| /* |
| * Copyright (C) 1999-2001 Harri Porten (porten@kde.org) |
| * Copyright (C) 2001 Peter Kelly (pmk@post.com) |
| * Copyright (C) 2003, 2006, 2007, 2008, 2009, 2010, 2011, 2013 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| * |
| */ |
| |
| #pragma once |
| |
| #include "ExecutableInfo.h" |
| #include "Lexer.h" |
| #include "ModuleScopeData.h" |
| #include "Nodes.h" |
| #include "ParseHash.h" |
| #include "ParserArena.h" |
| #include "ParserError.h" |
| #include "ParserFunctionInfo.h" |
| #include "ParserTokens.h" |
| #include "SourceProvider.h" |
| #include "SourceProviderCache.h" |
| #include "SourceProviderCacheItem.h" |
| #include "VariableEnvironment.h" |
| #include <wtf/Forward.h> |
| #include <wtf/Noncopyable.h> |
| #include <wtf/RefPtr.h> |
| |
| namespace JSC { |
| |
| class FunctionMetadataNode; |
| class FunctionParameters; |
| class Identifier; |
| class VM; |
| class SourceCode; |
| class SyntaxChecker; |
| struct DebuggerParseData; |
| |
| // Macros to make the more common TreeBuilder types a little less verbose |
| #define TreeStatement typename TreeBuilder::Statement |
| #define TreeExpression typename TreeBuilder::Expression |
| #define TreeFormalParameterList typename TreeBuilder::FormalParameterList |
| #define TreeSourceElements typename TreeBuilder::SourceElements |
| #define TreeClause typename TreeBuilder::Clause |
| #define TreeClauseList typename TreeBuilder::ClauseList |
| #define TreeArguments typename TreeBuilder::Arguments |
| #define TreeArgumentsList typename TreeBuilder::ArgumentsList |
| #define TreeFunctionBody typename TreeBuilder::FunctionBody |
| #define TreeClassExpression typename TreeBuilder::ClassExpression |
| #define TreeProperty typename TreeBuilder::Property |
| #define TreePropertyList typename TreeBuilder::PropertyList |
| #define TreeDestructuringPattern typename TreeBuilder::DestructuringPattern |
| |
| COMPILE_ASSERT(LastUntaggedToken < 64, LessThan64UntaggedTokens); |
| |
| enum SourceElementsMode { CheckForStrictMode, DontCheckForStrictMode }; |
| enum FunctionBodyType { ArrowFunctionBodyExpression, ArrowFunctionBodyBlock, StandardFunctionBodyBlock }; |
| enum class FunctionNameRequirements { None, Named, Unnamed }; |
| |
| enum class DestructuringKind { |
| DestructureToVariables, |
| DestructureToLet, |
| DestructureToConst, |
| DestructureToCatchParameters, |
| DestructureToParameters, |
| DestructureToExpressions |
| }; |
| |
| enum class DeclarationType { |
| VarDeclaration, |
| LetDeclaration, |
| ConstDeclaration |
| }; |
| |
| enum class DeclarationImportType { |
| Imported, |
| ImportedNamespace, |
| NotImported |
| }; |
| |
| enum DeclarationResult { |
| Valid = 0, |
| InvalidStrictMode = 1 << 0, |
| InvalidDuplicateDeclaration = 1 << 1 |
| }; |
| |
| typedef uint8_t DeclarationResultMask; |
| |
| enum class DeclarationDefaultContext { |
| Standard, |
| ExportDefault, |
| }; |
| |
| enum class InferName { |
| Allowed, |
| Disallowed, |
| }; |
| |
| template <typename T> inline bool isEvalNode() { return false; } |
| template <> inline bool isEvalNode<EvalNode>() { return true; } |
| |
| struct ScopeLabelInfo { |
| UniquedStringImpl* uid; |
| bool isLoop; |
| }; |
| |
| ALWAYS_INLINE static bool isArguments(const VM* vm, const Identifier* ident) |
| { |
| return vm->propertyNames->arguments == *ident; |
| } |
| ALWAYS_INLINE static bool isEval(const VM* vm, const Identifier* ident) |
| { |
| return vm->propertyNames->eval == *ident; |
| } |
| ALWAYS_INLINE static bool isEvalOrArgumentsIdentifier(const VM* vm, const Identifier* ident) |
| { |
| return isEval(vm, ident) || isArguments(vm, ident); |
| } |
| ALWAYS_INLINE static bool isIdentifierOrKeyword(const JSToken& token) |
| { |
| return token.m_type == IDENT || token.m_type & KeywordTokenFlag; |
| } |
| // _Any_ContextualKeyword includes keywords such as "let" or "yield", which have a specific meaning depending on the current parse mode |
| // or strict mode. These helpers allow to treat all contextual keywords as identifiers as required. |
| ALWAYS_INLINE static bool isAnyContextualKeyword(const JSToken& token) |
| { |
| return token.m_type >= FirstContextualKeywordToken && token.m_type <= LastContextualKeywordToken; |
| } |
| ALWAYS_INLINE static bool isIdentifierOrAnyContextualKeyword(const JSToken& token) |
| { |
| return token.m_type == IDENT || isAnyContextualKeyword(token); |
| } |
| // _Safe_ContextualKeyword includes only contextual keywords which can be treated as identifiers independently from parse mode. The exeption |
| // to this rule is `await`, but matchSpecIdentifier() always treats it as an identifier regardless. |
| ALWAYS_INLINE static bool isSafeContextualKeyword(const JSToken& token) |
| { |
| return token.m_type >= FirstSafeContextualKeywordToken && token.m_type <= LastSafeContextualKeywordToken; |
| } |
| |
| struct Scope { |
| WTF_MAKE_NONCOPYABLE(Scope); |
| |
| public: |
| Scope(const VM* vm, bool isFunction, bool isGenerator, bool strictMode, bool isArrowFunction, bool isAsyncFunction) |
| : m_vm(vm) |
| , m_shadowsArguments(false) |
| , m_usesEval(false) |
| , m_needsFullActivation(false) |
| , m_hasDirectSuper(false) |
| , m_needsSuperBinding(false) |
| , m_allowsVarDeclarations(true) |
| , m_allowsLexicalDeclarations(true) |
| , m_strictMode(strictMode) |
| , m_isFunction(isFunction) |
| , m_isGenerator(isGenerator) |
| , m_isGeneratorBoundary(false) |
| , m_isArrowFunction(isArrowFunction) |
| , m_isArrowFunctionBoundary(false) |
| , m_isAsyncFunction(isAsyncFunction) |
| , m_isAsyncFunctionBoundary(false) |
| , m_isLexicalScope(false) |
| , m_isGlobalCodeScope(false) |
| , m_isFunctionBoundary(false) |
| , m_isValidStrictMode(true) |
| , m_hasArguments(false) |
| , m_isEvalContext(false) |
| , m_hasNonSimpleParameterList(false) |
| , m_evalContextType(EvalContextType::None) |
| , m_constructorKind(static_cast<unsigned>(ConstructorKind::None)) |
| , m_expectedSuperBinding(static_cast<unsigned>(SuperBinding::NotNeeded)) |
| , m_loopDepth(0) |
| , m_switchDepth(0) |
| , m_innerArrowFunctionFeatures(0) |
| { |
| m_usedVariables.append(UniquedStringImplPtrSet()); |
| } |
| |
| Scope(Scope&&) = default; |
| |
| void startSwitch() { m_switchDepth++; } |
| void endSwitch() { m_switchDepth--; } |
| void startLoop() { m_loopDepth++; } |
| void endLoop() { ASSERT(m_loopDepth); m_loopDepth--; } |
| bool inLoop() { return !!m_loopDepth; } |
| bool breakIsValid() { return m_loopDepth || m_switchDepth; } |
| bool continueIsValid() { return m_loopDepth; } |
| |
| void pushLabel(const Identifier* label, bool isLoop) |
| { |
| if (!m_labels) |
| m_labels = std::make_unique<LabelStack>(); |
| m_labels->append(ScopeLabelInfo { label->impl(), isLoop }); |
| } |
| |
| void popLabel() |
| { |
| ASSERT(m_labels); |
| ASSERT(m_labels->size()); |
| m_labels->removeLast(); |
| } |
| |
| ScopeLabelInfo* getLabel(const Identifier* label) |
| { |
| if (!m_labels) |
| return 0; |
| for (int i = m_labels->size(); i > 0; i--) { |
| if (m_labels->at(i - 1).uid == label->impl()) |
| return &m_labels->at(i - 1); |
| } |
| return 0; |
| } |
| |
| void setSourceParseMode(SourceParseMode mode) |
| { |
| switch (mode) { |
| case SourceParseMode::AsyncGeneratorBodyMode: |
| setIsAsyncGeneratorFunctionBody(); |
| break; |
| case SourceParseMode::AsyncArrowFunctionBodyMode: |
| setIsAsyncArrowFunctionBody(); |
| break; |
| |
| case SourceParseMode::AsyncFunctionBodyMode: |
| setIsAsyncFunctionBody(); |
| break; |
| |
| case SourceParseMode::GeneratorBodyMode: |
| setIsGenerator(); |
| break; |
| |
| case SourceParseMode::GeneratorWrapperFunctionMode: |
| case SourceParseMode::GeneratorWrapperMethodMode: |
| setIsGeneratorFunction(); |
| break; |
| |
| case SourceParseMode::AsyncGeneratorWrapperMethodMode: |
| case SourceParseMode::AsyncGeneratorWrapperFunctionMode: |
| setIsAsyncGeneratorFunction(); |
| break; |
| |
| case SourceParseMode::NormalFunctionMode: |
| case SourceParseMode::GetterMode: |
| case SourceParseMode::SetterMode: |
| case SourceParseMode::MethodMode: |
| setIsFunction(); |
| break; |
| |
| case SourceParseMode::ArrowFunctionMode: |
| setIsArrowFunction(); |
| break; |
| |
| case SourceParseMode::AsyncFunctionMode: |
| case SourceParseMode::AsyncMethodMode: |
| setIsAsyncFunction(); |
| break; |
| |
| case SourceParseMode::AsyncArrowFunctionMode: |
| setIsAsyncArrowFunction(); |
| break; |
| |
| case SourceParseMode::ProgramMode: |
| case SourceParseMode::ModuleAnalyzeMode: |
| case SourceParseMode::ModuleEvaluateMode: |
| break; |
| } |
| } |
| |
| bool isFunction() const { return m_isFunction; } |
| bool isFunctionBoundary() const { return m_isFunctionBoundary; } |
| bool isGenerator() const { return m_isGenerator; } |
| bool isGeneratorBoundary() const { return m_isGeneratorBoundary; } |
| bool isAsyncFunction() const { return m_isAsyncFunction; } |
| bool isAsyncFunctionBoundary() const { return m_isAsyncFunctionBoundary; } |
| |
| bool hasArguments() const { return m_hasArguments; } |
| |
| void setIsGlobalCodeScope() { m_isGlobalCodeScope = true; } |
| bool isGlobalCodeScope() const { return m_isGlobalCodeScope; } |
| |
| void setIsLexicalScope() |
| { |
| m_isLexicalScope = true; |
| m_allowsLexicalDeclarations = true; |
| } |
| bool isLexicalScope() { return m_isLexicalScope; } |
| bool usesEval() { return m_usesEval; } |
| |
| const HashSet<UniquedStringImpl*>& closedVariableCandidates() const { return m_closedVariableCandidates; } |
| VariableEnvironment& declaredVariables() { return m_declaredVariables; } |
| VariableEnvironment& lexicalVariables() { return m_lexicalVariables; } |
| VariableEnvironment& finalizeLexicalEnvironment() |
| { |
| if (m_usesEval || m_needsFullActivation) |
| m_lexicalVariables.markAllVariablesAsCaptured(); |
| else |
| computeLexicallyCapturedVariablesAndPurgeCandidates(); |
| |
| return m_lexicalVariables; |
| } |
| |
| void computeLexicallyCapturedVariablesAndPurgeCandidates() |
| { |
| // Because variables may be defined at any time in the range of a lexical scope, we must |
| // track lexical variables that might be captured. Then, when we're preparing to pop the top |
| // lexical scope off the stack, we should find which variables are truly captured, and which |
| // variable still may be captured in a parent scope. |
| if (m_lexicalVariables.size() && m_closedVariableCandidates.size()) { |
| for (UniquedStringImpl* impl : m_closedVariableCandidates) |
| m_lexicalVariables.markVariableAsCapturedIfDefined(impl); |
| } |
| |
| // We can now purge values from the captured candidates because they're captured in this scope. |
| { |
| for (auto entry : m_lexicalVariables) { |
| if (entry.value.isCaptured()) |
| m_closedVariableCandidates.remove(entry.key.get()); |
| } |
| } |
| } |
| |
| DeclarationResultMask declareCallee(const Identifier* ident) |
| { |
| auto addResult = m_declaredVariables.add(ident->impl()); |
| // We want to track if callee is captured, but we don't want to act like it's a 'var' |
| // because that would cause the BytecodeGenerator to emit bad code. |
| addResult.iterator->value.clearIsVar(); |
| |
| DeclarationResultMask result = DeclarationResult::Valid; |
| if (isEvalOrArgumentsIdentifier(m_vm, ident)) |
| result |= DeclarationResult::InvalidStrictMode; |
| return result; |
| } |
| |
| DeclarationResultMask declareVariable(const Identifier* ident) |
| { |
| ASSERT(m_allowsVarDeclarations); |
| DeclarationResultMask result = DeclarationResult::Valid; |
| bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident); |
| m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| auto addResult = m_declaredVariables.add(ident->impl()); |
| addResult.iterator->value.setIsVar(); |
| if (!isValidStrictMode) |
| result |= DeclarationResult::InvalidStrictMode; |
| if (m_lexicalVariables.contains(ident->impl())) |
| result |= DeclarationResult::InvalidDuplicateDeclaration; |
| return result; |
| } |
| |
| DeclarationResultMask declareFunction(const Identifier* ident, bool declareAsVar, bool isSloppyModeHoistingCandidate) |
| { |
| ASSERT(m_allowsVarDeclarations || m_allowsLexicalDeclarations); |
| DeclarationResultMask result = DeclarationResult::Valid; |
| bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident); |
| if (!isValidStrictMode) |
| result |= DeclarationResult::InvalidStrictMode; |
| m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| auto addResult = declareAsVar ? m_declaredVariables.add(ident->impl()) : m_lexicalVariables.add(ident->impl()); |
| if (isSloppyModeHoistingCandidate) |
| addResult.iterator->value.setIsSloppyModeHoistingCandidate(); |
| if (declareAsVar) { |
| addResult.iterator->value.setIsVar(); |
| if (m_lexicalVariables.contains(ident->impl())) |
| result |= DeclarationResult::InvalidDuplicateDeclaration; |
| } else { |
| addResult.iterator->value.setIsLet(); |
| ASSERT_WITH_MESSAGE(!m_declaredVariables.size(), "We should only declare a function as a lexically scoped variable in scopes where var declarations aren't allowed. I.e, in strict mode and not at the top-level scope of a function or program."); |
| if (!addResult.isNewEntry) { |
| if (!isSloppyModeHoistingCandidate || !addResult.iterator->value.isFunction()) |
| result |= DeclarationResult::InvalidDuplicateDeclaration; |
| } |
| } |
| |
| addResult.iterator->value.setIsFunction(); |
| |
| return result; |
| } |
| |
| void addSloppyModeHoistableFunctionCandidate(const Identifier* ident) |
| { |
| ASSERT(m_allowsVarDeclarations); |
| m_sloppyModeHoistableFunctionCandidates.add(ident->impl()); |
| } |
| |
| void appendFunction(FunctionMetadataNode* node) |
| { |
| ASSERT(node); |
| m_functionDeclarations.append(node); |
| } |
| DeclarationStacks::FunctionStack&& takeFunctionDeclarations() { return WTFMove(m_functionDeclarations); } |
| |
| |
| DeclarationResultMask declareLexicalVariable(const Identifier* ident, bool isConstant, DeclarationImportType importType = DeclarationImportType::NotImported) |
| { |
| ASSERT(m_allowsLexicalDeclarations); |
| DeclarationResultMask result = DeclarationResult::Valid; |
| bool isValidStrictMode = !isEvalOrArgumentsIdentifier(m_vm, ident); |
| m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| auto addResult = m_lexicalVariables.add(ident->impl()); |
| if (isConstant) |
| addResult.iterator->value.setIsConst(); |
| else |
| addResult.iterator->value.setIsLet(); |
| |
| if (importType == DeclarationImportType::Imported) |
| addResult.iterator->value.setIsImported(); |
| else if (importType == DeclarationImportType::ImportedNamespace) { |
| addResult.iterator->value.setIsImported(); |
| addResult.iterator->value.setIsImportedNamespace(); |
| } |
| |
| if (!addResult.isNewEntry) |
| result |= DeclarationResult::InvalidDuplicateDeclaration; |
| if (!isValidStrictMode) |
| result |= DeclarationResult::InvalidStrictMode; |
| |
| return result; |
| } |
| |
| bool hasDeclaredVariable(const Identifier& ident) |
| { |
| return hasDeclaredVariable(ident.impl()); |
| } |
| |
| bool hasDeclaredVariable(const RefPtr<UniquedStringImpl>& ident) |
| { |
| auto iter = m_declaredVariables.find(ident.get()); |
| if (iter == m_declaredVariables.end()) |
| return false; |
| VariableEnvironmentEntry entry = iter->value; |
| return entry.isVar(); // The callee isn't a "var". |
| } |
| |
| bool hasLexicallyDeclaredVariable(const RefPtr<UniquedStringImpl>& ident) const |
| { |
| return m_lexicalVariables.contains(ident.get()); |
| } |
| |
| ALWAYS_INLINE bool hasDeclaredParameter(const Identifier& ident) |
| { |
| return hasDeclaredParameter(ident.impl()); |
| } |
| |
| bool hasDeclaredParameter(const RefPtr<UniquedStringImpl>& ident) |
| { |
| return m_declaredParameters.contains(ident.get()) || hasDeclaredVariable(ident); |
| } |
| |
| void preventAllVariableDeclarations() |
| { |
| m_allowsVarDeclarations = false; |
| m_allowsLexicalDeclarations = false; |
| } |
| void preventVarDeclarations() { m_allowsVarDeclarations = false; } |
| bool allowsVarDeclarations() const { return m_allowsVarDeclarations; } |
| bool allowsLexicalDeclarations() const { return m_allowsLexicalDeclarations; } |
| |
| DeclarationResultMask declareParameter(const Identifier* ident) |
| { |
| ASSERT(m_allowsVarDeclarations); |
| DeclarationResultMask result = DeclarationResult::Valid; |
| bool isArgumentsIdent = isArguments(m_vm, ident); |
| auto addResult = m_declaredVariables.add(ident->impl()); |
| bool isValidStrictMode = (addResult.isNewEntry || !addResult.iterator->value.isParameter()) |
| && m_vm->propertyNames->eval != *ident && !isArgumentsIdent; |
| addResult.iterator->value.clearIsVar(); |
| addResult.iterator->value.setIsParameter(); |
| m_isValidStrictMode = m_isValidStrictMode && isValidStrictMode; |
| m_declaredParameters.add(ident->impl()); |
| if (!isValidStrictMode) |
| result |= DeclarationResult::InvalidStrictMode; |
| if (isArgumentsIdent) |
| m_shadowsArguments = true; |
| if (!addResult.isNewEntry) |
| result |= DeclarationResult::InvalidDuplicateDeclaration; |
| |
| return result; |
| } |
| |
| bool usedVariablesContains(UniquedStringImpl* impl) const |
| { |
| for (const UniquedStringImplPtrSet& set : m_usedVariables) { |
| if (set.contains(impl)) |
| return true; |
| } |
| return false; |
| } |
| template <typename Func> |
| void forEachUsedVariable(const Func& func) |
| { |
| for (const UniquedStringImplPtrSet& set : m_usedVariables) { |
| for (UniquedStringImpl* impl : set) |
| func(impl); |
| } |
| } |
| void useVariable(const Identifier* ident, bool isEval) |
| { |
| useVariable(ident->impl(), isEval); |
| } |
| void useVariable(UniquedStringImpl* impl, bool isEval) |
| { |
| m_usesEval |= isEval; |
| m_usedVariables.last().add(impl); |
| } |
| |
| void pushUsedVariableSet() { m_usedVariables.append(UniquedStringImplPtrSet()); } |
| size_t currentUsedVariablesSize() { return m_usedVariables.size(); } |
| |
| void revertToPreviousUsedVariables(size_t size) { m_usedVariables.resize(size); } |
| |
| void setNeedsFullActivation() { m_needsFullActivation = true; } |
| bool needsFullActivation() const { return m_needsFullActivation; } |
| bool isArrowFunctionBoundary() { return m_isArrowFunctionBoundary; } |
| bool isArrowFunction() { return m_isArrowFunction; } |
| |
| bool hasDirectSuper() const { return m_hasDirectSuper; } |
| bool setHasDirectSuper() { return std::exchange(m_hasDirectSuper, true); } |
| |
| bool needsSuperBinding() const { return m_needsSuperBinding; } |
| bool setNeedsSuperBinding() { return std::exchange(m_needsSuperBinding, true); } |
| |
| void setEvalContextType(EvalContextType evalContextType) { m_evalContextType = evalContextType; } |
| EvalContextType evalContextType() { return m_evalContextType; } |
| |
| InnerArrowFunctionCodeFeatures innerArrowFunctionFeatures() { return m_innerArrowFunctionFeatures; } |
| |
| void setExpectedSuperBinding(SuperBinding superBinding) { m_expectedSuperBinding = static_cast<unsigned>(superBinding); } |
| SuperBinding expectedSuperBinding() const { return static_cast<SuperBinding>(m_expectedSuperBinding); } |
| void setConstructorKind(ConstructorKind constructorKind) { m_constructorKind = static_cast<unsigned>(constructorKind); } |
| ConstructorKind constructorKind() const { return static_cast<ConstructorKind>(m_constructorKind); } |
| |
| void setInnerArrowFunctionUsesSuperCall() { m_innerArrowFunctionFeatures |= SuperCallInnerArrowFunctionFeature; } |
| void setInnerArrowFunctionUsesSuperProperty() { m_innerArrowFunctionFeatures |= SuperPropertyInnerArrowFunctionFeature; } |
| void setInnerArrowFunctionUsesEval() { m_innerArrowFunctionFeatures |= EvalInnerArrowFunctionFeature; } |
| void setInnerArrowFunctionUsesThis() { m_innerArrowFunctionFeatures |= ThisInnerArrowFunctionFeature; } |
| void setInnerArrowFunctionUsesNewTarget() { m_innerArrowFunctionFeatures |= NewTargetInnerArrowFunctionFeature; } |
| void setInnerArrowFunctionUsesArguments() { m_innerArrowFunctionFeatures |= ArgumentsInnerArrowFunctionFeature; } |
| |
| bool isEvalContext() const { return m_isEvalContext; } |
| void setIsEvalContext(bool isEvalContext) { m_isEvalContext = isEvalContext; } |
| |
| void setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded() |
| { |
| ASSERT(m_isArrowFunction); |
| |
| if (m_usesEval) |
| setInnerArrowFunctionUsesEval(); |
| |
| if (usedVariablesContains(m_vm->propertyNames->arguments.impl())) |
| setInnerArrowFunctionUsesArguments(); |
| } |
| |
| void addClosedVariableCandidateUnconditionally(UniquedStringImpl* impl) |
| { |
| m_closedVariableCandidates.add(impl); |
| } |
| |
| void collectFreeVariables(Scope* nestedScope, bool shouldTrackClosedVariables) |
| { |
| if (nestedScope->m_usesEval) |
| m_usesEval = true; |
| |
| { |
| UniquedStringImplPtrSet& destinationSet = m_usedVariables.last(); |
| for (const UniquedStringImplPtrSet& usedVariablesSet : nestedScope->m_usedVariables) { |
| for (UniquedStringImpl* impl : usedVariablesSet) { |
| if (nestedScope->m_declaredVariables.contains(impl) || nestedScope->m_lexicalVariables.contains(impl)) |
| continue; |
| |
| // "arguments" reference should be resolved at function boudary. |
| if (nestedScope->isFunctionBoundary() && nestedScope->hasArguments() && impl == m_vm->propertyNames->arguments.impl() && !nestedScope->isArrowFunctionBoundary()) |
| continue; |
| |
| destinationSet.add(impl); |
| // We don't want a declared variable that is used in an inner scope to be thought of as captured if |
| // that inner scope is both a lexical scope and not a function. Only inner functions and "catch" |
| // statements can cause variables to be captured. |
| if (shouldTrackClosedVariables && (nestedScope->m_isFunctionBoundary || !nestedScope->m_isLexicalScope)) |
| m_closedVariableCandidates.add(impl); |
| } |
| } |
| } |
| // Propagate closed variable candidates downwards within the same function. |
| // Cross function captures will be realized via m_usedVariables propagation. |
| if (shouldTrackClosedVariables && !nestedScope->m_isFunctionBoundary && nestedScope->m_closedVariableCandidates.size()) { |
| auto end = nestedScope->m_closedVariableCandidates.end(); |
| auto begin = nestedScope->m_closedVariableCandidates.begin(); |
| m_closedVariableCandidates.add(begin, end); |
| } |
| } |
| |
| void mergeInnerArrowFunctionFeatures(InnerArrowFunctionCodeFeatures arrowFunctionCodeFeatures) |
| { |
| m_innerArrowFunctionFeatures = m_innerArrowFunctionFeatures | arrowFunctionCodeFeatures; |
| } |
| |
| void getSloppyModeHoistedFunctions(UniquedStringImplPtrSet& sloppyModeHoistedFunctions) |
| { |
| for (UniquedStringImpl* function : m_sloppyModeHoistableFunctionCandidates) { |
| // ES6 Annex B.3.3. The only time we can't hoist a function is if a syntax error would |
| // be caused by declaring a var with that function's name or if we have a parameter with |
| // that function's name. Note that we would only cause a syntax error if we had a let/const/class |
| // variable with the same name. |
| if (!m_lexicalVariables.contains(function)) { |
| auto iter = m_declaredVariables.find(function); |
| bool isParameter = iter != m_declaredVariables.end() && iter->value.isParameter(); |
| if (!isParameter) { |
| auto addResult = m_declaredVariables.add(function); |
| addResult.iterator->value.setIsVar(); |
| addResult.iterator->value.setIsSloppyModeHoistingCandidate(); |
| sloppyModeHoistedFunctions.add(function); |
| } |
| } |
| } |
| } |
| |
| void getCapturedVars(IdentifierSet& capturedVariables) |
| { |
| if (m_needsFullActivation || m_usesEval) { |
| for (auto& entry : m_declaredVariables) |
| capturedVariables.add(entry.key); |
| return; |
| } |
| for (UniquedStringImpl* impl : m_closedVariableCandidates) { |
| // We refer to m_declaredVariables here directly instead of a hasDeclaredVariable because we want to mark the callee as captured. |
| if (!m_declaredVariables.contains(impl)) |
| continue; |
| capturedVariables.add(impl); |
| } |
| } |
| void setStrictMode() { m_strictMode = true; } |
| bool strictMode() const { return m_strictMode; } |
| bool isValidStrictMode() const { return m_isValidStrictMode; } |
| bool shadowsArguments() const { return m_shadowsArguments; } |
| void setHasNonSimpleParameterList() |
| { |
| m_isValidStrictMode = false; |
| m_hasNonSimpleParameterList = true; |
| } |
| bool hasNonSimpleParameterList() const { return m_hasNonSimpleParameterList; } |
| |
| void copyCapturedVariablesToVector(const UniquedStringImplPtrSet& usedVariables, Vector<UniquedStringImpl*, 8>& vector) |
| { |
| for (UniquedStringImpl* impl : usedVariables) { |
| if (m_declaredVariables.contains(impl) || m_lexicalVariables.contains(impl)) |
| continue; |
| vector.append(impl); |
| } |
| } |
| |
| void fillParametersForSourceProviderCache(SourceProviderCacheItemCreationParameters& parameters, const UniquedStringImplPtrSet& capturesFromParameterExpressions) |
| { |
| ASSERT(m_isFunction); |
| parameters.usesEval = m_usesEval; |
| parameters.strictMode = m_strictMode; |
| parameters.needsFullActivation = m_needsFullActivation; |
| parameters.innerArrowFunctionFeatures = m_innerArrowFunctionFeatures; |
| parameters.needsSuperBinding = m_needsSuperBinding; |
| for (const UniquedStringImplPtrSet& set : m_usedVariables) |
| copyCapturedVariablesToVector(set, parameters.usedVariables); |
| |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=156962 |
| // We add these unconditionally because we currently don't keep a separate |
| // declaration scope for a function's parameters and its var/let/const declarations. |
| // This is somewhat unfortunate and we should refactor to do this at some point |
| // because parameters logically form a parent scope to var/let/const variables. |
| // But because we don't do this, we must grab capture candidates from a parameter |
| // list before we parse the body of a function because the body's declarations |
| // might make us believe something isn't actually a capture candidate when it really |
| // is. |
| for (UniquedStringImpl* impl : capturesFromParameterExpressions) |
| parameters.usedVariables.append(impl); |
| } |
| |
| void restoreFromSourceProviderCache(const SourceProviderCacheItem* info) |
| { |
| ASSERT(m_isFunction); |
| m_usesEval = info->usesEval; |
| m_strictMode = info->strictMode; |
| m_innerArrowFunctionFeatures = info->innerArrowFunctionFeatures; |
| m_needsFullActivation = info->needsFullActivation; |
| m_needsSuperBinding = info->needsSuperBinding; |
| UniquedStringImplPtrSet& destSet = m_usedVariables.last(); |
| for (unsigned i = 0; i < info->usedVariablesCount; ++i) |
| destSet.add(info->usedVariables()[i]); |
| } |
| |
| class MaybeParseAsGeneratorForScope; |
| |
| private: |
| void setIsFunction() |
| { |
| m_isFunction = true; |
| m_isFunctionBoundary = true; |
| m_hasArguments = true; |
| setIsLexicalScope(); |
| m_isGenerator = false; |
| m_isGeneratorBoundary = false; |
| m_isArrowFunctionBoundary = false; |
| m_isArrowFunction = false; |
| m_isAsyncFunction = false; |
| m_isAsyncFunctionBoundary = false; |
| } |
| |
| void setIsGeneratorFunction() |
| { |
| setIsFunction(); |
| m_isGenerator = true; |
| } |
| |
| void setIsGenerator() |
| { |
| setIsFunction(); |
| m_isGenerator = true; |
| m_isGeneratorBoundary = true; |
| m_hasArguments = false; |
| } |
| |
| void setIsArrowFunction() |
| { |
| setIsFunction(); |
| m_isArrowFunctionBoundary = true; |
| m_isArrowFunction = true; |
| } |
| |
| void setIsAsyncArrowFunction() |
| { |
| setIsArrowFunction(); |
| m_isAsyncFunction = true; |
| } |
| |
| void setIsAsyncFunction() |
| { |
| setIsFunction(); |
| m_isAsyncFunction = true; |
| } |
| |
| void setIsAsyncGeneratorFunction() |
| { |
| setIsFunction(); |
| m_isAsyncFunction = true; |
| m_isGenerator = true; |
| } |
| |
| void setIsAsyncGeneratorFunctionBody() |
| { |
| setIsFunction(); |
| m_hasArguments = false; |
| m_isGenerator = true; |
| m_isGeneratorBoundary = true; |
| m_isAsyncFunction = true; |
| m_isAsyncFunctionBoundary = true; |
| } |
| |
| void setIsAsyncFunctionBody() |
| { |
| setIsFunction(); |
| m_hasArguments = false; |
| m_isAsyncFunction = true; |
| m_isAsyncFunctionBoundary = true; |
| } |
| |
| void setIsAsyncArrowFunctionBody() |
| { |
| setIsArrowFunction(); |
| m_hasArguments = false; |
| m_isAsyncFunction = true; |
| m_isAsyncFunctionBoundary = true; |
| } |
| |
| const VM* m_vm; |
| bool m_shadowsArguments; |
| bool m_usesEval; |
| bool m_needsFullActivation; |
| bool m_hasDirectSuper; |
| bool m_needsSuperBinding; |
| bool m_allowsVarDeclarations; |
| bool m_allowsLexicalDeclarations; |
| bool m_strictMode; |
| bool m_isFunction; |
| bool m_isGenerator; |
| bool m_isGeneratorBoundary; |
| bool m_isArrowFunction; |
| bool m_isArrowFunctionBoundary; |
| bool m_isAsyncFunction; |
| bool m_isAsyncFunctionBoundary; |
| bool m_isLexicalScope; |
| bool m_isGlobalCodeScope; |
| bool m_isFunctionBoundary; |
| bool m_isValidStrictMode; |
| bool m_hasArguments; |
| bool m_isEvalContext; |
| bool m_hasNonSimpleParameterList; |
| EvalContextType m_evalContextType; |
| unsigned m_constructorKind; |
| unsigned m_expectedSuperBinding; |
| int m_loopDepth; |
| int m_switchDepth; |
| InnerArrowFunctionCodeFeatures m_innerArrowFunctionFeatures; |
| |
| typedef Vector<ScopeLabelInfo, 2> LabelStack; |
| std::unique_ptr<LabelStack> m_labels; |
| UniquedStringImplPtrSet m_declaredParameters; |
| VariableEnvironment m_declaredVariables; |
| VariableEnvironment m_lexicalVariables; |
| Vector<UniquedStringImplPtrSet, 6> m_usedVariables; |
| UniquedStringImplPtrSet m_sloppyModeHoistableFunctionCandidates; |
| HashSet<UniquedStringImpl*> m_closedVariableCandidates; |
| DeclarationStacks::FunctionStack m_functionDeclarations; |
| }; |
| |
| typedef Vector<Scope, 10> ScopeStack; |
| |
| struct ScopeRef { |
| ScopeRef(ScopeStack* scopeStack, unsigned index) |
| : m_scopeStack(scopeStack) |
| , m_index(index) |
| { |
| } |
| Scope* operator->() { return &m_scopeStack->at(m_index); } |
| unsigned index() const { return m_index; } |
| |
| bool hasContainingScope() |
| { |
| return m_index && !m_scopeStack->at(m_index).isFunctionBoundary(); |
| } |
| |
| ScopeRef containingScope() |
| { |
| ASSERT(hasContainingScope()); |
| return ScopeRef(m_scopeStack, m_index - 1); |
| } |
| |
| bool operator==(const ScopeRef& other) |
| { |
| ASSERT(other.m_scopeStack == m_scopeStack); |
| return m_index == other.m_index; |
| } |
| |
| bool operator!=(const ScopeRef& other) |
| { |
| return !(*this == other); |
| } |
| |
| private: |
| ScopeStack* m_scopeStack; |
| unsigned m_index; |
| }; |
| |
| enum class ArgumentType { |
| Normal, |
| Spread |
| }; |
| |
| template <typename LexerType> |
| class Parser { |
| WTF_MAKE_NONCOPYABLE(Parser); |
| WTF_MAKE_FAST_ALLOCATED; |
| |
| public: |
| Parser(VM*, const SourceCode&, JSParserBuiltinMode, JSParserStrictMode, JSParserScriptMode, SourceParseMode, SuperBinding, ConstructorKind defaultConstructorKind = ConstructorKind::None, DerivedContextType = DerivedContextType::None, bool isEvalContext = false, EvalContextType = EvalContextType::None, DebuggerParseData* = nullptr); |
| ~Parser(); |
| |
| template <class ParsedNode> |
| std::unique_ptr<ParsedNode> parse(ParserError&, const Identifier&, SourceParseMode); |
| |
| JSTextPosition positionBeforeLastNewline() const { return m_lexer->positionBeforeLastNewline(); } |
| JSTokenLocation locationBeforeLastToken() const { return m_lexer->lastTokenLocation(); } |
| |
| struct CallOrApplyDepthScope { |
| CallOrApplyDepthScope(Parser* parser) |
| : m_parser(parser) |
| , m_parent(parser->m_callOrApplyDepthScope) |
| , m_depth(m_parent ? m_parent->m_depth + 1 : 0) |
| , m_depthOfInnermostChild(m_depth) |
| { |
| parser->m_callOrApplyDepthScope = this; |
| } |
| |
| size_t distanceToInnermostChild() const |
| { |
| ASSERT(m_depthOfInnermostChild >= m_depth); |
| return m_depthOfInnermostChild - m_depth; |
| } |
| |
| ~CallOrApplyDepthScope() |
| { |
| if (m_parent) |
| m_parent->m_depthOfInnermostChild = std::max(m_depthOfInnermostChild, m_parent->m_depthOfInnermostChild); |
| m_parser->m_callOrApplyDepthScope = m_parent; |
| } |
| |
| private: |
| |
| Parser* m_parser; |
| CallOrApplyDepthScope* m_parent; |
| size_t m_depth; |
| size_t m_depthOfInnermostChild; |
| }; |
| |
| private: |
| struct AllowInOverride { |
| AllowInOverride(Parser* parser) |
| : m_parser(parser) |
| , m_oldAllowsIn(parser->m_allowsIn) |
| { |
| parser->m_allowsIn = true; |
| } |
| ~AllowInOverride() |
| { |
| m_parser->m_allowsIn = m_oldAllowsIn; |
| } |
| Parser* m_parser; |
| bool m_oldAllowsIn; |
| }; |
| |
| struct AutoPopScopeRef : public ScopeRef { |
| AutoPopScopeRef(Parser* parser, ScopeRef scope) |
| : ScopeRef(scope) |
| , m_parser(parser) |
| { |
| } |
| |
| ~AutoPopScopeRef() |
| { |
| if (m_parser) |
| m_parser->popScope(*this, false); |
| } |
| |
| void setPopped() |
| { |
| m_parser = 0; |
| } |
| |
| private: |
| Parser* m_parser; |
| }; |
| |
| struct AutoCleanupLexicalScope { |
| // We can allocate this object on the stack without actually knowing beforehand if we're |
| // going to create a new lexical scope. If we decide to create a new lexical scope, we |
| // can pass the scope into this obejct and it will take care of the cleanup for us if the parse fails. |
| // This is helpful if we may fail from syntax errors after creating a lexical scope conditionally. |
| AutoCleanupLexicalScope() |
| : m_scope(nullptr, UINT_MAX) |
| , m_parser(nullptr) |
| { |
| } |
| |
| ~AutoCleanupLexicalScope() |
| { |
| // This should only ever be called if we fail from a syntax error. Otherwise |
| // it's the intention that a user of this class pops this scope manually on a |
| // successful parse. |
| if (isValid()) |
| m_parser->popScope(*this, false); |
| } |
| |
| void setIsValid(ScopeRef& scope, Parser* parser) |
| { |
| RELEASE_ASSERT(scope->isLexicalScope()); |
| m_scope = scope; |
| m_parser = parser; |
| } |
| |
| bool isValid() const { return !!m_parser; } |
| |
| void setPopped() |
| { |
| m_parser = nullptr; |
| } |
| |
| ScopeRef& scope() { return m_scope; } |
| |
| private: |
| ScopeRef m_scope; |
| Parser* m_parser; |
| }; |
| |
| enum ExpressionErrorClass { |
| ErrorIndicatesNothing = 0, |
| ErrorIndicatesPattern, |
| ErrorIndicatesAsyncArrowFunction |
| }; |
| |
| struct ExpressionErrorClassifier { |
| ExpressionErrorClassifier(Parser* parser) |
| : m_class(ErrorIndicatesNothing) |
| , m_previous(parser->m_expressionErrorClassifier) |
| , m_parser(parser) |
| { |
| m_parser->m_expressionErrorClassifier = this; |
| } |
| |
| ~ExpressionErrorClassifier() |
| { |
| m_parser->m_expressionErrorClassifier = m_previous; |
| } |
| |
| void classifyExpressionError(ExpressionErrorClass classification) |
| { |
| if (m_class != ErrorIndicatesNothing) |
| return; |
| m_class = classification; |
| } |
| |
| void forceClassifyExpressionError(ExpressionErrorClass classification) |
| { |
| m_class = classification; |
| } |
| |
| void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification) |
| { |
| if (m_class != oldClassification) |
| return; |
| m_class = classification; |
| } |
| |
| void propagateExpressionErrorClass() |
| { |
| if (m_previous) |
| m_previous->m_class = m_class; |
| } |
| |
| bool indicatesPossiblePattern() const { return m_class == ErrorIndicatesPattern; } |
| bool indicatesPossibleAsyncArrowFunction() const { return m_class == ErrorIndicatesAsyncArrowFunction; } |
| |
| private: |
| ExpressionErrorClass m_class; |
| ExpressionErrorClassifier* m_previous; |
| Parser* m_parser; |
| }; |
| |
| ALWAYS_INLINE void classifyExpressionError(ExpressionErrorClass classification) |
| { |
| if (m_expressionErrorClassifier) |
| m_expressionErrorClassifier->classifyExpressionError(classification); |
| } |
| |
| ALWAYS_INLINE void forceClassifyExpressionError(ExpressionErrorClass classification) |
| { |
| if (m_expressionErrorClassifier) |
| m_expressionErrorClassifier->forceClassifyExpressionError(classification); |
| } |
| |
| ALWAYS_INLINE void reclassifyExpressionError(ExpressionErrorClass oldClassification, ExpressionErrorClass classification) |
| { |
| if (m_expressionErrorClassifier) |
| m_expressionErrorClassifier->reclassifyExpressionError(oldClassification, classification); |
| } |
| |
| ALWAYS_INLINE DestructuringKind destructuringKindFromDeclarationType(DeclarationType type) |
| { |
| switch (type) { |
| case DeclarationType::VarDeclaration: |
| return DestructuringKind::DestructureToVariables; |
| case DeclarationType::LetDeclaration: |
| return DestructuringKind::DestructureToLet; |
| case DeclarationType::ConstDeclaration: |
| return DestructuringKind::DestructureToConst; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return DestructuringKind::DestructureToVariables; |
| } |
| |
| ALWAYS_INLINE const char* declarationTypeToVariableKind(DeclarationType type) |
| { |
| switch (type) { |
| case DeclarationType::VarDeclaration: |
| return "variable name"; |
| case DeclarationType::LetDeclaration: |
| case DeclarationType::ConstDeclaration: |
| return "lexical variable name"; |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| return "invalid"; |
| } |
| |
| ALWAYS_INLINE AssignmentContext assignmentContextFromDeclarationType(DeclarationType type) |
| { |
| switch (type) { |
| case DeclarationType::ConstDeclaration: |
| return AssignmentContext::ConstDeclarationStatement; |
| default: |
| return AssignmentContext::DeclarationStatement; |
| } |
| } |
| |
| ALWAYS_INLINE bool isEvalOrArguments(const Identifier* ident) { return isEvalOrArgumentsIdentifier(m_vm, ident); } |
| |
| ScopeRef upperScope(int n) |
| { |
| ASSERT(m_scopeStack.size() >= size_t(1 + n)); |
| return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1 - n); |
| } |
| |
| ScopeRef currentScope() |
| { |
| return ScopeRef(&m_scopeStack, m_scopeStack.size() - 1); |
| } |
| |
| ScopeRef currentVariableScope() |
| { |
| unsigned i = m_scopeStack.size() - 1; |
| ASSERT(i < m_scopeStack.size()); |
| while (!m_scopeStack[i].allowsVarDeclarations()) { |
| i--; |
| ASSERT(i < m_scopeStack.size()); |
| } |
| return ScopeRef(&m_scopeStack, i); |
| } |
| |
| ScopeRef currentLexicalDeclarationScope() |
| { |
| unsigned i = m_scopeStack.size() - 1; |
| ASSERT(i < m_scopeStack.size()); |
| while (!m_scopeStack[i].allowsLexicalDeclarations()) { |
| i--; |
| ASSERT(i < m_scopeStack.size()); |
| } |
| |
| return ScopeRef(&m_scopeStack, i); |
| } |
| |
| ScopeRef currentFunctionScope() |
| { |
| unsigned i = m_scopeStack.size() - 1; |
| ASSERT(i < m_scopeStack.size()); |
| while (i && !m_scopeStack[i].isFunctionBoundary()) { |
| i--; |
| ASSERT(i < m_scopeStack.size()); |
| } |
| // When reaching the top level scope (it can be non function scope), we return it. |
| return ScopeRef(&m_scopeStack, i); |
| } |
| |
| ScopeRef closestParentOrdinaryFunctionNonLexicalScope() |
| { |
| unsigned i = m_scopeStack.size() - 1; |
| ASSERT(i < m_scopeStack.size() && m_scopeStack.size()); |
| while (i && (!m_scopeStack[i].isFunctionBoundary() || m_scopeStack[i].isGeneratorBoundary() || m_scopeStack[i].isAsyncFunctionBoundary() || m_scopeStack[i].isArrowFunctionBoundary())) |
| i--; |
| // When reaching the top level scope (it can be non ordinary function scope), we return it. |
| return ScopeRef(&m_scopeStack, i); |
| } |
| |
| ScopeRef pushScope() |
| { |
| bool isFunction = false; |
| bool isStrict = false; |
| bool isGenerator = false; |
| bool isArrowFunction = false; |
| bool isAsyncFunction = false; |
| if (!m_scopeStack.isEmpty()) { |
| isStrict = m_scopeStack.last().strictMode(); |
| isFunction = m_scopeStack.last().isFunction(); |
| isGenerator = m_scopeStack.last().isGenerator(); |
| isArrowFunction = m_scopeStack.last().isArrowFunction(); |
| isAsyncFunction = m_scopeStack.last().isAsyncFunction(); |
| } |
| m_scopeStack.constructAndAppend(m_vm, isFunction, isGenerator, isStrict, isArrowFunction, isAsyncFunction); |
| return currentScope(); |
| } |
| |
| void popScopeInternal(ScopeRef& scope, bool shouldTrackClosedVariables) |
| { |
| EXCEPTION_ASSERT_UNUSED(scope, scope.index() == m_scopeStack.size() - 1); |
| ASSERT(m_scopeStack.size() > 1); |
| m_scopeStack[m_scopeStack.size() - 2].collectFreeVariables(&m_scopeStack.last(), shouldTrackClosedVariables); |
| |
| if (m_scopeStack.last().isArrowFunction()) |
| m_scopeStack.last().setInnerArrowFunctionUsesEvalAndUseArgumentsIfNeeded(); |
| |
| if (!(m_scopeStack.last().isFunctionBoundary() && !m_scopeStack.last().isArrowFunctionBoundary())) |
| m_scopeStack[m_scopeStack.size() - 2].mergeInnerArrowFunctionFeatures(m_scopeStack.last().innerArrowFunctionFeatures()); |
| |
| if (!m_scopeStack.last().isFunctionBoundary() && m_scopeStack.last().needsFullActivation()) |
| m_scopeStack[m_scopeStack.size() - 2].setNeedsFullActivation(); |
| m_scopeStack.removeLast(); |
| } |
| |
| ALWAYS_INLINE void popScope(ScopeRef& scope, bool shouldTrackClosedVariables) |
| { |
| popScopeInternal(scope, shouldTrackClosedVariables); |
| } |
| |
| ALWAYS_INLINE void popScope(AutoPopScopeRef& scope, bool shouldTrackClosedVariables) |
| { |
| scope.setPopped(); |
| popScopeInternal(scope, shouldTrackClosedVariables); |
| } |
| |
| ALWAYS_INLINE void popScope(AutoCleanupLexicalScope& cleanupScope, bool shouldTrackClosedVariables) |
| { |
| RELEASE_ASSERT(cleanupScope.isValid()); |
| ScopeRef& scope = cleanupScope.scope(); |
| cleanupScope.setPopped(); |
| popScopeInternal(scope, shouldTrackClosedVariables); |
| } |
| |
| DeclarationResultMask declareVariable(const Identifier* ident, DeclarationType type = DeclarationType::VarDeclaration, DeclarationImportType importType = DeclarationImportType::NotImported) |
| { |
| if (type == DeclarationType::VarDeclaration) |
| return currentVariableScope()->declareVariable(ident); |
| |
| ASSERT(type == DeclarationType::LetDeclaration || type == DeclarationType::ConstDeclaration); |
| // Lexical variables declared at a top level scope that shadow arguments or vars are not allowed. |
| if (!m_lexer->isReparsingFunction() && m_statementDepth == 1 && (hasDeclaredParameter(*ident) || hasDeclaredVariable(*ident))) |
| return DeclarationResult::InvalidDuplicateDeclaration; |
| |
| return currentLexicalDeclarationScope()->declareLexicalVariable(ident, type == DeclarationType::ConstDeclaration, importType); |
| } |
| |
| std::pair<DeclarationResultMask, ScopeRef> declareFunction(const Identifier* ident) |
| { |
| if ((m_statementDepth == 1) || (!strictMode() && !currentScope()->isFunction() && !closestParentOrdinaryFunctionNonLexicalScope()->isEvalContext())) { |
| // Functions declared at the top-most scope (both in sloppy and strict mode) are declared as vars |
| // for backwards compatibility. This allows us to declare functions with the same name more than once. |
| // In sloppy mode, we always declare functions as vars. |
| bool declareAsVar = true; |
| bool isSloppyModeHoistingCandidate = false; |
| ScopeRef variableScope = currentVariableScope(); |
| return std::make_pair(variableScope->declareFunction(ident, declareAsVar, isSloppyModeHoistingCandidate), variableScope); |
| } |
| |
| if (!strictMode()) { |
| ASSERT(currentScope()->isFunction() || closestParentOrdinaryFunctionNonLexicalScope()->isEvalContext()); |
| |
| // Functions declared inside a function inside a nested block scope in sloppy mode are subject to this |
| // crazy rule defined inside Annex B.3.3 in the ES6 spec. It basically states that we will create |
| // the function as a local block scoped variable, but when we evaluate the block that the function is |
| // contained in, we will assign the function to a "var" variable only if declaring such a "var" wouldn't |
| // be a syntax error and if there isn't a parameter with the same name. (It would only be a syntax error if |
| // there are is a let/class/const with the same name). Note that this mean we only do the "var" hoisting |
| // binding if the block evaluates. For example, this means we wont won't perform the binding if it's inside |
| // the untaken branch of an if statement. |
| bool declareAsVar = false; |
| bool isSloppyModeHoistingCandidate = true; |
| ScopeRef lexicalVariableScope = currentLexicalDeclarationScope(); |
| ScopeRef varScope = currentVariableScope(); |
| varScope->addSloppyModeHoistableFunctionCandidate(ident); |
| ASSERT(varScope != lexicalVariableScope); |
| return std::make_pair(lexicalVariableScope->declareFunction(ident, declareAsVar, isSloppyModeHoistingCandidate), lexicalVariableScope); |
| } |
| |
| bool declareAsVar = false; |
| bool isSloppyModeHoistingCandidate = false; |
| ScopeRef lexicalVariableScope = currentLexicalDeclarationScope(); |
| return std::make_pair(lexicalVariableScope->declareFunction(ident, declareAsVar, isSloppyModeHoistingCandidate), lexicalVariableScope); |
| } |
| |
| NEVER_INLINE bool hasDeclaredVariable(const Identifier& ident) |
| { |
| unsigned i = m_scopeStack.size() - 1; |
| ASSERT(i < m_scopeStack.size()); |
| while (!m_scopeStack[i].allowsVarDeclarations()) { |
| i--; |
| ASSERT(i < m_scopeStack.size()); |
| } |
| return m_scopeStack[i].hasDeclaredVariable(ident); |
| } |
| |
| NEVER_INLINE bool hasDeclaredParameter(const Identifier& ident) |
| { |
| // FIXME: hasDeclaredParameter() is not valid during reparsing of generator or async function bodies, because their formal |
| // parameters are declared in a scope unavailable during reparsing. Note that it is redundant to call this function during |
| // reparsing anyways, as the function is already guaranteed to be valid by the original parsing. |
| // https://bugs.webkit.org/show_bug.cgi?id=164087 |
| ASSERT(!m_lexer->isReparsingFunction()); |
| |
| unsigned i = m_scopeStack.size() - 1; |
| ASSERT(i < m_scopeStack.size()); |
| while (!m_scopeStack[i].allowsVarDeclarations()) { |
| i--; |
| ASSERT(i < m_scopeStack.size()); |
| } |
| |
| if (m_scopeStack[i].isGeneratorBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) { |
| // The formal parameters which need to be verified for Generators and Async Function bodies occur |
| // in the outer wrapper function, so pick the outer scope here. |
| i--; |
| ASSERT(i < m_scopeStack.size()); |
| } |
| return m_scopeStack[i].hasDeclaredParameter(ident); |
| } |
| |
| bool exportName(const Identifier& ident) |
| { |
| ASSERT(currentScope().index() == 0); |
| ASSERT(m_moduleScopeData); |
| return m_moduleScopeData->exportName(ident); |
| } |
| |
| ScopeStack m_scopeStack; |
| |
| const SourceProviderCacheItem* findCachedFunctionInfo(int openBracePos) |
| { |
| return m_functionCache ? m_functionCache->get(openBracePos) : 0; |
| } |
| |
| Parser(); |
| String parseInner(const Identifier&, SourceParseMode); |
| |
| void didFinishParsing(SourceElements*, DeclarationStacks::FunctionStack&&, VariableEnvironment&, UniquedStringImplPtrSet&&, CodeFeatures, int); |
| |
| // Used to determine type of error to report. |
| bool isFunctionMetadataNode(ScopeNode*) { return false; } |
| bool isFunctionMetadataNode(FunctionMetadataNode*) { return true; } |
| |
| ALWAYS_INLINE void next(unsigned lexerFlags = 0) |
| { |
| int lastLine = m_token.m_location.line; |
| int lastTokenEnd = m_token.m_location.endOffset; |
| int lastTokenLineStart = m_token.m_location.lineStartOffset; |
| m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart); |
| m_lexer->setLastLineNumber(lastLine); |
| m_token.m_type = m_lexer->lex(&m_token, lexerFlags, strictMode()); |
| } |
| |
| ALWAYS_INLINE void nextExpectIdentifier(unsigned lexerFlags = 0) |
| { |
| int lastLine = m_token.m_location.line; |
| int lastTokenEnd = m_token.m_location.endOffset; |
| int lastTokenLineStart = m_token.m_location.lineStartOffset; |
| m_lastTokenEndPosition = JSTextPosition(lastLine, lastTokenEnd, lastTokenLineStart); |
| m_lexer->setLastLineNumber(lastLine); |
| m_token.m_type = m_lexer->lexExpectIdentifier(&m_token, lexerFlags, strictMode()); |
| } |
| |
| ALWAYS_INLINE bool nextTokenIsColon() |
| { |
| return m_lexer->nextTokenIsColon(); |
| } |
| |
| ALWAYS_INLINE bool consume(JSTokenType expected, unsigned flags = 0) |
| { |
| bool result = m_token.m_type == expected; |
| if (result) |
| next(flags); |
| return result; |
| } |
| |
| void printUnexpectedTokenText(WTF::PrintStream&); |
| ALWAYS_INLINE StringView getToken() |
| { |
| return m_lexer->getToken(m_token); |
| } |
| |
| ALWAYS_INLINE StringView getToken(const JSToken& token) |
| { |
| return m_lexer->getToken(token); |
| } |
| |
| ALWAYS_INLINE bool match(JSTokenType expected) |
| { |
| return m_token.m_type == expected; |
| } |
| |
| ALWAYS_INLINE bool matchContextualKeyword(const Identifier& identifier) |
| { |
| return m_token.m_type == IDENT && *m_token.m_data.ident == identifier && !m_token.m_data.escaped; |
| } |
| |
| ALWAYS_INLINE bool matchIdentifierOrKeyword() |
| { |
| return isIdentifierOrKeyword(m_token); |
| } |
| |
| ALWAYS_INLINE unsigned tokenStart() |
| { |
| return m_token.m_location.startOffset; |
| } |
| |
| ALWAYS_INLINE const JSTextPosition& tokenStartPosition() |
| { |
| return m_token.m_startPosition; |
| } |
| |
| ALWAYS_INLINE int tokenLine() |
| { |
| return m_token.m_location.line; |
| } |
| |
| ALWAYS_INLINE int tokenColumn() |
| { |
| return tokenStart() - tokenLineStart(); |
| } |
| |
| ALWAYS_INLINE const JSTextPosition& tokenEndPosition() |
| { |
| return m_token.m_endPosition; |
| } |
| |
| ALWAYS_INLINE unsigned tokenLineStart() |
| { |
| return m_token.m_location.lineStartOffset; |
| } |
| |
| ALWAYS_INLINE const JSTokenLocation& tokenLocation() |
| { |
| return m_token.m_location; |
| } |
| |
| void setErrorMessage(const String& message) |
| { |
| ASSERT_WITH_MESSAGE(!message.isEmpty(), "Attempted to set the empty string as an error message. Likely caused by invalid UTF8 used when creating the message."); |
| m_errorMessage = message; |
| if (m_errorMessage.isEmpty()) |
| m_errorMessage = ASCIILiteral("Unparseable script"); |
| } |
| |
| NEVER_INLINE void logError(bool); |
| template <typename... Args> |
| NEVER_INLINE void logError(bool, Args&&...); |
| |
| NEVER_INLINE void updateErrorWithNameAndMessage(const char* beforeMessage, const String& name, const char* afterMessage) |
| { |
| m_errorMessage = makeString(beforeMessage, " '", name, "' ", afterMessage); |
| } |
| |
| NEVER_INLINE void updateErrorMessage(const char* msg) |
| { |
| ASSERT(msg); |
| m_errorMessage = String(msg); |
| ASSERT(!m_errorMessage.isNull()); |
| } |
| |
| ALWAYS_INLINE void recordPauseLocation(const JSTextPosition&); |
| ALWAYS_INLINE void recordFunctionEntryLocation(const JSTextPosition&); |
| ALWAYS_INLINE void recordFunctionLeaveLocation(const JSTextPosition&); |
| |
| void startLoop() { currentScope()->startLoop(); } |
| void endLoop() { currentScope()->endLoop(); } |
| void startSwitch() { currentScope()->startSwitch(); } |
| void endSwitch() { currentScope()->endSwitch(); } |
| void setStrictMode() { currentScope()->setStrictMode(); } |
| bool strictMode() { return currentScope()->strictMode(); } |
| bool isValidStrictMode() |
| { |
| int i = m_scopeStack.size() - 1; |
| if (!m_scopeStack[i].isValidStrictMode()) |
| return false; |
| |
| // In the case of Generator or Async function bodies, also check the wrapper function, whose name or |
| // arguments may be invalid. |
| if (UNLIKELY((m_scopeStack[i].isGeneratorBoundary() || m_scopeStack[i].isAsyncFunctionBoundary()) && i)) |
| return m_scopeStack[i - 1].isValidStrictMode(); |
| return true; |
| } |
| DeclarationResultMask declareParameter(const Identifier* ident) { return currentScope()->declareParameter(ident); } |
| bool declareRestOrNormalParameter(const Identifier&, const Identifier**); |
| |
| bool breakIsValid() |
| { |
| ScopeRef current = currentScope(); |
| while (!current->breakIsValid()) { |
| if (!current.hasContainingScope()) |
| return false; |
| current = current.containingScope(); |
| } |
| return true; |
| } |
| bool continueIsValid() |
| { |
| ScopeRef current = currentScope(); |
| while (!current->continueIsValid()) { |
| if (!current.hasContainingScope()) |
| return false; |
| current = current.containingScope(); |
| } |
| return true; |
| } |
| void pushLabel(const Identifier* label, bool isLoop) { currentScope()->pushLabel(label, isLoop); } |
| void popLabel(ScopeRef scope) { scope->popLabel(); } |
| ScopeLabelInfo* getLabel(const Identifier* label) |
| { |
| ScopeRef current = currentScope(); |
| ScopeLabelInfo* result = 0; |
| while (!(result = current->getLabel(label))) { |
| if (!current.hasContainingScope()) |
| return 0; |
| current = current.containingScope(); |
| } |
| return result; |
| } |
| |
| // http://ecma-international.org/ecma-262/6.0/#sec-identifiers-static-semantics-early-errors |
| ALWAYS_INLINE bool isLETMaskedAsIDENT() |
| { |
| return match(LET) && !strictMode(); |
| } |
| |
| // http://ecma-international.org/ecma-262/6.0/#sec-identifiers-static-semantics-early-errors |
| ALWAYS_INLINE bool isYIELDMaskedAsIDENT(bool inGenerator) |
| { |
| return match(YIELD) && !strictMode() && !inGenerator; |
| } |
| |
| // http://ecma-international.org/ecma-262/6.0/#sec-generator-function-definitions-static-semantics-early-errors |
| ALWAYS_INLINE bool matchSpecIdentifier(bool inGenerator) |
| { |
| return match(IDENT) || isLETMaskedAsIDENT() || isYIELDMaskedAsIDENT(inGenerator) || isSafeContextualKeyword(m_token); |
| } |
| |
| ALWAYS_INLINE bool matchSpecIdentifier() |
| { |
| return match(IDENT) || isLETMaskedAsIDENT() || isYIELDMaskedAsIDENT(currentScope()->isGenerator()) || isSafeContextualKeyword(m_token); |
| } |
| |
| template <class TreeBuilder> TreeSourceElements parseSourceElements(TreeBuilder&, SourceElementsMode); |
| template <class TreeBuilder> TreeSourceElements parseGeneratorFunctionSourceElements(TreeBuilder&, const Identifier& name, SourceElementsMode); |
| template <class TreeBuilder> TreeSourceElements parseAsyncFunctionSourceElements(TreeBuilder&, SourceParseMode, bool isArrowFunctionBodyExpression, SourceElementsMode); |
| template <class TreeBuilder> TreeSourceElements parseAsyncGeneratorFunctionSourceElements(TreeBuilder&, SourceParseMode, bool isArrowFunctionBodyExpression, SourceElementsMode); |
| template <class TreeBuilder> TreeStatement parseStatementListItem(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength); |
| template <class TreeBuilder> TreeStatement parseStatement(TreeBuilder&, const Identifier*& directive, unsigned* directiveLiteralLength = 0); |
| enum class ExportType { Exported, NotExported }; |
| template <class TreeBuilder> TreeStatement parseClassDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard); |
| template <class TreeBuilder> TreeStatement parseFunctionDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard); |
| template <class TreeBuilder> TreeStatement parseFunctionDeclarationStatement(TreeBuilder&, bool isAsync, bool parentAllowsFunctionDeclarationAsStatement); |
| template <class TreeBuilder> TreeStatement parseAsyncFunctionDeclaration(TreeBuilder&, ExportType = ExportType::NotExported, DeclarationDefaultContext = DeclarationDefaultContext::Standard); |
| template <class TreeBuilder> NEVER_INLINE bool maybeParseAsyncFunctionDeclarationStatement(TreeBuilder& context, TreeStatement& result, bool parentAllowsFunctionDeclarationAsStatement); |
| template <class TreeBuilder> TreeStatement parseVariableDeclaration(TreeBuilder&, DeclarationType, ExportType = ExportType::NotExported); |
| template <class TreeBuilder> TreeStatement parseDoWhileStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseWhileStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseForStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseBreakStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseContinueStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseReturnStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseThrowStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseWithStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseSwitchStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeClauseList parseSwitchClauses(TreeBuilder&); |
| template <class TreeBuilder> TreeClause parseSwitchDefaultClause(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseTryStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseDebuggerStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseExpressionStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseExpressionOrLabelStatement(TreeBuilder&, bool allowFunctionDeclarationAsStatement); |
| template <class TreeBuilder> TreeStatement parseIfStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseBlockStatement(TreeBuilder&); |
| template <class TreeBuilder> TreeExpression parseExpression(TreeBuilder&); |
| template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&, ExpressionErrorClassifier&); |
| template <class TreeBuilder> TreeExpression parseAssignmentExpression(TreeBuilder&); |
| template <class TreeBuilder> TreeExpression parseAssignmentExpressionOrPropagateErrorClass(TreeBuilder&); |
| template <class TreeBuilder> TreeExpression parseYieldExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseConditionalExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseBinaryExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseUnaryExpression(TreeBuilder&); |
| template <class TreeBuilder> NEVER_INLINE TreeExpression parseAwaitExpression(TreeBuilder&); |
| template <class TreeBuilder> TreeExpression parseMemberExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parsePrimaryExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArrayLiteral(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseObjectLiteral(TreeBuilder&); |
| template <class TreeBuilder> NEVER_INLINE TreeExpression parseStrictObjectLiteral(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeClassExpression parseClassExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseFunctionExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseAsyncFunctionExpression(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeArguments parseArguments(TreeBuilder&); |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression parseArgument(TreeBuilder&, ArgumentType&); |
| template <class TreeBuilder> TreeProperty parseProperty(TreeBuilder&, bool strict); |
| template <class TreeBuilder> TreeExpression parsePropertyMethod(TreeBuilder& context, const Identifier* methodName, SourceParseMode); |
| template <class TreeBuilder> TreeProperty parseGetterSetter(TreeBuilder&, bool strict, PropertyNode::Type, unsigned getterOrSetterStartOffset, ConstructorKind, ClassElementTag); |
| template <class TreeBuilder> ALWAYS_INLINE TreeFunctionBody parseFunctionBody(TreeBuilder&, SyntaxChecker&, const JSTokenLocation&, int, int functionKeywordStart, int functionNameStart, int parametersStart, ConstructorKind, SuperBinding, FunctionBodyType, unsigned, SourceParseMode); |
| template <class TreeBuilder> ALWAYS_INLINE bool parseFormalParameters(TreeBuilder&, TreeFormalParameterList, bool isArrowFunction, bool isMethod, unsigned&); |
| enum VarDeclarationListContext { ForLoopContext, VarDeclarationContext }; |
| template <class TreeBuilder> TreeExpression parseVariableDeclarationList(TreeBuilder&, int& declarations, TreeDestructuringPattern& lastPattern, TreeExpression& lastInitializer, JSTextPosition& identStart, JSTextPosition& initStart, JSTextPosition& initEnd, VarDeclarationListContext, DeclarationType, ExportType, bool& forLoopConstDoesNotHaveInitializer); |
| template <class TreeBuilder> TreeSourceElements parseArrowFunctionSingleExpressionBodySourceElements(TreeBuilder&); |
| template <class TreeBuilder> TreeExpression parseArrowFunctionExpression(TreeBuilder&, bool isAsync); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createBindingPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier&, JSToken, AssignmentContext, const Identifier** duplicateIdentifier); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern createAssignmentElement(TreeBuilder&, TreeExpression&, const JSTextPosition&, const JSTextPosition&); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, AssignmentContext bindingContext); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseBindingOrAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestAssignmentElement(TreeBuilder& context); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseAssignmentElement(TreeBuilder& context, DestructuringKind, ExportType, const Identifier** duplicateIdentifier, bool* hasDestructuringPattern, AssignmentContext bindingContext, int depth); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseObjectRestElement(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern parseDestructuringPattern(TreeBuilder&, DestructuringKind, ExportType, const Identifier** duplicateIdentifier = nullptr, bool* hasDestructuringPattern = nullptr, AssignmentContext = AssignmentContext::DeclarationStatement, int depth = 0); |
| template <class TreeBuilder> NEVER_INLINE TreeDestructuringPattern tryParseDestructuringPatternExpression(TreeBuilder&, AssignmentContext); |
| template <class TreeBuilder> NEVER_INLINE TreeExpression parseDefaultValueForDestructuringPattern(TreeBuilder&); |
| template <class TreeBuilder> TreeSourceElements parseModuleSourceElements(TreeBuilder&, SourceParseMode); |
| enum class ImportSpecifierType { NamespaceImport, NamedImport, DefaultImport }; |
| template <class TreeBuilder> typename TreeBuilder::ImportSpecifier parseImportClauseItem(TreeBuilder&, ImportSpecifierType); |
| template <class TreeBuilder> typename TreeBuilder::ModuleName parseModuleName(TreeBuilder&); |
| template <class TreeBuilder> TreeStatement parseImportDeclaration(TreeBuilder&); |
| template <class TreeBuilder> typename TreeBuilder::ExportSpecifier parseExportSpecifier(TreeBuilder& context, Vector<std::pair<const Identifier*, const Identifier*>>& maybeExportedLocalNames, bool& hasKeywordForLocalBindings); |
| template <class TreeBuilder> TreeStatement parseExportDeclaration(TreeBuilder&); |
| |
| template <class TreeBuilder> ALWAYS_INLINE TreeExpression createResolveAndUseVariable(TreeBuilder&, const Identifier*, bool isEval, const JSTextPosition&, const JSTokenLocation&); |
| |
| enum class FunctionDefinitionType { Expression, Declaration, Method }; |
| template <class TreeBuilder> NEVER_INLINE bool parseFunctionInfo(TreeBuilder&, FunctionNameRequirements, SourceParseMode, bool nameIsInContainingScope, ConstructorKind, SuperBinding, int functionKeywordStart, ParserFunctionInfo<TreeBuilder>&, FunctionDefinitionType); |
| |
| ALWAYS_INLINE bool isArrowFunctionParameters(); |
| |
| template <class TreeBuilder, class FunctionInfoType> NEVER_INLINE typename TreeBuilder::FormalParameterList parseFunctionParameters(TreeBuilder&, SourceParseMode, FunctionInfoType&); |
| template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::FormalParameterList createGeneratorParameters(TreeBuilder&, unsigned& parameterCount); |
| |
| template <class TreeBuilder> NEVER_INLINE TreeClassExpression parseClass(TreeBuilder&, FunctionNameRequirements, ParserClassInfo<TreeBuilder>&); |
| |
| template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateString parseTemplateString(TreeBuilder& context, bool isTemplateHead, typename LexerType::RawStringsBuildMode, bool& elementIsTail); |
| template <class TreeBuilder> NEVER_INLINE typename TreeBuilder::TemplateLiteral parseTemplateLiteral(TreeBuilder&, typename LexerType::RawStringsBuildMode); |
| |
| template <class TreeBuilder> ALWAYS_INLINE bool shouldCheckPropertyForUnderscoreProtoDuplicate(TreeBuilder&, const TreeProperty&); |
| |
| template <class TreeBuilder> NEVER_INLINE const char* metaPropertyName(TreeBuilder&, TreeExpression); |
| |
| ALWAYS_INLINE int isBinaryOperator(JSTokenType); |
| bool allowAutomaticSemicolon(); |
| |
| bool autoSemiColon() |
| { |
| if (m_token.m_type == SEMICOLON) { |
| next(); |
| return true; |
| } |
| return allowAutomaticSemicolon(); |
| } |
| |
| bool canRecurse() |
| { |
| return m_vm->isSafeToRecurse(); |
| } |
| |
| const JSTextPosition& lastTokenEndPosition() const |
| { |
| return m_lastTokenEndPosition; |
| } |
| |
| bool hasError() const |
| { |
| return !m_errorMessage.isNull(); |
| } |
| |
| bool isDisallowedIdentifierLet(const JSToken& token) |
| { |
| return token.m_type == LET && strictMode(); |
| } |
| |
| bool isDisallowedIdentifierAwait(const JSToken& token) |
| { |
| return token.m_type == AWAIT && (!m_parserState.allowAwait || currentScope()->isAsyncFunctionBoundary() || m_scriptMode == JSParserScriptMode::Module); |
| } |
| |
| bool isDisallowedIdentifierYield(const JSToken& token) |
| { |
| return token.m_type == YIELD && (strictMode() || currentScope()->isGenerator()); |
| } |
| |
| ALWAYS_INLINE SuperBinding adjustSuperBindingForBaseConstructor(ConstructorKind constructorKind, SuperBinding superBinding, ScopeRef functionScope) |
| { |
| return adjustSuperBindingForBaseConstructor(constructorKind, superBinding, functionScope->needsSuperBinding(), functionScope->usesEval(), functionScope->innerArrowFunctionFeatures()); |
| } |
| |
| ALWAYS_INLINE SuperBinding adjustSuperBindingForBaseConstructor(ConstructorKind constructorKind, SuperBinding superBinding, bool scopeNeedsSuperBinding, bool currentScopeUsesEval, InnerArrowFunctionCodeFeatures innerArrowFunctionFeatures) |
| { |
| SuperBinding methodSuperBinding = superBinding; |
| |
| if (constructorKind == ConstructorKind::Base) { |
| bool isSuperUsedInInnerArrowFunction = innerArrowFunctionFeatures & SuperPropertyInnerArrowFunctionFeature; |
| methodSuperBinding = (scopeNeedsSuperBinding || isSuperUsedInInnerArrowFunction || currentScopeUsesEval) ? SuperBinding::Needed : SuperBinding::NotNeeded; |
| } |
| |
| return methodSuperBinding; |
| } |
| |
| const char* disallowedIdentifierLetReason() |
| { |
| ASSERT(strictMode()); |
| return "in strict mode"; |
| } |
| |
| const char* disallowedIdentifierAwaitReason() |
| { |
| if (!m_parserState.allowAwait || currentScope()->isAsyncFunctionBoundary()) |
| return "in an async function"; |
| if (m_scriptMode == JSParserScriptMode::Module) |
| return "in a module"; |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| const char* disallowedIdentifierYieldReason() |
| { |
| if (strictMode()) |
| return "in strict mode"; |
| if (currentScope()->isGenerator()) |
| return "in a generator function"; |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| enum class FunctionParsePhase { Parameters, Body }; |
| struct ParserState { |
| int assignmentCount { 0 }; |
| int nonLHSCount { 0 }; |
| int nonTrivialExpressionCount { 0 }; |
| FunctionParsePhase functionParsePhase { FunctionParsePhase::Body }; |
| const Identifier* lastIdentifier { nullptr }; |
| const Identifier* lastFunctionName { nullptr }; |
| bool allowAwait { true }; |
| }; |
| |
| // If you're using this directly, you probably should be using |
| // createSavePoint() instead. |
| ALWAYS_INLINE ParserState internalSaveParserState() |
| { |
| return m_parserState; |
| } |
| |
| ALWAYS_INLINE void restoreParserState(const ParserState& state) |
| { |
| m_parserState = state; |
| } |
| |
| struct LexerState { |
| int startOffset; |
| unsigned oldLineStartOffset; |
| unsigned oldLastLineNumber; |
| unsigned oldLineNumber; |
| }; |
| |
| // If you're using this directly, you probably should be using |
| // createSavePoint() instead. |
| // i.e, if you parse any kind of AssignmentExpression between |
| // saving/restoring, you should definitely not be using this directly. |
| ALWAYS_INLINE LexerState internalSaveLexerState() |
| { |
| LexerState result; |
| result.startOffset = m_token.m_location.startOffset; |
| result.oldLineStartOffset = m_token.m_location.lineStartOffset; |
| result.oldLastLineNumber = m_lexer->lastLineNumber(); |
| result.oldLineNumber = m_lexer->lineNumber(); |
| ASSERT(static_cast<unsigned>(result.startOffset) >= result.oldLineStartOffset); |
| return result; |
| } |
| |
| ALWAYS_INLINE void restoreLexerState(const LexerState& lexerState) |
| { |
| // setOffset clears lexer errors. |
| m_lexer->setOffset(lexerState.startOffset, lexerState.oldLineStartOffset); |
| m_lexer->setLineNumber(lexerState.oldLineNumber); |
| next(); |
| m_lexer->setLastLineNumber(lexerState.oldLastLineNumber); |
| } |
| |
| struct SavePoint { |
| ParserState parserState; |
| LexerState lexerState; |
| }; |
| |
| struct SavePointWithError : public SavePoint { |
| bool lexerError; |
| String lexerErrorMessage; |
| String parserErrorMessage; |
| }; |
| |
| ALWAYS_INLINE void internalSaveState(SavePoint& savePoint) |
| { |
| savePoint.parserState = internalSaveParserState(); |
| savePoint.lexerState = internalSaveLexerState(); |
| } |
| |
| ALWAYS_INLINE SavePointWithError createSavePointForError() |
| { |
| SavePointWithError savePoint; |
| internalSaveState(savePoint); |
| savePoint.lexerError = m_lexer->sawError(); |
| savePoint.lexerErrorMessage = m_lexer->getErrorMessage(); |
| savePoint.parserErrorMessage = m_errorMessage; |
| return savePoint; |
| } |
| |
| ALWAYS_INLINE SavePoint createSavePoint() |
| { |
| ASSERT(!hasError()); |
| SavePoint savePoint; |
| internalSaveState(savePoint); |
| return savePoint; |
| } |
| |
| ALWAYS_INLINE void internalRestoreState(const SavePoint& savePoint) |
| { |
| restoreLexerState(savePoint.lexerState); |
| restoreParserState(savePoint.parserState); |
| } |
| |
| ALWAYS_INLINE void restoreSavePointWithError(const SavePointWithError& savePoint) |
| { |
| internalRestoreState(savePoint); |
| m_lexer->setSawError(savePoint.lexerError); |
| m_lexer->setErrorMessage(savePoint.lexerErrorMessage); |
| m_errorMessage = savePoint.parserErrorMessage; |
| } |
| |
| ALWAYS_INLINE void restoreSavePoint(const SavePoint& savePoint) |
| { |
| internalRestoreState(savePoint); |
| m_errorMessage = String(); |
| } |
| |
| VM* m_vm; |
| const SourceCode* m_source; |
| ParserArena m_parserArena; |
| std::unique_ptr<LexerType> m_lexer; |
| FunctionParameters* m_parameters { nullptr }; |
| |
| ParserState m_parserState; |
| |
| bool m_useObjectRestSpread; |
| bool m_hasStackOverflow; |
| String m_errorMessage; |
| JSToken m_token; |
| bool m_allowsIn; |
| JSTextPosition m_lastTokenEndPosition; |
| bool m_syntaxAlreadyValidated; |
| int m_statementDepth; |
| RefPtr<SourceProviderCache> m_functionCache; |
| SourceElements* m_sourceElements; |
| bool m_parsingBuiltin; |
| JSParserScriptMode m_scriptMode; |
| SuperBinding m_superBinding; |
| ConstructorKind m_defaultConstructorKind; |
| VariableEnvironment m_varDeclarations; |
| DeclarationStacks::FunctionStack m_funcDeclarations; |
| UniquedStringImplPtrSet m_sloppyModeHoistedFunctions; |
| CodeFeatures m_features; |
| int m_numConstants; |
| ExpressionErrorClassifier* m_expressionErrorClassifier; |
| bool m_isEvalContext; |
| bool m_immediateParentAllowsFunctionDeclarationInStatement; |
| RefPtr<ModuleScopeData> m_moduleScopeData; |
| DebuggerParseData* m_debuggerParseData; |
| CallOrApplyDepthScope* m_callOrApplyDepthScope { nullptr }; |
| bool m_seenTaggedTemplate { false }; |
| }; |
| |
| |
| template <typename LexerType> |
| template <class ParsedNode> |
| std::unique_ptr<ParsedNode> Parser<LexerType>::parse(ParserError& error, const Identifier& calleeName, SourceParseMode parseMode) |
| { |
| int errLine; |
| String errMsg; |
| |
| if (ParsedNode::scopeIsFunction) |
| m_lexer->setIsReparsingFunction(); |
| |
| m_sourceElements = 0; |
| |
| errLine = -1; |
| errMsg = String(); |
| |
| JSTokenLocation startLocation(tokenLocation()); |
| ASSERT(m_source->startColumn() > OrdinalNumber::beforeFirst()); |
| unsigned startColumn = m_source->startColumn().zeroBasedInt(); |
| |
| String parseError = parseInner(calleeName, parseMode); |
| |
| int lineNumber = m_lexer->lineNumber(); |
| bool lexError = m_lexer->sawError(); |
| String lexErrorMessage = lexError ? m_lexer->getErrorMessage() : String(); |
| ASSERT(lexErrorMessage.isNull() != lexError); |
| m_lexer->clear(); |
| |
| if (!parseError.isNull() || lexError) { |
| errLine = lineNumber; |
| errMsg = !lexErrorMessage.isNull() ? lexErrorMessage : parseError; |
| m_sourceElements = 0; |
| } |
| |
| std::unique_ptr<ParsedNode> result; |
| if (m_sourceElements) { |
| JSTokenLocation endLocation; |
| endLocation.line = m_lexer->lineNumber(); |
| endLocation.lineStartOffset = m_lexer->currentLineStartOffset(); |
| endLocation.startOffset = m_lexer->currentOffset(); |
| unsigned endColumn = endLocation.startOffset - endLocation.lineStartOffset; |
| result = std::make_unique<ParsedNode>(m_parserArena, |
| startLocation, |
| endLocation, |
| startColumn, |
| endColumn, |
| m_sourceElements, |
| m_varDeclarations, |
| WTFMove(m_funcDeclarations), |
| currentScope()->finalizeLexicalEnvironment(), |
| WTFMove(m_sloppyModeHoistedFunctions), |
| m_parameters, |
| *m_source, |
| m_features, |
| currentScope()->innerArrowFunctionFeatures(), |
| m_numConstants, |
| WTFMove(m_moduleScopeData)); |
| result->setLoc(m_source->firstLine().oneBasedInt(), m_lexer->lineNumber(), m_lexer->currentOffset(), m_lexer->currentLineStartOffset()); |
| result->setEndOffset(m_lexer->currentOffset()); |
| |
| if (!isFunctionParseMode(parseMode)) { |
| m_source->provider()->setSourceURLDirective(m_lexer->sourceURL()); |
| m_source->provider()->setSourceMappingURLDirective(m_lexer->sourceMappingURL()); |
| } |
| } else { |
| // We can never see a syntax error when reparsing a function, since we should have |
| // reported the error when parsing the containing program or eval code. So if we're |
| // parsing a function body node, we assume that what actually happened here is that |
| // we ran out of stack while parsing. If we see an error while parsing eval or program |
| // code we assume that it was a syntax error since running out of stack is much less |
| // likely, and we are currently unable to distinguish between the two cases. |
| if (isFunctionMetadataNode(static_cast<ParsedNode*>(0)) || m_hasStackOverflow) |
| error = ParserError(ParserError::StackOverflow, ParserError::SyntaxErrorNone, m_token); |
| else { |
| ParserError::SyntaxErrorType errorType = ParserError::SyntaxErrorIrrecoverable; |
| if (m_token.m_type == EOFTOK) |
| errorType = ParserError::SyntaxErrorRecoverable; |
| else if (m_token.m_type & UnterminatedErrorTokenFlag) { |
| // Treat multiline capable unterminated literals as recoverable. |
| if (m_token.m_type == UNTERMINATED_MULTILINE_COMMENT_ERRORTOK || m_token.m_type == UNTERMINATED_TEMPLATE_LITERAL_ERRORTOK) |
| errorType = ParserError::SyntaxErrorRecoverable; |
| else |
| errorType = ParserError::SyntaxErrorUnterminatedLiteral; |
| } |
| |
| if (isEvalNode<ParsedNode>()) |
| error = ParserError(ParserError::EvalError, errorType, m_token, errMsg, errLine); |
| else |
| error = ParserError(ParserError::SyntaxError, errorType, m_token, errMsg, errLine); |
| } |
| } |
| |
| return result; |
| } |
| |
| template <class ParsedNode> |
| std::unique_ptr<ParsedNode> parse( |
| VM* vm, const SourceCode& source, |
| const Identifier& name, JSParserBuiltinMode builtinMode, |
| JSParserStrictMode strictMode, JSParserScriptMode scriptMode, SourceParseMode parseMode, SuperBinding superBinding, |
| ParserError& error, JSTextPosition* positionBeforeLastNewline = nullptr, |
| ConstructorKind defaultConstructorKind = ConstructorKind::None, |
| DerivedContextType derivedContextType = DerivedContextType::None, |
| EvalContextType evalContextType = EvalContextType::None, |
| DebuggerParseData* debuggerParseData = nullptr) |
| { |
| ASSERT(!source.provider()->source().isNull()); |
| |
| MonotonicTime before; |
| if (UNLIKELY(Options::reportParseTimes())) |
| before = MonotonicTime::now(); |
| |
| std::unique_ptr<ParsedNode> result; |
| if (source.provider()->source().is8Bit()) { |
| Parser<Lexer<LChar>> parser(vm, source, builtinMode, strictMode, scriptMode, parseMode, superBinding, defaultConstructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, debuggerParseData); |
| result = parser.parse<ParsedNode>(error, name, parseMode); |
| if (positionBeforeLastNewline) |
| *positionBeforeLastNewline = parser.positionBeforeLastNewline(); |
| if (builtinMode == JSParserBuiltinMode::Builtin) { |
| if (!result) |
| dataLogLn("Error compiling builtin: ", error.message()); |
| } |
| } else { |
| ASSERT_WITH_MESSAGE(defaultConstructorKind == ConstructorKind::None, "BuiltinExecutables::createDefaultConstructor should always use a 8-bit string"); |
| Parser<Lexer<UChar>> parser(vm, source, builtinMode, strictMode, scriptMode, parseMode, superBinding, defaultConstructorKind, derivedContextType, isEvalNode<ParsedNode>(), evalContextType, debuggerParseData); |
| result = parser.parse<ParsedNode>(error, name, parseMode); |
| if (positionBeforeLastNewline) |
| *positionBeforeLastNewline = parser.positionBeforeLastNewline(); |
| } |
| |
| if (UNLIKELY(Options::reportParseTimes())) { |
| MonotonicTime after = MonotonicTime::now(); |
| ParseHash hash(source); |
| dataLogLn(result ? "Parsed #" : "Failed to parse #", hash.hashForCall(), "/#", hash.hashForConstruct(), " in ", (after - before).milliseconds(), " ms."); |
| } |
| |
| return result; |
| } |
| |
| } // namespace |