VisiblePosition();
}
VisiblePosition RenderObject::createVisiblePosition(const Position& position) const
{
if (position.isNotNull())
return VisiblePosition(position);
ASSERT(!node());
return createVisiblePosition(0, DOWNSTREAM);
}
CursorDirective RenderObject::getCursor(const LayoutPoint&, Cursor&) const
{
return SetCursorBasedOnStyle;
}
bool RenderObject::canUpdateSelectionOnRootLineBoxes()
{
if (needsLayout())
return false;
RenderBlock* containingBlock = this->containingBlock();
return containingBlock ? !containingBlock->needsLayout() : true;
}
// We only create "generated" child renderers like one for first-letter if:
// - the firstLetterBlock can have children in the DOM and
// - the block doesn't have any special assumption on its text children.
// This correctly prevents form controls from having such renderers.
bool RenderObject::canHaveGeneratedChildren() const
{
return canHaveChildren();
}
Node* RenderObject::generatingPseudoHostElement() const
{
return downcast<PseudoElement>(*node()).hostElement();
}
void RenderObject::setNeedsBoundariesUpdate()
{
if (auto renderer = parent())
renderer->setNeedsBoundariesUpdate();
}
FloatRect RenderObject::objectBoundingBox() const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
FloatRect RenderObject::strokeBoundingBox() const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
// Returns the smallest rectangle enclosing all of the painted content
// respecting clipping, masking, filters, opacity, stroke-width and markers
FloatRect RenderObject::repaintRectInLocalCoordinates() const
{
ASSERT_NOT_REACHED();
return FloatRect();
}
AffineTransform RenderObject::localTransform() const
{
static const AffineTransform identity;
return identity;
}
const AffineTransform& RenderObject::localToParentTransform() const
{
static const AffineTransform identity;
return identity;
}
bool RenderObject::nodeAtFloatPoint(const HitTestRequest&, HitTestResult&, const FloatPoint&, HitTestAction)
{
ASSERT_NOT_REACHED();
return false;
}
RenderFragmentedFlow* RenderObject::locateEnclosingFragmentedFlow() const
{
RenderBlock* containingBlock = this->containingBlock();
return containingBlock ? containingBlock->enclosingFragmentedFlow() : nullptr;
}
void RenderObject::calculateBorderStyleColor(const EBorderStyle& style, const BoxSide& side, Color& color)
{
ASSERT(style == INSET || style == OUTSET);
// This values were derived empirically.
const RGBA32 baseDarkColor = 0xFF202020;
const RGBA32 baseLightColor = 0xFFEBEBEB;
enum Operation { Darken, Lighten };
Operation operation = (side == BSTop || side == BSLeft) == (style == INSET) ? Darken : Lighten;
// Here we will darken the border decoration color when needed. This will yield a similar behavior as in FF.
if (operation == Darken) {
if (differenceSquared(color, Color::black) > differenceSquared(baseDarkColor, Color::black))
color = color.dark();
} else {
if (differenceSquared(color, Color::white) > differenceSquared(baseLightColor, Color::white))
color = color.light();
}
}
void RenderObject::setIsDragging(bool isDragging)
{
if (isDragging || hasRareData())
ensureRareData().setIsDragging(isDragging);
}
void RenderObject::setHasReflection(bool hasReflection)
{
if (hasReflection || hasRareData())
ensureRareData().setHasReflection(hasReflection);
}
void RenderObject::setIsRenderFragmentedFlow(bool isFragmentedFlow)
{
if (isFragmentedFlow || hasRareData())
ensureRareData().setIsRenderFragmentedFlow(isFragmentedFlow);
}
void RenderObject::setHasOutlineAutoAncestor(bool hasOutlineAutoAncestor)
{
if (hasOutlineAutoAncestor || hasRareData())
ensureRareData().setHasOutlineAutoAncestor(hasOutlineAutoAncestor);
}
RenderObject::RareDataMap& RenderObject::rareDataMap()
{
static NeverDestroyed<RareDataMap> map;
return map;
}
const RenderObject::RenderObjectRareData& RenderObject::rareData() const
{
ASSERT(hasRareData());
return *rareDataMap().get(this);
}
RenderObject::RenderObjectRareData& RenderObject::ensureRareData()
{
setHasRareData(true);
return *rareDataMap().ensure(this, [] { return std::make_unique<RenderObjectRareData>(); }).iterator->value;
}
void RenderObject::removeRareData()
{
rareDataMap().remove(this);
setHasRareData(false);
}
#if ENABLE(TREE_DEBUGGING)
void printRenderTreeForLiveDocuments()
{
for (const auto* document : Document::allDocuments()) {
if (!document->renderView())
continue;
if (document->frame() && document->frame()->isMainFrame())
fprintf(stderr, "----------------------main frame--------------------------\n");
fprintf(stderr, "%s", document->url().string().utf8().data());
showRenderTree(document->renderView());
}
}
void printLayerTreeForLiveDocuments()
{
for (const auto* document : Document::allDocuments()) {
if (!document->renderView())
continue;
if (document->frame() && document->frame()->isMainFrame())
fprintf(stderr, "----------------------main frame--------------------------\n");
fprintf(stderr, "%s", document->url().string().utf8().data());
showLayerTree(document->renderView());
}
}
#endif // ENABLE(TREE_DEBUGGING)
} // namespace WebCore
#if ENABLE(TREE_DEBUGGING)
void showNodeTree(const WebCore::RenderObject* object)
{
if (!object)
return;
object->showNodeTreeForThis();
}
void showLineTree(const WebCore::RenderObject* object)
{
if (!object)
return;
object->showLineTreeForThis();
}
void showRenderTree(const WebCore::RenderObject* object)
{
if (!object)
return;
object->showRenderTreeForThis();
}
#endif