| /* |
| * Copyright (C) 2008, 2016 Apple Inc. All rights reserved. |
| * Copyright (C) 2009 Jian Li <jianli@chromium.org> |
| * Copyright (C) 2012 Patrick Gansterer <paroga@paroga.com> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* Thread local storage is implemented by using either pthread API or Windows |
| * native API. There is subtle semantic discrepancy for the cleanup function |
| * implementation as noted below: |
| * @ In pthread implementation, the destructor function will be called |
| * repeatedly if there is still non-NULL value associated with the function. |
| * @ In Windows native implementation, the destructor function will be called |
| * only once. |
| * This semantic discrepancy does not impose any problem because nowhere in |
| * WebKit the repeated call bahavior is utilized. |
| */ |
| |
| #ifndef WTF_ThreadSpecific_h |
| #define WTF_ThreadSpecific_h |
| |
| #include <wtf/MainThread.h> |
| #include <wtf/Noncopyable.h> |
| #include <wtf/StdLibExtras.h> |
| |
| #if USE(PTHREADS) |
| #include <pthread.h> |
| |
| #if OS(HURD) |
| // PTHREAD_KEYS_MAX is not defined in bionic nor in Hurd, so explicitly define it here. |
| #define PTHREAD_KEYS_MAX 1024 |
| #else |
| #include <limits.h> |
| #endif |
| |
| #elif OS(WINDOWS) |
| #include <windows.h> |
| #endif |
| |
| namespace WTF { |
| |
| #if OS(WINDOWS) && CPU(X86) |
| #define THREAD_SPECIFIC_CALL __stdcall |
| #else |
| #define THREAD_SPECIFIC_CALL |
| #endif |
| |
| enum class CanBeGCThread { |
| False, |
| True |
| }; |
| |
| template<typename T, CanBeGCThread canBeGCThread = CanBeGCThread::False> class ThreadSpecific { |
| WTF_MAKE_NONCOPYABLE(ThreadSpecific); |
| public: |
| ThreadSpecific(); |
| bool isSet(); // Useful as a fast check to see if this thread has set this value. |
| T* operator->(); |
| operator T*(); |
| T& operator*(); |
| |
| private: |
| // Not implemented. It's technically possible to destroy a thread specific key, but one would need |
| // to make sure that all values have been destroyed already (usually, that all threads that used it |
| // have exited). It's unlikely that any user of this call will be in that situation - and having |
| // a destructor defined can be confusing, given that it has such strong pre-requisites to work correctly. |
| ~ThreadSpecific(); |
| |
| struct Data { |
| WTF_MAKE_NONCOPYABLE(Data); |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| using PointerType = typename std::remove_const<T>::type*; |
| |
| Data(ThreadSpecific<T, canBeGCThread>* owner) |
| : owner(owner) |
| { |
| // Set up thread-specific value's memory pointer before invoking constructor, in case any function it calls |
| // needs to access the value, to avoid recursion. |
| owner->setInTLS(this); |
| new (NotNull, storagePointer()) T(); |
| } |
| |
| ~Data() |
| { |
| storagePointer()->~T(); |
| owner->setInTLS(nullptr); |
| } |
| |
| PointerType storagePointer() const { return const_cast<PointerType>(reinterpret_cast<const T*>(&m_storage)); } |
| |
| typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type m_storage; |
| ThreadSpecific<T, canBeGCThread>* owner; |
| }; |
| |
| T* get(); |
| T* set(); |
| void setInTLS(Data*); |
| void static THREAD_SPECIFIC_CALL destroy(void* ptr); |
| |
| #if USE(PTHREADS) |
| pthread_key_t m_key; |
| #elif OS(WINDOWS) |
| int m_index; |
| #endif |
| }; |
| |
| #if USE(PTHREADS) |
| |
| typedef pthread_key_t ThreadSpecificKey; |
| |
| static const constexpr ThreadSpecificKey InvalidThreadSpecificKey = PTHREAD_KEYS_MAX; |
| |
| inline void threadSpecificKeyCreate(ThreadSpecificKey* key, void (*destructor)(void *)) |
| { |
| int error = pthread_key_create(key, destructor); |
| if (error) |
| CRASH(); |
| } |
| |
| inline void threadSpecificKeyDelete(ThreadSpecificKey key) |
| { |
| int error = pthread_key_delete(key); |
| if (error) |
| CRASH(); |
| } |
| |
| inline void threadSpecificSet(ThreadSpecificKey key, void* value) |
| { |
| pthread_setspecific(key, value); |
| } |
| |
| inline void* threadSpecificGet(ThreadSpecificKey key) |
| { |
| return pthread_getspecific(key); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline ThreadSpecific<T, canBeGCThread>::ThreadSpecific() |
| { |
| int error = pthread_key_create(&m_key, destroy); |
| if (error) |
| CRASH(); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline T* ThreadSpecific<T, canBeGCThread>::get() |
| { |
| Data* data = static_cast<Data*>(pthread_getspecific(m_key)); |
| if (data) |
| return data->storagePointer(); |
| return nullptr; |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline void ThreadSpecific<T, canBeGCThread>::setInTLS(Data* data) |
| { |
| pthread_setspecific(m_key, data); |
| } |
| |
| #elif OS(WINDOWS) |
| |
| // The maximum number of FLS keys that can be created. For simplification, we assume that: |
| // 1) Once the instance of ThreadSpecific<> is created, it will not be destructed until the program dies. |
| // 2) We do not need to hold many instances of ThreadSpecific<> data. This fixed number should be far enough. |
| const int kMaxFlsKeySize = 128; |
| |
| WTF_EXPORT_PRIVATE long& flsKeyCount(); |
| WTF_EXPORT_PRIVATE DWORD* flsKeys(); |
| |
| typedef DWORD ThreadSpecificKey; |
| |
| static const constexpr ThreadSpecificKey InvalidThreadSpecificKey = FLS_OUT_OF_INDEXES; |
| |
| inline void threadSpecificKeyCreate(ThreadSpecificKey* key, void (THREAD_SPECIFIC_CALL *destructor)(void *)) |
| { |
| DWORD flsKey = FlsAlloc(destructor); |
| if (flsKey == FLS_OUT_OF_INDEXES) |
| CRASH(); |
| |
| *key = flsKey; |
| } |
| |
| inline void threadSpecificKeyDelete(ThreadSpecificKey key) |
| { |
| FlsFree(key); |
| } |
| |
| inline void threadSpecificSet(ThreadSpecificKey key, void* data) |
| { |
| FlsSetValue(key, data); |
| } |
| |
| inline void* threadSpecificGet(ThreadSpecificKey key) |
| { |
| return FlsGetValue(key); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline ThreadSpecific<T, canBeGCThread>::ThreadSpecific() |
| : m_index(-1) |
| { |
| DWORD flsKey = FlsAlloc(destroy); |
| if (flsKey == FLS_OUT_OF_INDEXES) |
| CRASH(); |
| |
| m_index = InterlockedIncrement(&flsKeyCount()) - 1; |
| if (m_index >= kMaxFlsKeySize) |
| CRASH(); |
| flsKeys()[m_index] = flsKey; |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline ThreadSpecific<T, canBeGCThread>::~ThreadSpecific() |
| { |
| FlsFree(flsKeys()[m_index]); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline T* ThreadSpecific<T, canBeGCThread>::get() |
| { |
| Data* data = static_cast<Data*>(FlsGetValue(flsKeys()[m_index])); |
| if (data) |
| return data->storagePointer(); |
| return nullptr; |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline void ThreadSpecific<T, canBeGCThread>::setInTLS(Data* data) |
| { |
| FlsSetValue(flsKeys()[m_index], data); |
| } |
| |
| #else |
| #error ThreadSpecific is not implemented for this platform. |
| #endif |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline void THREAD_SPECIFIC_CALL ThreadSpecific<T, canBeGCThread>::destroy(void* ptr) |
| { |
| Data* data = static_cast<Data*>(ptr); |
| |
| #if USE(PTHREADS) |
| // We want get() to keep working while data destructor works, because it can be called indirectly by the destructor. |
| // Some pthreads implementations zero out the pointer before calling destroy(), so we temporarily reset it. |
| pthread_setspecific(data->owner->m_key, ptr); |
| #endif |
| |
| delete data; |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline T* ThreadSpecific<T, canBeGCThread>::set() |
| { |
| RELEASE_ASSERT(canBeGCThread == CanBeGCThread::True || !mayBeGCThread()); |
| ASSERT(!get()); |
| Data* data = new Data(this); // Data will set itself into TLS. |
| ASSERT(get() == data->storagePointer()); |
| return data->storagePointer(); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline bool ThreadSpecific<T, canBeGCThread>::isSet() |
| { |
| return !!get(); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline ThreadSpecific<T, canBeGCThread>::operator T*() |
| { |
| if (T* ptr = get()) |
| return ptr; |
| return set(); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline T* ThreadSpecific<T, canBeGCThread>::operator->() |
| { |
| return operator T*(); |
| } |
| |
| template<typename T, CanBeGCThread canBeGCThread> |
| inline T& ThreadSpecific<T, canBeGCThread>::operator*() |
| { |
| return *operator T*(); |
| } |
| |
| } // namespace WTF |
| |
| using WTF::ThreadSpecific; |
| |
| #endif // WTF_ThreadSpecific_h |