| /* |
| * Copyright (C) 2008-2018 Apple Inc. All rights reserved. |
| * Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CodeBlock.h" |
| |
| #include "ArithProfile.h" |
| #include "BasicBlockLocation.h" |
| #include "BytecodeDumper.h" |
| #include "BytecodeGenerator.h" |
| #include "BytecodeLivenessAnalysis.h" |
| #include "BytecodeUseDef.h" |
| #include "CallLinkStatus.h" |
| #include "CodeBlockSet.h" |
| #include "DFGCapabilities.h" |
| #include "DFGCommon.h" |
| #include "DFGDriver.h" |
| #include "DFGJITCode.h" |
| #include "DFGWorklist.h" |
| #include "Debugger.h" |
| #include "EvalCodeBlock.h" |
| #include "FullCodeOrigin.h" |
| #include "FunctionCodeBlock.h" |
| #include "FunctionExecutableDump.h" |
| #include "GetPutInfo.h" |
| #include "InlineCallFrame.h" |
| #include "InterpreterInlines.h" |
| #include "IsoCellSetInlines.h" |
| #include "JIT.h" |
| #include "JITMathIC.h" |
| #include "JSBigInt.h" |
| #include "JSCInlines.h" |
| #include "JSCJSValue.h" |
| #include "JSFunction.h" |
| #include "JSLexicalEnvironment.h" |
| #include "JSModuleEnvironment.h" |
| #include "JSSet.h" |
| #include "JSString.h" |
| #include "JSTemplateObjectDescriptor.h" |
| #include "LLIntData.h" |
| #include "LLIntEntrypoint.h" |
| #include "LLIntPrototypeLoadAdaptiveStructureWatchpoint.h" |
| #include "LowLevelInterpreter.h" |
| #include "ModuleProgramCodeBlock.h" |
| #include "ObjectAllocationProfileInlines.h" |
| #include "PCToCodeOriginMap.h" |
| #include "PolymorphicAccess.h" |
| #include "ProfilerDatabase.h" |
| #include "ProgramCodeBlock.h" |
| #include "ReduceWhitespace.h" |
| #include "Repatch.h" |
| #include "SlotVisitorInlines.h" |
| #include "StackVisitor.h" |
| #include "StructureStubInfo.h" |
| #include "TypeLocationCache.h" |
| #include "TypeProfiler.h" |
| #include "UnlinkedInstructionStream.h" |
| #include "VMInlines.h" |
| #include <wtf/BagToHashMap.h> |
| #include <wtf/CommaPrinter.h> |
| #include <wtf/SimpleStats.h> |
| #include <wtf/StringPrintStream.h> |
| #include <wtf/text/UniquedStringImpl.h> |
| |
| #if ENABLE(JIT) |
| #include "RegisterAtOffsetList.h" |
| #endif |
| |
| #if ENABLE(DFG_JIT) |
| #include "DFGOperations.h" |
| #endif |
| |
| #if ENABLE(FTL_JIT) |
| #include "FTLJITCode.h" |
| #endif |
| |
| namespace JSC { |
| |
| const ClassInfo CodeBlock::s_info = { |
| "CodeBlock", nullptr, nullptr, nullptr, |
| CREATE_METHOD_TABLE(CodeBlock) |
| }; |
| |
| CString CodeBlock::inferredName() const |
| { |
| switch (codeType()) { |
| case GlobalCode: |
| return "<global>"; |
| case EvalCode: |
| return "<eval>"; |
| case FunctionCode: |
| return jsCast<FunctionExecutable*>(ownerExecutable())->inferredName().utf8(); |
| case ModuleCode: |
| return "<module>"; |
| default: |
| CRASH(); |
| return CString("", 0); |
| } |
| } |
| |
| bool CodeBlock::hasHash() const |
| { |
| return !!m_hash; |
| } |
| |
| bool CodeBlock::isSafeToComputeHash() const |
| { |
| return !isCompilationThread(); |
| } |
| |
| CodeBlockHash CodeBlock::hash() const |
| { |
| if (!m_hash) { |
| RELEASE_ASSERT(isSafeToComputeHash()); |
| m_hash = CodeBlockHash(ownerScriptExecutable()->source(), specializationKind()); |
| } |
| return m_hash; |
| } |
| |
| CString CodeBlock::sourceCodeForTools() const |
| { |
| if (codeType() != FunctionCode) |
| return ownerScriptExecutable()->source().toUTF8(); |
| |
| SourceProvider* provider = source(); |
| FunctionExecutable* executable = jsCast<FunctionExecutable*>(ownerExecutable()); |
| UnlinkedFunctionExecutable* unlinked = executable->unlinkedExecutable(); |
| unsigned unlinkedStartOffset = unlinked->startOffset(); |
| unsigned linkedStartOffset = executable->source().startOffset(); |
| int delta = linkedStartOffset - unlinkedStartOffset; |
| unsigned rangeStart = delta + unlinked->unlinkedFunctionNameStart(); |
| unsigned rangeEnd = delta + unlinked->startOffset() + unlinked->sourceLength(); |
| return toCString( |
| "function ", |
| provider->source().substring(rangeStart, rangeEnd - rangeStart).utf8()); |
| } |
| |
| CString CodeBlock::sourceCodeOnOneLine() const |
| { |
| return reduceWhitespace(sourceCodeForTools()); |
| } |
| |
| CString CodeBlock::hashAsStringIfPossible() const |
| { |
| if (hasHash() || isSafeToComputeHash()) |
| return toCString(hash()); |
| return "<no-hash>"; |
| } |
| |
| void CodeBlock::dumpAssumingJITType(PrintStream& out, JITCode::JITType jitType) const |
| { |
| out.print(inferredName(), "#", hashAsStringIfPossible()); |
| out.print(":[", RawPointer(this), "->"); |
| if (!!m_alternative) |
| out.print(RawPointer(alternative()), "->"); |
| out.print(RawPointer(ownerExecutable()), ", ", jitType, codeType()); |
| |
| if (codeType() == FunctionCode) |
| out.print(specializationKind()); |
| out.print(", ", instructionCount()); |
| if (this->jitType() == JITCode::BaselineJIT && m_shouldAlwaysBeInlined) |
| out.print(" (ShouldAlwaysBeInlined)"); |
| if (ownerScriptExecutable()->neverInline()) |
| out.print(" (NeverInline)"); |
| if (ownerScriptExecutable()->neverOptimize()) |
| out.print(" (NeverOptimize)"); |
| else if (ownerScriptExecutable()->neverFTLOptimize()) |
| out.print(" (NeverFTLOptimize)"); |
| if (ownerScriptExecutable()->didTryToEnterInLoop()) |
| out.print(" (DidTryToEnterInLoop)"); |
| if (ownerScriptExecutable()->isStrictMode()) |
| out.print(" (StrictMode)"); |
| if (m_didFailJITCompilation) |
| out.print(" (JITFail)"); |
| if (this->jitType() == JITCode::BaselineJIT && m_didFailFTLCompilation) |
| out.print(" (FTLFail)"); |
| if (this->jitType() == JITCode::BaselineJIT && m_hasBeenCompiledWithFTL) |
| out.print(" (HadFTLReplacement)"); |
| out.print("]"); |
| } |
| |
| void CodeBlock::dump(PrintStream& out) const |
| { |
| dumpAssumingJITType(out, jitType()); |
| } |
| |
| void CodeBlock::dumpSource() |
| { |
| dumpSource(WTF::dataFile()); |
| } |
| |
| void CodeBlock::dumpSource(PrintStream& out) |
| { |
| ScriptExecutable* executable = ownerScriptExecutable(); |
| if (executable->isFunctionExecutable()) { |
| FunctionExecutable* functionExecutable = reinterpret_cast<FunctionExecutable*>(executable); |
| StringView source = functionExecutable->source().provider()->getRange( |
| functionExecutable->parametersStartOffset(), |
| functionExecutable->typeProfilingEndOffset() + 1); // Type profiling end offset is the character before the '}'. |
| |
| out.print("function ", inferredName(), source); |
| return; |
| } |
| out.print(executable->source().view()); |
| } |
| |
| void CodeBlock::dumpBytecode() |
| { |
| dumpBytecode(WTF::dataFile()); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out) |
| { |
| StubInfoMap stubInfos; |
| CallLinkInfoMap callLinkInfos; |
| getStubInfoMap(stubInfos); |
| getCallLinkInfoMap(callLinkInfos); |
| BytecodeDumper<CodeBlock>::dumpBlock(this, instructions(), out, stubInfos, callLinkInfos); |
| } |
| |
| void CodeBlock::dumpBytecode(PrintStream& out, const Instruction* begin, const Instruction*& it, const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) |
| { |
| BytecodeDumper<CodeBlock>::dumpBytecode(this, out, begin, it, stubInfos, callLinkInfos); |
| } |
| |
| void CodeBlock::dumpBytecode( |
| PrintStream& out, unsigned bytecodeOffset, |
| const StubInfoMap& stubInfos, const CallLinkInfoMap& callLinkInfos) |
| { |
| const Instruction* it = &instructions()[bytecodeOffset]; |
| dumpBytecode(out, instructions().begin(), it, stubInfos, callLinkInfos); |
| } |
| |
| #define FOR_EACH_MEMBER_VECTOR(macro) \ |
| macro(instructions) \ |
| macro(callLinkInfos) \ |
| macro(linkedCallerList) \ |
| macro(identifiers) \ |
| macro(functionExpressions) \ |
| macro(constantRegisters) |
| |
| template<typename T> |
| static size_t sizeInBytes(const Vector<T>& vector) |
| { |
| return vector.capacity() * sizeof(T); |
| } |
| |
| namespace { |
| |
| class PutToScopeFireDetail : public FireDetail { |
| public: |
| PutToScopeFireDetail(CodeBlock* codeBlock, const Identifier& ident) |
| : m_codeBlock(codeBlock) |
| , m_ident(ident) |
| { |
| } |
| |
| void dump(PrintStream& out) const override |
| { |
| out.print("Linking put_to_scope in ", FunctionExecutableDump(jsCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())), " for ", m_ident); |
| } |
| |
| private: |
| CodeBlock* m_codeBlock; |
| const Identifier& m_ident; |
| }; |
| |
| } // anonymous namespace |
| |
| CodeBlock::CodeBlock(VM* vm, Structure* structure, CopyParsedBlockTag, CodeBlock& other) |
| : JSCell(*vm, structure) |
| , m_globalObject(other.m_globalObject) |
| , m_numCalleeLocals(other.m_numCalleeLocals) |
| , m_numVars(other.m_numVars) |
| , m_shouldAlwaysBeInlined(true) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| , m_didFailJITCompilation(false) |
| , m_didFailFTLCompilation(false) |
| , m_hasBeenCompiledWithFTL(false) |
| , m_isConstructor(other.m_isConstructor) |
| , m_isStrictMode(other.m_isStrictMode) |
| , m_codeType(other.m_codeType) |
| , m_unlinkedCode(*other.vm(), this, other.m_unlinkedCode.get()) |
| , m_numberOfArgumentsToSkip(other.m_numberOfArgumentsToSkip) |
| , m_hasDebuggerStatement(false) |
| , m_steppingMode(SteppingModeDisabled) |
| , m_numBreakpoints(0) |
| , m_ownerExecutable(*other.vm(), this, other.m_ownerExecutable.get()) |
| , m_poisonedVM(other.m_poisonedVM) |
| , m_instructions(other.m_instructions) |
| , m_thisRegister(other.m_thisRegister) |
| , m_scopeRegister(other.m_scopeRegister) |
| , m_hash(other.m_hash) |
| , m_source(other.m_source) |
| , m_sourceOffset(other.m_sourceOffset) |
| , m_firstLineColumnOffset(other.m_firstLineColumnOffset) |
| , m_constantRegisters(other.m_constantRegisters) |
| , m_constantsSourceCodeRepresentation(other.m_constantsSourceCodeRepresentation) |
| , m_functionDecls(other.m_functionDecls) |
| , m_functionExprs(other.m_functionExprs) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| , m_creationTime(MonotonicTime::now()) |
| { |
| ASSERT(heap()->isDeferred()); |
| ASSERT(m_scopeRegister.isLocal()); |
| |
| setNumParameters(other.numParameters()); |
| |
| vm->heap.codeBlockSet().add(this); |
| } |
| |
| void CodeBlock::finishCreation(VM& vm, CopyParsedBlockTag, CodeBlock& other) |
| { |
| Base::finishCreation(vm); |
| finishCreationCommon(vm); |
| |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| if (other.m_rareData) { |
| createRareDataIfNecessary(); |
| |
| m_rareData->m_exceptionHandlers = other.m_rareData->m_exceptionHandlers; |
| m_rareData->m_switchJumpTables = other.m_rareData->m_switchJumpTables; |
| m_rareData->m_stringSwitchJumpTables = other.m_rareData->m_stringSwitchJumpTables; |
| } |
| } |
| |
| CodeBlock::CodeBlock(VM* vm, Structure* structure, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, |
| JSScope* scope, RefPtr<SourceProvider>&& sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset) |
| : JSCell(*vm, structure) |
| , m_globalObject(*vm, this, scope->globalObject()) |
| , m_numCalleeLocals(unlinkedCodeBlock->m_numCalleeLocals) |
| , m_numVars(unlinkedCodeBlock->m_numVars) |
| , m_shouldAlwaysBeInlined(true) |
| #if ENABLE(JIT) |
| , m_capabilityLevelState(DFG::CapabilityLevelNotSet) |
| #endif |
| , m_didFailJITCompilation(false) |
| , m_didFailFTLCompilation(false) |
| , m_hasBeenCompiledWithFTL(false) |
| , m_isConstructor(unlinkedCodeBlock->isConstructor()) |
| , m_isStrictMode(unlinkedCodeBlock->isStrictMode()) |
| , m_codeType(unlinkedCodeBlock->codeType()) |
| , m_unlinkedCode(*vm, this, unlinkedCodeBlock) |
| , m_hasDebuggerStatement(false) |
| , m_steppingMode(SteppingModeDisabled) |
| , m_numBreakpoints(0) |
| , m_ownerExecutable(*vm, this, ownerExecutable) |
| , m_poisonedVM(vm) |
| , m_thisRegister(unlinkedCodeBlock->thisRegister()) |
| , m_scopeRegister(unlinkedCodeBlock->scopeRegister()) |
| , m_source(WTFMove(sourceProvider)) |
| , m_sourceOffset(sourceOffset) |
| , m_firstLineColumnOffset(firstLineColumnOffset) |
| , m_osrExitCounter(0) |
| , m_optimizationDelayCounter(0) |
| , m_reoptimizationRetryCounter(0) |
| , m_creationTime(MonotonicTime::now()) |
| { |
| ASSERT(heap()->isDeferred()); |
| ASSERT(m_scopeRegister.isLocal()); |
| |
| ASSERT(m_source); |
| setNumParameters(unlinkedCodeBlock->numParameters()); |
| |
| vm->heap.codeBlockSet().add(this); |
| } |
| |
| // The main purpose of this function is to generate linked bytecode from unlinked bytecode. The process |
| // of linking is taking an abstract representation of bytecode and tying it to a GlobalObject and scope |
| // chain. For example, this process allows us to cache the depth of lexical environment reads that reach |
| // outside of this CodeBlock's compilation unit. It also allows us to generate particular constants that |
| // we can't generate during unlinked bytecode generation. This process is not allowed to generate control |
| // flow or introduce new locals. The reason for this is we rely on liveness analysis to be the same for |
| // all the CodeBlocks of an UnlinkedCodeBlock. We rely on this fact by caching the liveness analysis |
| // inside UnlinkedCodeBlock. |
| bool CodeBlock::finishCreation(VM& vm, ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, |
| JSScope* scope) |
| { |
| Base::finishCreation(vm); |
| finishCreationCommon(vm); |
| |
| auto throwScope = DECLARE_THROW_SCOPE(vm); |
| |
| if (vm.typeProfiler() || vm.controlFlowProfiler()) |
| vm.functionHasExecutedCache()->removeUnexecutedRange(ownerExecutable->sourceID(), ownerExecutable->typeProfilingStartOffset(), ownerExecutable->typeProfilingEndOffset()); |
| |
| setConstantRegisters(unlinkedCodeBlock->constantRegisters(), unlinkedCodeBlock->constantsSourceCodeRepresentation()); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| setConstantIdentifierSetRegisters(vm, unlinkedCodeBlock->constantIdentifierSets()); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| if (unlinkedCodeBlock->usesGlobalObject()) |
| m_constantRegisters[unlinkedCodeBlock->globalObjectRegister().toConstantIndex()].set(vm, this, m_globalObject.get()); |
| |
| for (unsigned i = 0; i < LinkTimeConstantCount; i++) { |
| LinkTimeConstant type = static_cast<LinkTimeConstant>(i); |
| if (unsigned registerIndex = unlinkedCodeBlock->registerIndexForLinkTimeConstant(type)) |
| m_constantRegisters[registerIndex].set(vm, this, m_globalObject->jsCellForLinkTimeConstant(type)); |
| } |
| |
| // We already have the cloned symbol table for the module environment since we need to instantiate |
| // the module environments before linking the code block. We replace the stored symbol table with the already cloned one. |
| if (UnlinkedModuleProgramCodeBlock* unlinkedModuleProgramCodeBlock = jsDynamicCast<UnlinkedModuleProgramCodeBlock*>(vm, unlinkedCodeBlock)) { |
| SymbolTable* clonedSymbolTable = jsCast<ModuleProgramExecutable*>(ownerExecutable)->moduleEnvironmentSymbolTable(); |
| if (vm.typeProfiler()) { |
| ConcurrentJSLocker locker(clonedSymbolTable->m_lock); |
| clonedSymbolTable->prepareForTypeProfiling(locker); |
| } |
| replaceConstant(unlinkedModuleProgramCodeBlock->moduleEnvironmentSymbolTableConstantRegisterOffset(), clonedSymbolTable); |
| } |
| |
| bool shouldUpdateFunctionHasExecutedCache = vm.typeProfiler() || vm.controlFlowProfiler(); |
| m_functionDecls = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionDecls()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionDecls(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionDecl(i); |
| if (shouldUpdateFunctionHasExecutedCache) |
| vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| m_functionDecls[i].set(vm, this, unlinkedExecutable->link(vm, ownerExecutable->source())); |
| } |
| |
| m_functionExprs = RefCountedArray<WriteBarrier<FunctionExecutable>>(unlinkedCodeBlock->numberOfFunctionExprs()); |
| for (size_t count = unlinkedCodeBlock->numberOfFunctionExprs(), i = 0; i < count; ++i) { |
| UnlinkedFunctionExecutable* unlinkedExecutable = unlinkedCodeBlock->functionExpr(i); |
| if (shouldUpdateFunctionHasExecutedCache) |
| vm.functionHasExecutedCache()->insertUnexecutedRange(ownerExecutable->sourceID(), unlinkedExecutable->typeProfilingStartOffset(), unlinkedExecutable->typeProfilingEndOffset()); |
| m_functionExprs[i].set(vm, this, unlinkedExecutable->link(vm, ownerExecutable->source())); |
| } |
| |
| if (unlinkedCodeBlock->hasRareData()) { |
| createRareDataIfNecessary(); |
| if (size_t count = unlinkedCodeBlock->numberOfExceptionHandlers()) { |
| m_rareData->m_exceptionHandlers.resizeToFit(count); |
| for (size_t i = 0; i < count; i++) { |
| const UnlinkedHandlerInfo& unlinkedHandler = unlinkedCodeBlock->exceptionHandler(i); |
| HandlerInfo& handler = m_rareData->m_exceptionHandlers[i]; |
| #if ENABLE(JIT) |
| handler.initialize(unlinkedHandler, CodeLocationLabel<ExceptionHandlerPtrTag>(LLInt::getCodePtr<BytecodePtrTag>(op_catch).retagged<ExceptionHandlerPtrTag>())); |
| #else |
| handler.initialize(unlinkedHandler); |
| #endif |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfStringSwitchJumpTables()) { |
| m_rareData->m_stringSwitchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedStringJumpTable::StringOffsetTable::iterator ptr = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.begin(); |
| UnlinkedStringJumpTable::StringOffsetTable::iterator end = unlinkedCodeBlock->stringSwitchJumpTable(i).offsetTable.end(); |
| for (; ptr != end; ++ptr) { |
| OffsetLocation offset; |
| offset.branchOffset = ptr->value.branchOffset; |
| m_rareData->m_stringSwitchJumpTables[i].offsetTable.add(ptr->key, offset); |
| } |
| } |
| } |
| |
| if (size_t count = unlinkedCodeBlock->numberOfSwitchJumpTables()) { |
| m_rareData->m_switchJumpTables.grow(count); |
| for (size_t i = 0; i < count; i++) { |
| UnlinkedSimpleJumpTable& sourceTable = unlinkedCodeBlock->switchJumpTable(i); |
| SimpleJumpTable& destTable = m_rareData->m_switchJumpTables[i]; |
| destTable.branchOffsets = sourceTable.branchOffsets; |
| destTable.min = sourceTable.min; |
| } |
| } |
| } |
| |
| // Allocate metadata buffers for the bytecode |
| if (size_t size = unlinkedCodeBlock->numberOfLLintCallLinkInfos()) |
| m_llintCallLinkInfos = RefCountedArray<LLIntCallLinkInfo>(size); |
| if (size_t size = unlinkedCodeBlock->numberOfArrayProfiles()) |
| m_arrayProfiles.grow(size); |
| if (size_t size = unlinkedCodeBlock->numberOfArrayAllocationProfiles()) |
| m_arrayAllocationProfiles = RefCountedArray<ArrayAllocationProfile>(size); |
| if (size_t size = unlinkedCodeBlock->numberOfValueProfiles()) |
| m_valueProfiles = RefCountedArray<ValueProfile>(size); |
| if (size_t size = unlinkedCodeBlock->numberOfObjectAllocationProfiles()) |
| m_objectAllocationProfiles = RefCountedArray<ObjectAllocationProfile>(size); |
| |
| #if ENABLE(JIT) |
| setCalleeSaveRegisters(RegisterSet::llintBaselineCalleeSaveRegisters()); |
| #endif |
| |
| // Copy and translate the UnlinkedInstructions |
| unsigned instructionCount = unlinkedCodeBlock->instructions().count(); |
| UnlinkedInstructionStream::Reader instructionReader(unlinkedCodeBlock->instructions()); |
| |
| // Bookkeep the strongly referenced module environments. |
| HashSet<JSModuleEnvironment*> stronglyReferencedModuleEnvironments; |
| |
| RefCountedArray<Instruction> instructions(instructionCount); |
| |
| unsigned valueProfileCount = 0; |
| auto linkValueProfile = [&](unsigned bytecodeOffset, unsigned opLength) { |
| unsigned valueProfileIndex = valueProfileCount++; |
| ValueProfile* profile = &m_valueProfiles[valueProfileIndex]; |
| ASSERT(profile->m_bytecodeOffset == -1); |
| profile->m_bytecodeOffset = bytecodeOffset; |
| instructions[bytecodeOffset + opLength - 1] = profile; |
| }; |
| |
| for (unsigned i = 0; !instructionReader.atEnd(); ) { |
| const UnlinkedInstruction* pc = instructionReader.next(); |
| |
| unsigned opLength = opcodeLength(pc[0].u.opcode); |
| |
| instructions[i] = Interpreter::getOpcode(pc[0].u.opcode); |
| for (size_t j = 1; j < opLength; ++j) { |
| if (sizeof(int32_t) != sizeof(intptr_t)) |
| instructions[i + j].u.pointer = 0; |
| instructions[i + j].u.operand = pc[j].u.operand; |
| } |
| switch (pc[0].u.opcode) { |
| case op_has_indexed_property: { |
| int arrayProfileIndex = pc[opLength - 1].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| |
| instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; |
| break; |
| } |
| case op_call_varargs: |
| case op_tail_call_varargs: |
| case op_tail_call_forward_arguments: |
| case op_construct_varargs: |
| case op_get_by_val: { |
| int arrayProfileIndex = pc[opLength - 2].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| |
| instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; |
| FALLTHROUGH; |
| } |
| case op_get_direct_pname: |
| case op_get_by_id: |
| case op_get_by_id_with_this: |
| case op_try_get_by_id: |
| case op_get_by_id_direct: |
| case op_get_by_val_with_this: |
| case op_get_from_arguments: |
| case op_to_number: |
| case op_to_object: |
| case op_get_argument: { |
| linkValueProfile(i, opLength); |
| break; |
| } |
| |
| case op_to_this: { |
| linkValueProfile(i, opLength); |
| break; |
| } |
| |
| case op_in: |
| case op_put_by_val: |
| case op_put_by_val_direct: { |
| int arrayProfileIndex = pc[opLength - 1].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 1] = &m_arrayProfiles[arrayProfileIndex]; |
| break; |
| } |
| |
| case op_new_array: |
| case op_new_array_buffer: |
| case op_new_array_with_size: { |
| int arrayAllocationProfileIndex = pc[opLength - 1].u.operand; |
| instructions[i + opLength - 1] = &m_arrayAllocationProfiles[arrayAllocationProfileIndex]; |
| break; |
| } |
| case op_new_object: { |
| int objectAllocationProfileIndex = pc[opLength - 1].u.operand; |
| ObjectAllocationProfile* objectAllocationProfile = &m_objectAllocationProfiles[objectAllocationProfileIndex]; |
| int inferredInlineCapacity = pc[opLength - 2].u.operand; |
| |
| instructions[i + opLength - 1] = objectAllocationProfile; |
| objectAllocationProfile->initializeProfile(vm, |
| m_globalObject.get(), this, m_globalObject->objectPrototype(), inferredInlineCapacity); |
| break; |
| } |
| |
| case op_call: |
| case op_tail_call: |
| case op_call_eval: { |
| linkValueProfile(i, opLength); |
| int arrayProfileIndex = pc[opLength - 2].u.operand; |
| m_arrayProfiles[arrayProfileIndex] = ArrayProfile(i); |
| instructions[i + opLength - 2] = &m_arrayProfiles[arrayProfileIndex]; |
| instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; |
| break; |
| } |
| case op_construct: { |
| instructions[i + 5] = &m_llintCallLinkInfos[pc[5].u.operand]; |
| linkValueProfile(i, opLength); |
| break; |
| } |
| case op_get_array_length: |
| CRASH(); |
| |
| case op_resolve_scope: { |
| const Identifier& ident = identifier(pc[3].u.operand); |
| ResolveType type = static_cast<ResolveType>(pc[4].u.operand); |
| RELEASE_ASSERT(type != LocalClosureVar); |
| int localScopeDepth = pc[5].u.operand; |
| |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, InitializationMode::NotInitialization); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| instructions[i + 4].u.operand = op.type; |
| instructions[i + 5].u.operand = op.depth; |
| if (op.lexicalEnvironment) { |
| if (op.type == ModuleVar) { |
| // Keep the linked module environment strongly referenced. |
| if (stronglyReferencedModuleEnvironments.add(jsCast<JSModuleEnvironment*>(op.lexicalEnvironment)).isNewEntry) |
| addConstant(op.lexicalEnvironment); |
| instructions[i + 6].u.jsCell.set(vm, this, op.lexicalEnvironment); |
| } else |
| instructions[i + 6].u.symbolTable.set(vm, this, op.lexicalEnvironment->symbolTable()); |
| } else if (JSScope* constantScope = JSScope::constantScopeForCodeBlock(op.type, this)) |
| instructions[i + 6].u.jsCell.set(vm, this, constantScope); |
| else |
| instructions[i + 6].u.pointer = nullptr; |
| break; |
| } |
| |
| case op_get_from_scope: { |
| linkValueProfile(i, opLength); |
| |
| // get_from_scope dst, scope, id, GetPutInfo, Structure, Operand |
| |
| int localScopeDepth = pc[5].u.operand; |
| instructions[i + 5].u.pointer = nullptr; |
| |
| GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand); |
| ASSERT(!isInitialization(getPutInfo.initializationMode())); |
| if (getPutInfo.resolveType() == LocalClosureVar) { |
| instructions[i + 4] = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand(); |
| break; |
| } |
| |
| const Identifier& ident = identifier(pc[3].u.operand); |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, getPutInfo.resolveType(), InitializationMode::NotInitialization); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand(); |
| if (op.type == ModuleVar) |
| instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), ClosureVar, getPutInfo.initializationMode()).operand(); |
| if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) |
| instructions[i + 5].u.watchpointSet = op.watchpointSet; |
| else if (op.structure) |
| instructions[i + 5].u.structure.set(vm, this, op.structure); |
| instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); |
| break; |
| } |
| |
| case op_put_to_scope: { |
| // put_to_scope scope, id, value, GetPutInfo, Structure, Operand |
| GetPutInfo getPutInfo = GetPutInfo(pc[4].u.operand); |
| if (getPutInfo.resolveType() == LocalClosureVar) { |
| // Only do watching if the property we're putting to is not anonymous. |
| if (static_cast<unsigned>(pc[2].u.operand) != UINT_MAX) { |
| int symbolTableIndex = pc[5].u.operand; |
| SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); |
| const Identifier& ident = identifier(pc[2].u.operand); |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| auto iter = symbolTable->find(locker, ident.impl()); |
| ASSERT(iter != symbolTable->end(locker)); |
| iter->value.prepareToWatch(); |
| instructions[i + 5].u.watchpointSet = iter->value.watchpointSet(); |
| } else |
| instructions[i + 5].u.watchpointSet = nullptr; |
| break; |
| } |
| |
| const Identifier& ident = identifier(pc[2].u.operand); |
| int localScopeDepth = pc[5].u.operand; |
| instructions[i + 5].u.pointer = nullptr; |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Put, getPutInfo.resolveType(), getPutInfo.initializationMode()); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| instructions[i + 4].u.operand = GetPutInfo(getPutInfo.resolveMode(), op.type, getPutInfo.initializationMode()).operand(); |
| if (op.type == GlobalVar || op.type == GlobalVarWithVarInjectionChecks || op.type == GlobalLexicalVar || op.type == GlobalLexicalVarWithVarInjectionChecks) |
| instructions[i + 5].u.watchpointSet = op.watchpointSet; |
| else if (op.type == ClosureVar || op.type == ClosureVarWithVarInjectionChecks) { |
| if (op.watchpointSet) |
| op.watchpointSet->invalidate(vm, PutToScopeFireDetail(this, ident)); |
| } else if (op.structure) |
| instructions[i + 5].u.structure.set(vm, this, op.structure); |
| instructions[i + 6].u.pointer = reinterpret_cast<void*>(op.operand); |
| |
| break; |
| } |
| |
| case op_profile_type: { |
| RELEASE_ASSERT(vm.typeProfiler()); |
| // The format of this instruction is: op_profile_type regToProfile, TypeLocation*, flag, identifier?, resolveType? |
| size_t instructionOffset = i + opLength - 1; |
| unsigned divotStart, divotEnd; |
| GlobalVariableID globalVariableID = 0; |
| RefPtr<TypeSet> globalTypeSet; |
| bool shouldAnalyze = m_unlinkedCode->typeProfilerExpressionInfoForBytecodeOffset(instructionOffset, divotStart, divotEnd); |
| VirtualRegister profileRegister(pc[1].u.operand); |
| ProfileTypeBytecodeFlag flag = static_cast<ProfileTypeBytecodeFlag>(pc[3].u.operand); |
| SymbolTable* symbolTable = nullptr; |
| |
| switch (flag) { |
| case ProfileTypeBytecodeClosureVar: { |
| const Identifier& ident = identifier(pc[4].u.operand); |
| int localScopeDepth = pc[2].u.operand; |
| ResolveType type = static_cast<ResolveType>(pc[5].u.operand); |
| // Even though type profiling may be profiling either a Get or a Put, we can always claim a Get because |
| // we're abstractly "read"ing from a JSScope. |
| ResolveOp op = JSScope::abstractResolve(m_globalObject->globalExec(), localScopeDepth, scope, ident, Get, type, InitializationMode::NotInitialization); |
| RETURN_IF_EXCEPTION(throwScope, false); |
| |
| if (op.type == ClosureVar || op.type == ModuleVar) |
| symbolTable = op.lexicalEnvironment->symbolTable(); |
| else if (op.type == GlobalVar) |
| symbolTable = m_globalObject.get()->symbolTable(); |
| |
| UniquedStringImpl* impl = (op.type == ModuleVar) ? op.importedName.get() : ident.impl(); |
| if (symbolTable) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| symbolTable->prepareForTypeProfiling(locker); |
| globalVariableID = symbolTable->uniqueIDForVariable(locker, impl, vm); |
| globalTypeSet = symbolTable->globalTypeSetForVariable(locker, impl, vm); |
| } else |
| globalVariableID = TypeProfilerNoGlobalIDExists; |
| |
| break; |
| } |
| case ProfileTypeBytecodeLocallyResolved: { |
| int symbolTableIndex = pc[2].u.operand; |
| SymbolTable* symbolTable = jsCast<SymbolTable*>(getConstant(symbolTableIndex)); |
| const Identifier& ident = identifier(pc[4].u.operand); |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| // If our parent scope was created while profiling was disabled, it will not have prepared for profiling yet. |
| globalVariableID = symbolTable->uniqueIDForVariable(locker, ident.impl(), vm); |
| globalTypeSet = symbolTable->globalTypeSetForVariable(locker, ident.impl(), vm); |
| |
| break; |
| } |
| case ProfileTypeBytecodeDoesNotHaveGlobalID: |
| case ProfileTypeBytecodeFunctionArgument: { |
| globalVariableID = TypeProfilerNoGlobalIDExists; |
| break; |
| } |
| case ProfileTypeBytecodeFunctionReturnStatement: { |
| RELEASE_ASSERT(ownerExecutable->isFunctionExecutable()); |
| globalTypeSet = jsCast<FunctionExecutable*>(ownerExecutable)->returnStatementTypeSet(); |
| globalVariableID = TypeProfilerReturnStatement; |
| if (!shouldAnalyze) { |
| // Because a return statement can be added implicitly to return undefined at the end of a function, |
| // and these nodes don't emit expression ranges because they aren't in the actual source text of |
| // the user's program, give the type profiler some range to identify these return statements. |
| // Currently, the text offset that is used as identification is "f" in the function keyword |
| // and is stored on TypeLocation's m_divotForFunctionOffsetIfReturnStatement member variable. |
| divotStart = divotEnd = ownerExecutable->typeProfilingStartOffset(); |
| shouldAnalyze = true; |
| } |
| break; |
| } |
| } |
| |
| std::pair<TypeLocation*, bool> locationPair = vm.typeProfiler()->typeLocationCache()->getTypeLocation(globalVariableID, |
| ownerExecutable->sourceID(), divotStart, divotEnd, WTFMove(globalTypeSet), &vm); |
| TypeLocation* location = locationPair.first; |
| bool isNewLocation = locationPair.second; |
| |
| if (flag == ProfileTypeBytecodeFunctionReturnStatement) |
| location->m_divotForFunctionOffsetIfReturnStatement = ownerExecutable->typeProfilingStartOffset(); |
| |
| if (shouldAnalyze && isNewLocation) |
| vm.typeProfiler()->insertNewLocation(location); |
| |
| instructions[i + 2].u.location = location; |
| break; |
| } |
| |
| case op_debug: { |
| if (pc[1].u.unsignedValue == DidReachBreakpoint) |
| m_hasDebuggerStatement = true; |
| break; |
| } |
| |
| case op_create_rest: { |
| int numberOfArgumentsToSkip = instructions[i + 3].u.operand; |
| ASSERT_UNUSED(numberOfArgumentsToSkip, numberOfArgumentsToSkip >= 0); |
| // This is used when rematerializing the rest parameter during OSR exit in the FTL JIT."); |
| m_numberOfArgumentsToSkip = numberOfArgumentsToSkip; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| i += opLength; |
| } |
| |
| if (vm.controlFlowProfiler()) |
| insertBasicBlockBoundariesForControlFlowProfiler(instructions); |
| |
| m_instructions = WTFMove(instructions); |
| |
| // Set optimization thresholds only after m_instructions is initialized, since these |
| // rely on the instruction count (and are in theory permitted to also inspect the |
| // instruction stream to more accurate assess the cost of tier-up). |
| optimizeAfterWarmUp(); |
| jitAfterWarmUp(); |
| |
| // If the concurrent thread will want the code block's hash, then compute it here |
| // synchronously. |
| if (Options::alwaysComputeHash()) |
| hash(); |
| |
| if (Options::dumpGeneratedBytecodes()) |
| dumpBytecode(); |
| |
| heap()->reportExtraMemoryAllocated(m_instructions.size() * sizeof(Instruction)); |
| |
| return true; |
| } |
| |
| void CodeBlock::finishCreationCommon(VM& vm) |
| { |
| m_ownerEdge.set(vm, this, ExecutableToCodeBlockEdge::create(vm, this)); |
| } |
| |
| CodeBlock::~CodeBlock() |
| { |
| VM& vm = *m_poisonedVM; |
| |
| vm.heap.codeBlockSet().remove(this); |
| |
| if (UNLIKELY(vm.m_perBytecodeProfiler)) |
| vm.m_perBytecodeProfiler->notifyDestruction(this); |
| |
| if (!vm.heap.isShuttingDown() && unlinkedCodeBlock()->didOptimize() == MixedTriState) |
| unlinkedCodeBlock()->setDidOptimize(FalseTriState); |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| dumpValueProfiles(); |
| #endif |
| |
| // We may be destroyed before any CodeBlocks that refer to us are destroyed. |
| // Consider that two CodeBlocks become unreachable at the same time. There |
| // is no guarantee about the order in which the CodeBlocks are destroyed. |
| // So, if we don't remove incoming calls, and get destroyed before the |
| // CodeBlock(s) that have calls into us, then the CallLinkInfo vector's |
| // destructor will try to remove nodes from our (no longer valid) linked list. |
| unlinkIncomingCalls(); |
| |
| // Note that our outgoing calls will be removed from other CodeBlocks' |
| // m_incomingCalls linked lists through the execution of the ~CallLinkInfo |
| // destructors. |
| |
| #if ENABLE(JIT) |
| for (auto iter = m_stubInfos.begin(); !!iter; ++iter) { |
| StructureStubInfo* stub = *iter; |
| stub->aboutToDie(); |
| stub->deref(); |
| } |
| #endif // ENABLE(JIT) |
| } |
| |
| void CodeBlock::setConstantIdentifierSetRegisters(VM& vm, const Vector<ConstantIndentifierSetEntry>& constants) |
| { |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| JSGlobalObject* globalObject = m_globalObject.get(); |
| ExecState* exec = globalObject->globalExec(); |
| |
| for (const auto& entry : constants) { |
| const IdentifierSet& set = entry.first; |
| |
| Structure* setStructure = globalObject->setStructure(); |
| RETURN_IF_EXCEPTION(scope, void()); |
| JSSet* jsSet = JSSet::create(exec, vm, setStructure, set.size()); |
| RETURN_IF_EXCEPTION(scope, void()); |
| |
| for (auto setEntry : set) { |
| JSString* jsString = jsOwnedString(&vm, setEntry.get()); |
| jsSet->add(exec, jsString); |
| RETURN_IF_EXCEPTION(scope, void()); |
| } |
| m_constantRegisters[entry.second].set(vm, this, jsSet); |
| } |
| } |
| |
| void CodeBlock::setConstantRegisters(const Vector<WriteBarrier<Unknown>>& constants, const Vector<SourceCodeRepresentation>& constantsSourceCodeRepresentation) |
| { |
| VM& vm = *m_poisonedVM; |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| JSGlobalObject* globalObject = m_globalObject.get(); |
| ExecState* exec = globalObject->globalExec(); |
| |
| ASSERT(constants.size() == constantsSourceCodeRepresentation.size()); |
| size_t count = constants.size(); |
| m_constantRegisters.resizeToFit(count); |
| bool hasTypeProfiler = !!vm.typeProfiler(); |
| for (size_t i = 0; i < count; i++) { |
| JSValue constant = constants[i].get(); |
| |
| if (!constant.isEmpty()) { |
| if (constant.isCell()) { |
| JSCell* cell = constant.asCell(); |
| if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(vm, cell)) { |
| if (hasTypeProfiler) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| symbolTable->prepareForTypeProfiling(locker); |
| } |
| |
| SymbolTable* clone = symbolTable->cloneScopePart(vm); |
| if (wasCompiledWithDebuggingOpcodes()) |
| clone->setRareDataCodeBlock(this); |
| |
| constant = clone; |
| } else if (auto* descriptor = jsDynamicCast<JSTemplateObjectDescriptor*>(vm, cell)) { |
| auto* templateObject = descriptor->createTemplateObject(exec); |
| RETURN_IF_EXCEPTION(scope, void()); |
| constant = templateObject; |
| } |
| } |
| } |
| |
| m_constantRegisters[i].set(vm, this, constant); |
| } |
| |
| m_constantsSourceCodeRepresentation = constantsSourceCodeRepresentation; |
| } |
| |
| void CodeBlock::setAlternative(VM& vm, CodeBlock* alternative) |
| { |
| m_alternative.set(vm, this, alternative); |
| } |
| |
| void CodeBlock::setNumParameters(int newValue) |
| { |
| m_numParameters = newValue; |
| |
| m_argumentValueProfiles = RefCountedArray<ValueProfile>(newValue); |
| } |
| |
| CodeBlock* CodeBlock::specialOSREntryBlockOrNull() |
| { |
| #if ENABLE(FTL_JIT) |
| if (jitType() != JITCode::DFGJIT) |
| return 0; |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| return jitCode->osrEntryBlock(); |
| #else // ENABLE(FTL_JIT) |
| return 0; |
| #endif // ENABLE(FTL_JIT) |
| } |
| |
| size_t CodeBlock::estimatedSize(JSCell* cell) |
| { |
| CodeBlock* thisObject = jsCast<CodeBlock*>(cell); |
| size_t extraMemoryAllocated = thisObject->m_instructions.size() * sizeof(Instruction); |
| if (thisObject->m_jitCode) |
| extraMemoryAllocated += thisObject->m_jitCode->size(); |
| return Base::estimatedSize(cell) + extraMemoryAllocated; |
| } |
| |
| void CodeBlock::visitChildren(JSCell* cell, SlotVisitor& visitor) |
| { |
| CodeBlock* thisObject = jsCast<CodeBlock*>(cell); |
| ASSERT_GC_OBJECT_INHERITS(thisObject, info()); |
| JSCell::visitChildren(thisObject, visitor); |
| visitor.append(thisObject->m_ownerEdge); |
| thisObject->visitChildren(visitor); |
| } |
| |
| void CodeBlock::visitChildren(SlotVisitor& visitor) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| if (CodeBlock* otherBlock = specialOSREntryBlockOrNull()) |
| visitor.appendUnbarriered(otherBlock); |
| |
| if (m_jitCode) |
| visitor.reportExtraMemoryVisited(m_jitCode->size()); |
| if (m_instructions.size()) { |
| unsigned refCount = m_instructions.refCount(); |
| if (!refCount) { |
| dataLog("CodeBlock: ", RawPointer(this), "\n"); |
| dataLog("m_instructions.data(): ", RawPointer(m_instructions.data()), "\n"); |
| dataLog("refCount: ", refCount, "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| visitor.reportExtraMemoryVisited(m_instructions.size() * sizeof(Instruction) / refCount); |
| } |
| |
| stronglyVisitStrongReferences(locker, visitor); |
| stronglyVisitWeakReferences(locker, visitor); |
| |
| VM::SpaceAndFinalizerSet::finalizerSetFor(*subspace()).add(this); |
| } |
| |
| bool CodeBlock::shouldVisitStrongly(const ConcurrentJSLocker& locker) |
| { |
| if (Options::forceCodeBlockLiveness()) |
| return true; |
| |
| if (shouldJettisonDueToOldAge(locker)) |
| return false; |
| |
| // Interpreter and Baseline JIT CodeBlocks don't need to be jettisoned when |
| // their weak references go stale. So if a basline JIT CodeBlock gets |
| // scanned, we can assume that this means that it's live. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return true; |
| |
| return false; |
| } |
| |
| bool CodeBlock::shouldJettisonDueToWeakReference() |
| { |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return false; |
| return !Heap::isMarked(this); |
| } |
| |
| static Seconds timeToLive(JITCode::JITType jitType) |
| { |
| if (UNLIKELY(Options::useEagerCodeBlockJettisonTiming())) { |
| switch (jitType) { |
| case JITCode::InterpreterThunk: |
| return 10_ms; |
| case JITCode::BaselineJIT: |
| return 30_ms; |
| case JITCode::DFGJIT: |
| return 40_ms; |
| case JITCode::FTLJIT: |
| return 120_ms; |
| default: |
| return Seconds::infinity(); |
| } |
| } |
| |
| switch (jitType) { |
| case JITCode::InterpreterThunk: |
| return 5_s; |
| case JITCode::BaselineJIT: |
| // Effectively 10 additional seconds, since BaselineJIT and |
| // InterpreterThunk share a CodeBlock. |
| return 15_s; |
| case JITCode::DFGJIT: |
| return 20_s; |
| case JITCode::FTLJIT: |
| return 60_s; |
| default: |
| return Seconds::infinity(); |
| } |
| } |
| |
| bool CodeBlock::shouldJettisonDueToOldAge(const ConcurrentJSLocker&) |
| { |
| if (Heap::isMarked(this)) |
| return false; |
| |
| if (UNLIKELY(Options::forceCodeBlockToJettisonDueToOldAge())) |
| return true; |
| |
| if (timeSinceCreation() < timeToLive(jitType())) |
| return false; |
| |
| return true; |
| } |
| |
| #if ENABLE(DFG_JIT) |
| static bool shouldMarkTransition(DFG::WeakReferenceTransition& transition) |
| { |
| if (transition.m_codeOrigin && !Heap::isMarked(transition.m_codeOrigin.get())) |
| return false; |
| |
| if (!Heap::isMarked(transition.m_from.get())) |
| return false; |
| |
| return true; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| void CodeBlock::propagateTransitions(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| VM& vm = *m_poisonedVM; |
| |
| if (jitType() == JITCode::InterpreterThunk) { |
| const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| for (size_t i = 0; i < propertyAccessInstructions.size(); ++i) { |
| Instruction* instruction = &instructions()[propertyAccessInstructions[i]]; |
| switch (Interpreter::getOpcodeID(instruction[0])) { |
| case op_put_by_id: { |
| StructureID oldStructureID = instruction[4].u.structureID; |
| StructureID newStructureID = instruction[6].u.structureID; |
| if (!oldStructureID || !newStructureID) |
| break; |
| Structure* oldStructure = |
| vm.heap.structureIDTable().get(oldStructureID); |
| Structure* newStructure = |
| vm.heap.structureIDTable().get(newStructureID); |
| if (Heap::isMarked(oldStructure)) |
| visitor.appendUnbarriered(newStructure); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) { |
| for (auto iter = m_stubInfos.begin(); !!iter; ++iter) |
| (*iter)->propagateTransitions(visitor); |
| } |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) { |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (auto& weakReference : dfgCommon->weakStructureReferences) |
| weakReference->markIfCheap(visitor); |
| |
| for (auto& transition : dfgCommon->transitions) { |
| if (shouldMarkTransition(transition)) { |
| // If the following three things are live, then the target of the |
| // transition is also live: |
| // |
| // - This code block. We know it's live already because otherwise |
| // we wouldn't be scanning ourselves. |
| // |
| // - The code origin of the transition. Transitions may arise from |
| // code that was inlined. They are not relevant if the user's |
| // object that is required for the inlinee to run is no longer |
| // live. |
| // |
| // - The source of the transition. The transition checks if some |
| // heap location holds the source, and if so, stores the target. |
| // Hence the source must be live for the transition to be live. |
| // |
| // We also short-circuit the liveness if the structure is harmless |
| // to mark (i.e. its global object and prototype are both already |
| // live). |
| |
| visitor.append(transition.m_to); |
| } |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::determineLiveness(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| if (Heap::isMarked(this)) |
| return; |
| |
| // In rare and weird cases, this could be called on a baseline CodeBlock. One that I found was |
| // that we might decide that the CodeBlock should be jettisoned due to old age, so the |
| // isMarked check doesn't protect us. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return; |
| |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| // Now check all of our weak references. If all of them are live, then we |
| // have proved liveness and so we scan our strong references. If at end of |
| // GC we still have not proved liveness, then this code block is toast. |
| bool allAreLiveSoFar = true; |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| JSCell* reference = dfgCommon->weakReferences[i].get(); |
| ASSERT(!jsDynamicCast<CodeBlock*>(*reference->vm(), reference)); |
| if (!Heap::isMarked(reference)) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| if (allAreLiveSoFar) { |
| for (unsigned i = 0; i < dfgCommon->weakStructureReferences.size(); ++i) { |
| if (!Heap::isMarked(dfgCommon->weakStructureReferences[i].get())) { |
| allAreLiveSoFar = false; |
| break; |
| } |
| } |
| } |
| |
| // If some weak references are dead, then this fixpoint iteration was |
| // unsuccessful. |
| if (!allAreLiveSoFar) |
| return; |
| |
| // All weak references are live. Record this information so we don't |
| // come back here again, and scan the strong references. |
| visitor.appendUnbarriered(this); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| void CodeBlock::clearLLIntGetByIdCache(Instruction* instruction) |
| { |
| instruction[0].u.opcode = LLInt::getOpcode(op_get_by_id); |
| instruction[4].u.pointer = nullptr; |
| instruction[5].u.pointer = nullptr; |
| instruction[6].u.pointer = nullptr; |
| } |
| |
| void CodeBlock::finalizeLLIntInlineCaches() |
| { |
| VM& vm = *m_poisonedVM; |
| const Vector<unsigned>& propertyAccessInstructions = m_unlinkedCode->propertyAccessInstructions(); |
| for (size_t size = propertyAccessInstructions.size(), i = 0; i < size; ++i) { |
| Instruction* curInstruction = &instructions()[propertyAccessInstructions[i]]; |
| switch (Interpreter::getOpcodeID(curInstruction[0])) { |
| case op_get_by_id: |
| case op_get_by_id_proto_load: |
| case op_get_by_id_unset: { |
| StructureID oldStructureID = curInstruction[4].u.structureID; |
| if (!oldStructureID || Heap::isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt property access.\n"); |
| clearLLIntGetByIdCache(curInstruction); |
| break; |
| } |
| case op_get_by_id_direct: { |
| StructureID oldStructureID = curInstruction[4].u.structureID; |
| if (!oldStructureID || Heap::isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt property access.\n"); |
| curInstruction[4].u.pointer = nullptr; |
| curInstruction[5].u.pointer = nullptr; |
| break; |
| } |
| case op_put_by_id: { |
| StructureID oldStructureID = curInstruction[4].u.structureID; |
| StructureID newStructureID = curInstruction[6].u.structureID; |
| StructureChain* chain = curInstruction[7].u.structureChain.get(); |
| if ((!oldStructureID || Heap::isMarked(vm.heap.structureIDTable().get(oldStructureID))) |
| && (!newStructureID || Heap::isMarked(vm.heap.structureIDTable().get(newStructureID))) |
| && (!chain || Heap::isMarked(chain))) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt put transition.\n"); |
| curInstruction[4].u.structureID = 0; |
| curInstruction[5].u.operand = 0; |
| curInstruction[6].u.structureID = 0; |
| curInstruction[7].u.structureChain.clear(); |
| break; |
| } |
| // FIXME: https://bugs.webkit.org/show_bug.cgi?id=166418 |
| // We need to add optimizations for op_resolve_scope_for_hoisting_func_decl_in_eval to do link time scope resolution. |
| case op_resolve_scope_for_hoisting_func_decl_in_eval: |
| break; |
| case op_get_array_length: |
| break; |
| case op_to_this: |
| if (!curInstruction[2].u.structure || Heap::isMarked(curInstruction[2].u.structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt to_this with structure %p.\n", curInstruction[2].u.structure.get()); |
| curInstruction[2].u.structure.clear(); |
| curInstruction[3].u.toThisStatus = merge( |
| curInstruction[3].u.toThisStatus, ToThisClearedByGC); |
| break; |
| case op_create_this: { |
| auto& cacheWriteBarrier = curInstruction[4].u.jsCell; |
| if (!cacheWriteBarrier || cacheWriteBarrier.unvalidatedGet() == JSCell::seenMultipleCalleeObjects()) |
| break; |
| JSCell* cachedFunction = cacheWriteBarrier.get(); |
| if (Heap::isMarked(cachedFunction)) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing LLInt create_this with cached callee %p.\n", cachedFunction); |
| cacheWriteBarrier.clear(); |
| break; |
| } |
| case op_resolve_scope: { |
| // Right now this isn't strictly necessary. Any symbol tables that this will refer to |
| // are for outer functions, and we refer to those functions strongly, and they refer |
| // to the symbol table strongly. But it's nice to be on the safe side. |
| WriteBarrierBase<SymbolTable>& symbolTable = curInstruction[6].u.symbolTable; |
| if (!symbolTable || Heap::isMarked(symbolTable.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing dead symbolTable %p.\n", symbolTable.get()); |
| symbolTable.clear(); |
| break; |
| } |
| case op_get_from_scope: |
| case op_put_to_scope: { |
| GetPutInfo getPutInfo = GetPutInfo(curInstruction[4].u.operand); |
| if (getPutInfo.resolveType() == GlobalVar || getPutInfo.resolveType() == GlobalVarWithVarInjectionChecks |
| || getPutInfo.resolveType() == LocalClosureVar || getPutInfo.resolveType() == GlobalLexicalVar || getPutInfo.resolveType() == GlobalLexicalVarWithVarInjectionChecks) |
| continue; |
| WriteBarrierBase<Structure>& structure = curInstruction[5].u.structure; |
| if (!structure || Heap::isMarked(structure.get())) |
| break; |
| if (Options::verboseOSR()) |
| dataLogF("Clearing scope access with structure %p.\n", structure.get()); |
| structure.clear(); |
| break; |
| } |
| default: |
| OpcodeID opcodeID = Interpreter::getOpcodeID(curInstruction[0]); |
| ASSERT_WITH_MESSAGE_UNUSED(opcodeID, false, "Unhandled opcode in CodeBlock::finalizeUnconditionally, %s(%d) at bc %u", opcodeNames[opcodeID], opcodeID, propertyAccessInstructions[i]); |
| } |
| } |
| |
| // We can't just remove all the sets when we clear the caches since we might have created a watchpoint set |
| // then cleared the cache without GCing in between. |
| m_llintGetByIdWatchpointMap.removeIf([](const StructureWatchpointMap::KeyValuePairType& pair) -> bool { |
| return !Heap::isMarked(pair.key); |
| }); |
| |
| for (unsigned i = 0; i < m_llintCallLinkInfos.size(); ++i) { |
| if (m_llintCallLinkInfos[i].isLinked() && !Heap::isMarked(m_llintCallLinkInfos[i].callee.get())) { |
| if (Options::verboseOSR()) |
| dataLog("Clearing LLInt call from ", *this, "\n"); |
| m_llintCallLinkInfos[i].unlink(); |
| } |
| if (!!m_llintCallLinkInfos[i].lastSeenCallee && !Heap::isMarked(m_llintCallLinkInfos[i].lastSeenCallee.get())) |
| m_llintCallLinkInfos[i].lastSeenCallee.clear(); |
| } |
| } |
| |
| void CodeBlock::finalizeBaselineJITInlineCaches() |
| { |
| #if ENABLE(JIT) |
| for (auto iter = callLinkInfosBegin(); !!iter; ++iter) |
| (*iter)->visitWeak(*vm()); |
| |
| for (auto iter = m_stubInfos.begin(); !!iter; ++iter) { |
| StructureStubInfo& stubInfo = **iter; |
| stubInfo.visitWeakReferences(this); |
| } |
| #endif |
| } |
| |
| void CodeBlock::finalizeUnconditionally(VM&) |
| { |
| updateAllPredictions(); |
| |
| if (JITCode::couldBeInterpreted(jitType())) |
| finalizeLLIntInlineCaches(); |
| |
| #if ENABLE(JIT) |
| if (!!jitCode()) |
| finalizeBaselineJITInlineCaches(); |
| #endif |
| |
| VM::SpaceAndFinalizerSet::finalizerSetFor(*subspace()).remove(this); |
| } |
| |
| void CodeBlock::getStubInfoMap(const ConcurrentJSLocker&, StubInfoMap& result) |
| { |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) |
| toHashMap(m_stubInfos, getStructureStubInfoCodeOrigin, result); |
| #else |
| UNUSED_PARAM(result); |
| #endif |
| } |
| |
| void CodeBlock::getStubInfoMap(StubInfoMap& result) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| getStubInfoMap(locker, result); |
| } |
| |
| void CodeBlock::getCallLinkInfoMap(const ConcurrentJSLocker&, CallLinkInfoMap& result) |
| { |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) |
| toHashMap(m_callLinkInfos, getCallLinkInfoCodeOrigin, result); |
| #else |
| UNUSED_PARAM(result); |
| #endif |
| } |
| |
| void CodeBlock::getCallLinkInfoMap(CallLinkInfoMap& result) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| getCallLinkInfoMap(locker, result); |
| } |
| |
| void CodeBlock::getByValInfoMap(const ConcurrentJSLocker&, ByValInfoMap& result) |
| { |
| #if ENABLE(JIT) |
| if (JITCode::isJIT(jitType())) { |
| for (auto* byValInfo : m_byValInfos) |
| result.add(CodeOrigin(byValInfo->bytecodeIndex), byValInfo); |
| } |
| #else |
| UNUSED_PARAM(result); |
| #endif |
| } |
| |
| void CodeBlock::getByValInfoMap(ByValInfoMap& result) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| getByValInfoMap(locker, result); |
| } |
| |
| #if ENABLE(JIT) |
| StructureStubInfo* CodeBlock::addStubInfo(AccessType accessType) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return m_stubInfos.add(accessType); |
| } |
| |
| JITAddIC* CodeBlock::addJITAddIC(ArithProfile* arithProfile, Instruction* instruction) |
| { |
| return m_addICs.add(arithProfile, instruction); |
| } |
| |
| JITMulIC* CodeBlock::addJITMulIC(ArithProfile* arithProfile, Instruction* instruction) |
| { |
| return m_mulICs.add(arithProfile, instruction); |
| } |
| |
| JITSubIC* CodeBlock::addJITSubIC(ArithProfile* arithProfile, Instruction* instruction) |
| { |
| return m_subICs.add(arithProfile, instruction); |
| } |
| |
| JITNegIC* CodeBlock::addJITNegIC(ArithProfile* arithProfile, Instruction* instruction) |
| { |
| return m_negICs.add(arithProfile, instruction); |
| } |
| |
| StructureStubInfo* CodeBlock::findStubInfo(CodeOrigin codeOrigin) |
| { |
| for (StructureStubInfo* stubInfo : m_stubInfos) { |
| if (stubInfo->codeOrigin == codeOrigin) |
| return stubInfo; |
| } |
| return nullptr; |
| } |
| |
| ByValInfo* CodeBlock::addByValInfo() |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return m_byValInfos.add(); |
| } |
| |
| CallLinkInfo* CodeBlock::addCallLinkInfo() |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return m_callLinkInfos.add(); |
| } |
| |
| CallLinkInfo* CodeBlock::getCallLinkInfoForBytecodeIndex(unsigned index) |
| { |
| for (auto iter = m_callLinkInfos.begin(); !!iter; ++iter) { |
| if ((*iter)->codeOrigin() == CodeOrigin(index)) |
| return *iter; |
| } |
| return nullptr; |
| } |
| |
| void CodeBlock::resetJITData() |
| { |
| RELEASE_ASSERT(!JITCode::isJIT(jitType())); |
| ConcurrentJSLocker locker(m_lock); |
| |
| // We can clear these because no other thread will have references to any stub infos, call |
| // link infos, or by val infos if we don't have JIT code. Attempts to query these data |
| // structures using the concurrent API (getStubInfoMap and friends) will return nothing if we |
| // don't have JIT code. |
| m_stubInfos.clear(); |
| m_callLinkInfos.clear(); |
| m_byValInfos.clear(); |
| |
| // We can clear this because the DFG's queries to these data structures are guarded by whether |
| // there is JIT code. |
| m_rareCaseProfiles.clear(); |
| } |
| #endif |
| |
| void CodeBlock::visitOSRExitTargets(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| // We strongly visit OSR exits targets because we don't want to deal with |
| // the complexity of generating an exit target CodeBlock on demand and |
| // guaranteeing that it matches the details of the CodeBlock we compiled |
| // the OSR exit against. |
| |
| visitor.append(m_alternative); |
| |
| #if ENABLE(DFG_JIT) |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| if (dfgCommon->inlineCallFrames) { |
| for (auto* inlineCallFrame : *dfgCommon->inlineCallFrames) { |
| ASSERT(inlineCallFrame->baselineCodeBlock); |
| visitor.append(inlineCallFrame->baselineCodeBlock); |
| } |
| } |
| #endif |
| } |
| |
| void CodeBlock::stronglyVisitStrongReferences(const ConcurrentJSLocker& locker, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(locker); |
| |
| visitor.append(m_globalObject); |
| visitor.append(m_ownerExecutable); // This is extra important since it causes the ExecutableToCodeBlockEdge to be marked. |
| visitor.append(m_unlinkedCode); |
| if (m_rareData) |
| m_rareData->m_directEvalCodeCache.visitAggregate(visitor); |
| visitor.appendValues(m_constantRegisters.data(), m_constantRegisters.size()); |
| for (auto& functionExpr : m_functionExprs) |
| visitor.append(functionExpr); |
| for (auto& functionDecl : m_functionDecls) |
| visitor.append(functionDecl); |
| for (auto& objectAllocationProfile : m_objectAllocationProfiles) |
| objectAllocationProfile.visitAggregate(visitor); |
| |
| #if ENABLE(JIT) |
| for (ByValInfo* byValInfo : m_byValInfos) |
| visitor.append(byValInfo->cachedSymbol); |
| #endif |
| |
| #if ENABLE(DFG_JIT) |
| if (JITCode::isOptimizingJIT(jitType())) |
| visitOSRExitTargets(locker, visitor); |
| #endif |
| } |
| |
| void CodeBlock::stronglyVisitWeakReferences(const ConcurrentJSLocker&, SlotVisitor& visitor) |
| { |
| UNUSED_PARAM(visitor); |
| |
| #if ENABLE(DFG_JIT) |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return; |
| |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| |
| for (auto& transition : dfgCommon->transitions) { |
| if (!!transition.m_codeOrigin) |
| visitor.append(transition.m_codeOrigin); // Almost certainly not necessary, since the code origin should also be a weak reference. Better to be safe, though. |
| visitor.append(transition.m_from); |
| visitor.append(transition.m_to); |
| } |
| |
| for (auto& weakReference : dfgCommon->weakReferences) |
| visitor.append(weakReference); |
| |
| for (auto& weakStructureReference : dfgCommon->weakStructureReferences) |
| visitor.append(weakStructureReference); |
| |
| dfgCommon->livenessHasBeenProved = true; |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineAlternative() |
| { |
| #if ENABLE(JIT) |
| CodeBlock* result = this; |
| while (result->alternative()) |
| result = result->alternative(); |
| RELEASE_ASSERT(result); |
| RELEASE_ASSERT(JITCode::isBaselineCode(result->jitType()) || result->jitType() == JITCode::None); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| CodeBlock* CodeBlock::baselineVersion() |
| { |
| #if ENABLE(JIT) |
| if (JITCode::isBaselineCode(jitType())) |
| return this; |
| CodeBlock* result = replacement(); |
| if (!result) { |
| // This can happen if we're creating the original CodeBlock for an executable. |
| // Assume that we're the baseline CodeBlock. |
| RELEASE_ASSERT(jitType() == JITCode::None); |
| return this; |
| } |
| result = result->baselineAlternative(); |
| return result; |
| #else |
| return this; |
| #endif |
| } |
| |
| #if ENABLE(JIT) |
| bool CodeBlock::hasOptimizedReplacement(JITCode::JITType typeToReplace) |
| { |
| return JITCode::isHigherTier(replacement()->jitType(), typeToReplace); |
| } |
| |
| bool CodeBlock::hasOptimizedReplacement() |
| { |
| return hasOptimizedReplacement(jitType()); |
| } |
| #endif |
| |
| HandlerInfo* CodeBlock::handlerForBytecodeOffset(unsigned bytecodeOffset, RequiredHandler requiredHandler) |
| { |
| RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| return handlerForIndex(bytecodeOffset, requiredHandler); |
| } |
| |
| HandlerInfo* CodeBlock::handlerForIndex(unsigned index, RequiredHandler requiredHandler) |
| { |
| if (!m_rareData) |
| return 0; |
| return HandlerInfo::handlerForIndex(m_rareData->m_exceptionHandlers, index, requiredHandler); |
| } |
| |
| CallSiteIndex CodeBlock::newExceptionHandlingCallSiteIndex(CallSiteIndex originalCallSite) |
| { |
| #if ENABLE(DFG_JIT) |
| RELEASE_ASSERT(JITCode::isOptimizingJIT(jitType())); |
| RELEASE_ASSERT(canGetCodeOrigin(originalCallSite)); |
| ASSERT(!!handlerForIndex(originalCallSite.bits())); |
| CodeOrigin originalOrigin = codeOrigin(originalCallSite); |
| return m_jitCode->dfgCommon()->addUniqueCallSiteIndex(originalOrigin); |
| #else |
| // We never create new on-the-fly exception handling |
| // call sites outside the DFG/FTL inline caches. |
| UNUSED_PARAM(originalCallSite); |
| RELEASE_ASSERT_NOT_REACHED(); |
| return CallSiteIndex(0u); |
| #endif |
| } |
| |
| void CodeBlock::ensureCatchLivenessIsComputedForBytecodeOffsetSlow(unsigned bytecodeOffset) |
| { |
| ASSERT(Interpreter::getOpcodeID(m_instructions[bytecodeOffset]) == op_catch); |
| BytecodeLivenessAnalysis& bytecodeLiveness = livenessAnalysis(); |
| |
| // We get the live-out set of variables at op_catch, not the live-in. This |
| // is because the variables that the op_catch defines might be dead, and |
| // we can avoid profiling them and extracting them when doing OSR entry |
| // into the DFG. |
| FastBitVector liveLocals = bytecodeLiveness.getLivenessInfoAtBytecodeOffset(this, bytecodeOffset + OPCODE_LENGTH(op_catch)); |
| Vector<VirtualRegister> liveOperands; |
| liveOperands.reserveInitialCapacity(liveLocals.bitCount()); |
| liveLocals.forEachSetBit([&] (unsigned liveLocal) { |
| liveOperands.append(virtualRegisterForLocal(liveLocal)); |
| }); |
| |
| for (int i = 0; i < numParameters(); ++i) |
| liveOperands.append(virtualRegisterForArgument(i)); |
| |
| auto profiles = std::make_unique<ValueProfileAndOperandBuffer>(liveOperands.size()); |
| RELEASE_ASSERT(profiles->m_size == liveOperands.size()); |
| for (unsigned i = 0; i < profiles->m_size; ++i) |
| profiles->m_buffer.get()[i].m_operand = liveOperands[i].offset(); |
| |
| // The compiler thread will read this pointer value and then proceed to dereference it |
| // if it is not null. We need to make sure all above stores happen before this store so |
| // the compiler thread reads fully initialized data. |
| WTF::storeStoreFence(); |
| |
| m_instructions[bytecodeOffset + 3].u.pointer = profiles.get(); |
| |
| { |
| ConcurrentJSLocker locker(m_lock); |
| m_catchProfiles.append(WTFMove(profiles)); |
| } |
| } |
| |
| void CodeBlock::removeExceptionHandlerForCallSite(CallSiteIndex callSiteIndex) |
| { |
| RELEASE_ASSERT(m_rareData); |
| Vector<HandlerInfo>& exceptionHandlers = m_rareData->m_exceptionHandlers; |
| unsigned index = callSiteIndex.bits(); |
| for (size_t i = 0; i < exceptionHandlers.size(); ++i) { |
| HandlerInfo& handler = exceptionHandlers[i]; |
| if (handler.start <= index && handler.end > index) { |
| exceptionHandlers.remove(i); |
| return; |
| } |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| unsigned CodeBlock::lineNumberForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| RELEASE_ASSERT(bytecodeOffset < instructions().size()); |
| return ownerScriptExecutable()->firstLine() + m_unlinkedCode->lineNumberForBytecodeOffset(bytecodeOffset); |
| } |
| |
| unsigned CodeBlock::columnNumberForBytecodeOffset(unsigned bytecodeOffset) |
| { |
| int divot; |
| int startOffset; |
| int endOffset; |
| unsigned line; |
| unsigned column; |
| expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| return column; |
| } |
| |
| void CodeBlock::expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot, int& startOffset, int& endOffset, unsigned& line, unsigned& column) const |
| { |
| m_unlinkedCode->expressionRangeForBytecodeOffset(bytecodeOffset, divot, startOffset, endOffset, line, column); |
| divot += m_sourceOffset; |
| column += line ? 1 : firstLineColumnOffset(); |
| line += ownerScriptExecutable()->firstLine(); |
| } |
| |
| bool CodeBlock::hasOpDebugForLineAndColumn(unsigned line, unsigned column) |
| { |
| const Instruction* begin = instructions().begin(); |
| const Instruction* end = instructions().end(); |
| for (const Instruction* it = begin; it != end;) { |
| OpcodeID opcodeID = Interpreter::getOpcodeID(*it); |
| if (opcodeID == op_debug) { |
| unsigned bytecodeOffset = it - begin; |
| int unused; |
| unsigned opDebugLine; |
| unsigned opDebugColumn; |
| expressionRangeForBytecodeOffset(bytecodeOffset, unused, unused, unused, opDebugLine, opDebugColumn); |
| if (line == opDebugLine && (column == Breakpoint::unspecifiedColumn || column == opDebugColumn)) |
| return true; |
| } |
| it += opcodeLengths[opcodeID]; |
| } |
| return false; |
| } |
| |
| void CodeBlock::shrinkToFit(ShrinkMode shrinkMode) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| |
| m_rareCaseProfiles.shrinkToFit(); |
| |
| if (shrinkMode == EarlyShrink) { |
| m_constantRegisters.shrinkToFit(); |
| m_constantsSourceCodeRepresentation.shrinkToFit(); |
| |
| if (m_rareData) { |
| m_rareData->m_switchJumpTables.shrinkToFit(); |
| m_rareData->m_stringSwitchJumpTables.shrinkToFit(); |
| } |
| } // else don't shrink these, because we would have already pointed pointers into these tables. |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::linkIncomingCall(ExecState* callerFrame, CallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingCalls.push(incoming); |
| } |
| |
| void CodeBlock::linkIncomingPolymorphicCall(ExecState* callerFrame, PolymorphicCallNode* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingPolymorphicCalls.push(incoming); |
| } |
| #endif // ENABLE(JIT) |
| |
| void CodeBlock::unlinkIncomingCalls() |
| { |
| while (m_incomingLLIntCalls.begin() != m_incomingLLIntCalls.end()) |
| m_incomingLLIntCalls.begin()->unlink(); |
| #if ENABLE(JIT) |
| while (m_incomingCalls.begin() != m_incomingCalls.end()) |
| m_incomingCalls.begin()->unlink(*vm()); |
| while (m_incomingPolymorphicCalls.begin() != m_incomingPolymorphicCalls.end()) |
| m_incomingPolymorphicCalls.begin()->unlink(*vm()); |
| #endif // ENABLE(JIT) |
| } |
| |
| void CodeBlock::linkIncomingCall(ExecState* callerFrame, LLIntCallLinkInfo* incoming) |
| { |
| noticeIncomingCall(callerFrame); |
| m_incomingLLIntCalls.push(incoming); |
| } |
| |
| CodeBlock* CodeBlock::newReplacement() |
| { |
| return ownerScriptExecutable()->newReplacementCodeBlockFor(specializationKind()); |
| } |
| |
| #if ENABLE(JIT) |
| CodeBlock* CodeBlock::replacement() |
| { |
| const ClassInfo* classInfo = this->classInfo(*vm()); |
| |
| if (classInfo == FunctionCodeBlock::info()) |
| return jsCast<FunctionExecutable*>(ownerExecutable())->codeBlockFor(m_isConstructor ? CodeForConstruct : CodeForCall); |
| |
| if (classInfo == EvalCodeBlock::info()) |
| return jsCast<EvalExecutable*>(ownerExecutable())->codeBlock(); |
| |
| if (classInfo == ProgramCodeBlock::info()) |
| return jsCast<ProgramExecutable*>(ownerExecutable())->codeBlock(); |
| |
| if (classInfo == ModuleProgramCodeBlock::info()) |
| return jsCast<ModuleProgramExecutable*>(ownerExecutable())->codeBlock(); |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return nullptr; |
| } |
| |
| DFG::CapabilityLevel CodeBlock::computeCapabilityLevel() |
| { |
| const ClassInfo* classInfo = this->classInfo(*vm()); |
| |
| if (classInfo == FunctionCodeBlock::info()) { |
| if (m_isConstructor) |
| return DFG::functionForConstructCapabilityLevel(this); |
| return DFG::functionForCallCapabilityLevel(this); |
| } |
| |
| if (classInfo == EvalCodeBlock::info()) |
| return DFG::evalCapabilityLevel(this); |
| |
| if (classInfo == ProgramCodeBlock::info()) |
| return DFG::programCapabilityLevel(this); |
| |
| if (classInfo == ModuleProgramCodeBlock::info()) |
| return DFG::programCapabilityLevel(this); |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return DFG::CannotCompile; |
| } |
| |
| #endif // ENABLE(JIT) |
| |
| void CodeBlock::jettison(Profiler::JettisonReason reason, ReoptimizationMode mode, const FireDetail* detail) |
| { |
| #if !ENABLE(DFG_JIT) |
| UNUSED_PARAM(mode); |
| UNUSED_PARAM(detail); |
| #endif |
| |
| CODEBLOCK_LOG_EVENT(this, "jettison", ("due to ", reason, ", counting = ", mode == CountReoptimization, ", detail = ", pointerDump(detail))); |
| |
| RELEASE_ASSERT(reason != Profiler::NotJettisoned); |
| |
| #if ENABLE(DFG_JIT) |
| if (DFG::shouldDumpDisassembly()) { |
| dataLog("Jettisoning ", *this); |
| if (mode == CountReoptimization) |
| dataLog(" and counting reoptimization"); |
| dataLog(" due to ", reason); |
| if (detail) |
| dataLog(", ", *detail); |
| dataLog(".\n"); |
| } |
| |
| if (reason == Profiler::JettisonDueToWeakReference) { |
| if (DFG::shouldDumpDisassembly()) { |
| dataLog(*this, " will be jettisoned because of the following dead references:\n"); |
| DFG::CommonData* dfgCommon = m_jitCode->dfgCommon(); |
| for (auto& transition : dfgCommon->transitions) { |
| JSCell* origin = transition.m_codeOrigin.get(); |
| JSCell* from = transition.m_from.get(); |
| JSCell* to = transition.m_to.get(); |
| if ((!origin || Heap::isMarked(origin)) && Heap::isMarked(from)) |
| continue; |
| dataLog(" Transition under ", RawPointer(origin), ", ", RawPointer(from), " -> ", RawPointer(to), ".\n"); |
| } |
| for (unsigned i = 0; i < dfgCommon->weakReferences.size(); ++i) { |
| JSCell* weak = dfgCommon->weakReferences[i].get(); |
| if (Heap::isMarked(weak)) |
| continue; |
| dataLog(" Weak reference ", RawPointer(weak), ".\n"); |
| } |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| VM& vm = *m_poisonedVM; |
| DeferGCForAWhile deferGC(*heap()); |
| |
| // We want to accomplish two things here: |
| // 1) Make sure that if this CodeBlock is on the stack right now, then if we return to it |
| // we should OSR exit at the top of the next bytecode instruction after the return. |
| // 2) Make sure that if we call the owner executable, then we shouldn't call this CodeBlock. |
| |
| #if ENABLE(DFG_JIT) |
| if (reason != Profiler::JettisonDueToOldAge) { |
| Profiler::Compilation* compilation = jitCode()->dfgCommon()->compilation.get(); |
| if (UNLIKELY(compilation)) |
| compilation->setJettisonReason(reason, detail); |
| |
| // This accomplishes (1), and does its own book-keeping about whether it has already happened. |
| if (!jitCode()->dfgCommon()->invalidate()) { |
| // We've already been invalidated. |
| RELEASE_ASSERT(this != replacement() || (vm.heap.isCurrentThreadBusy() && !Heap::isMarked(ownerScriptExecutable()))); |
| return; |
| } |
| } |
| |
| if (DFG::shouldDumpDisassembly()) |
| dataLog(" Did invalidate ", *this, "\n"); |
| |
| // Count the reoptimization if that's what the user wanted. |
| if (mode == CountReoptimization) { |
| // FIXME: Maybe this should call alternative(). |
| // https://bugs.webkit.org/show_bug.cgi?id=123677 |
| baselineAlternative()->countReoptimization(); |
| if (DFG::shouldDumpDisassembly()) |
| dataLog(" Did count reoptimization for ", *this, "\n"); |
| } |
| |
| if (this != replacement()) { |
| // This means that we were never the entrypoint. This can happen for OSR entry code |
| // blocks. |
| return; |
| } |
| |
| if (alternative()) |
| alternative()->optimizeAfterWarmUp(); |
| |
| if (reason != Profiler::JettisonDueToOldAge && reason != Profiler::JettisonDueToVMTraps) |
| tallyFrequentExitSites(); |
| #endif // ENABLE(DFG_JIT) |
| |
| // Jettison can happen during GC. We don't want to install code to a dead executable |
| // because that would add a dead object to the remembered set. |
| if (vm.heap.isCurrentThreadBusy() && !Heap::isMarked(ownerScriptExecutable())) |
| return; |
| |
| // This accomplishes (2). |
| ownerScriptExecutable()->installCode(vm, alternative(), codeType(), specializationKind()); |
| |
| #if ENABLE(DFG_JIT) |
| if (DFG::shouldDumpDisassembly()) |
| dataLog(" Did install baseline version of ", *this, "\n"); |
| #endif // ENABLE(DFG_JIT) |
| } |
| |
| JSGlobalObject* CodeBlock::globalObjectFor(CodeOrigin codeOrigin) |
| { |
| if (!codeOrigin.inlineCallFrame) |
| return globalObject(); |
| return codeOrigin.inlineCallFrame->baselineCodeBlock->globalObject(); |
| } |
| |
| class RecursionCheckFunctor { |
| public: |
| RecursionCheckFunctor(CallFrame* startCallFrame, CodeBlock* codeBlock, unsigned depthToCheck) |
| : m_startCallFrame(startCallFrame) |
| , m_codeBlock(codeBlock) |
| , m_depthToCheck(depthToCheck) |
| , m_foundStartCallFrame(false) |
| , m_didRecurse(false) |
| { } |
| |
| StackVisitor::Status operator()(StackVisitor& visitor) const |
| { |
| CallFrame* currentCallFrame = visitor->callFrame(); |
| |
| if (currentCallFrame == m_startCallFrame) |
| m_foundStartCallFrame = true; |
| |
| if (m_foundStartCallFrame) { |
| if (visitor->callFrame()->codeBlock() == m_codeBlock) { |
| m_didRecurse = true; |
| return StackVisitor::Done; |
| } |
| |
| if (!m_depthToCheck--) |
| return StackVisitor::Done; |
| } |
| |
| return StackVisitor::Continue; |
| } |
| |
| bool didRecurse() const { return m_didRecurse; } |
| |
| private: |
| CallFrame* m_startCallFrame; |
| CodeBlock* m_codeBlock; |
| mutable unsigned m_depthToCheck; |
| mutable bool m_foundStartCallFrame; |
| mutable bool m_didRecurse; |
| }; |
| |
| void CodeBlock::noticeIncomingCall(ExecState* callerFrame) |
| { |
| CodeBlock* callerCodeBlock = callerFrame->codeBlock(); |
| |
| if (Options::verboseCallLink()) |
| dataLog("Noticing call link from ", pointerDump(callerCodeBlock), " to ", *this, "\n"); |
| |
| #if ENABLE(DFG_JIT) |
| if (!m_shouldAlwaysBeInlined) |
| return; |
| |
| if (!callerCodeBlock) { |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is native.\n"); |
| return; |
| } |
| |
| if (!hasBaselineJITProfiling()) |
| return; |
| |
| if (!DFG::mightInlineFunction(this)) |
| return; |
| |
| if (!canInline(capabilityLevelState())) |
| return; |
| |
| if (!DFG::isSmallEnoughToInlineCodeInto(callerCodeBlock)) { |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is too large.\n"); |
| return; |
| } |
| |
| if (callerCodeBlock->jitType() == JITCode::InterpreterThunk) { |
| // If the caller is still in the interpreter, then we can't expect inlining to |
| // happen anytime soon. Assume it's profitable to optimize it separately. This |
| // ensures that a function is SABI only if it is called no more frequently than |
| // any of its callers. |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is in LLInt.\n"); |
| return; |
| } |
| |
| if (JITCode::isOptimizingJIT(callerCodeBlock->jitType())) { |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI bcause caller was already optimized.\n"); |
| return; |
| } |
| |
| if (callerCodeBlock->codeType() != FunctionCode) { |
| // If the caller is either eval or global code, assume that that won't be |
| // optimized anytime soon. For eval code this is particularly true since we |
| // delay eval optimization by a *lot*. |
| m_shouldAlwaysBeInlined = false; |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because caller is not a function.\n"); |
| return; |
| } |
| |
| // Recursive calls won't be inlined. |
| RecursionCheckFunctor functor(callerFrame, this, Options::maximumInliningDepth()); |
| vm()->topCallFrame->iterate(functor); |
| |
| if (functor.didRecurse()) { |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because recursion was detected.\n"); |
| m_shouldAlwaysBeInlined = false; |
| return; |
| } |
| |
| if (callerCodeBlock->capabilityLevelState() == DFG::CapabilityLevelNotSet) { |
| dataLog("In call from ", FullCodeOrigin(callerCodeBlock, callerFrame->codeOrigin()), " to ", *this, ": caller's DFG capability level is not set.\n"); |
| CRASH(); |
| } |
| |
| if (canCompile(callerCodeBlock->capabilityLevelState())) |
| return; |
| |
| if (Options::verboseCallLink()) |
| dataLog(" Clearing SABI because the caller is not a DFG candidate.\n"); |
| |
| m_shouldAlwaysBeInlined = false; |
| #endif |
| } |
| |
| unsigned CodeBlock::reoptimizationRetryCounter() const |
| { |
| #if ENABLE(JIT) |
| ASSERT(m_reoptimizationRetryCounter <= Options::reoptimizationRetryCounterMax()); |
| return m_reoptimizationRetryCounter; |
| #else |
| return 0; |
| #endif // ENABLE(JIT) |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::setCalleeSaveRegisters(RegisterSet calleeSaveRegisters) |
| { |
| m_calleeSaveRegisters = std::make_unique<RegisterAtOffsetList>(calleeSaveRegisters); |
| } |
| |
| void CodeBlock::setCalleeSaveRegisters(std::unique_ptr<RegisterAtOffsetList> registerAtOffsetList) |
| { |
| m_calleeSaveRegisters = WTFMove(registerAtOffsetList); |
| } |
| |
| static size_t roundCalleeSaveSpaceAsVirtualRegisters(size_t calleeSaveRegisters) |
| { |
| static const unsigned cpuRegisterSize = sizeof(void*); |
| return (WTF::roundUpToMultipleOf(sizeof(Register), calleeSaveRegisters * cpuRegisterSize) / sizeof(Register)); |
| |
| } |
| |
| size_t CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters() |
| { |
| return roundCalleeSaveSpaceAsVirtualRegisters(numberOfLLIntBaselineCalleeSaveRegisters()); |
| } |
| |
| size_t CodeBlock::calleeSaveSpaceAsVirtualRegisters() |
| { |
| return roundCalleeSaveSpaceAsVirtualRegisters(m_calleeSaveRegisters->size()); |
| } |
| |
| void CodeBlock::countReoptimization() |
| { |
| m_reoptimizationRetryCounter++; |
| if (m_reoptimizationRetryCounter > Options::reoptimizationRetryCounterMax()) |
| m_reoptimizationRetryCounter = Options::reoptimizationRetryCounterMax(); |
| } |
| |
| unsigned CodeBlock::numberOfDFGCompiles() |
| { |
| ASSERT(JITCode::isBaselineCode(jitType())); |
| if (Options::testTheFTL()) { |
| if (m_didFailFTLCompilation) |
| return 1000000; |
| return (m_hasBeenCompiledWithFTL ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| return (JITCode::isOptimizingJIT(replacement()->jitType()) ? 1 : 0) + m_reoptimizationRetryCounter; |
| } |
| |
| int32_t CodeBlock::codeTypeThresholdMultiplier() const |
| { |
| if (codeType() == EvalCode) |
| return Options::evalThresholdMultiplier(); |
| |
| return 1; |
| } |
| |
| double CodeBlock::optimizationThresholdScalingFactor() |
| { |
| // This expression arises from doing a least-squares fit of |
| // |
| // F[x_] =: a * Sqrt[x + b] + Abs[c * x] + d |
| // |
| // against the data points: |
| // |
| // x F[x_] |
| // 10 0.9 (smallest reasonable code block) |
| // 200 1.0 (typical small-ish code block) |
| // 320 1.2 (something I saw in 3d-cube that I wanted to optimize) |
| // 1268 5.0 (something I saw in 3d-cube that I didn't want to optimize) |
| // 4000 5.5 (random large size, used to cause the function to converge to a shallow curve of some sort) |
| // 10000 6.0 (similar to above) |
| // |
| // I achieve the minimization using the following Mathematica code: |
| // |
| // MyFunctionTemplate[x_, a_, b_, c_, d_] := a*Sqrt[x + b] + Abs[c*x] + d |
| // |
| // samples = {{10, 0.9}, {200, 1}, {320, 1.2}, {1268, 5}, {4000, 5.5}, {10000, 6}} |
| // |
| // solution = |
| // Minimize[Plus @@ ((MyFunctionTemplate[#[[1]], a, b, c, d] - #[[2]])^2 & /@ samples), |
| // {a, b, c, d}][[2]] |
| // |
| // And the code below (to initialize a, b, c, d) is generated by: |
| // |
| // Print["const double " <> ToString[#[[1]]] <> " = " <> |
| // If[#[[2]] < 0.00001, "0.0", ToString[#[[2]]]] <> ";"] & /@ solution |
| // |
| // We've long known the following to be true: |
| // - Small code blocks are cheap to optimize and so we should do it sooner rather |
| // than later. |
| // - Large code blocks are expensive to optimize and so we should postpone doing so, |
| // and sometimes have a large enough threshold that we never optimize them. |
| // - The difference in cost is not totally linear because (a) just invoking the |
| // DFG incurs some base cost and (b) for large code blocks there is enough slop |
| // in the correlation between instruction count and the actual compilation cost |
| // that for those large blocks, the instruction count should not have a strong |
| // influence on our threshold. |
| // |
| // I knew the goals but I didn't know how to achieve them; so I picked an interesting |
| // example where the heuristics were right (code block in 3d-cube with instruction |
| // count 320, which got compiled early as it should have been) and one where they were |
| // totally wrong (code block in 3d-cube with instruction count 1268, which was expensive |
| // to compile and didn't run often enough to warrant compilation in my opinion), and |
| // then threw in additional data points that represented my own guess of what our |
| // heuristics should do for some round-numbered examples. |
| // |
| // The expression to which I decided to fit the data arose because I started with an |
| // affine function, and then did two things: put the linear part in an Abs to ensure |
| // that the fit didn't end up choosing a negative value of c (which would result in |
| // the function turning over and going negative for large x) and I threw in a Sqrt |
| // term because Sqrt represents my intution that the function should be more sensitive |
| // to small changes in small values of x, but less sensitive when x gets large. |
| |
| // Note that the current fit essentially eliminates the linear portion of the |
| // expression (c == 0.0). |
| const double a = 0.061504; |
| const double b = 1.02406; |
| const double c = 0.0; |
| const double d = 0.825914; |
| |
| double instructionCount = this->instructionCount(); |
| |
| ASSERT(instructionCount); // Make sure this is called only after we have an instruction stream; otherwise it'll just return the value of d, which makes no sense. |
| |
| double result = d + a * sqrt(instructionCount + b) + c * instructionCount; |
| |
| result *= codeTypeThresholdMultiplier(); |
| |
| if (Options::verboseOSR()) { |
| dataLog( |
| *this, ": instruction count is ", instructionCount, |
| ", scaling execution counter by ", result, " * ", codeTypeThresholdMultiplier(), |
| "\n"); |
| } |
| return result; |
| } |
| |
| static int32_t clipThreshold(double threshold) |
| { |
| if (threshold < 1.0) |
| return 1; |
| |
| if (threshold > static_cast<double>(std::numeric_limits<int32_t>::max())) |
| return std::numeric_limits<int32_t>::max(); |
| |
| return static_cast<int32_t>(threshold); |
| } |
| |
| int32_t CodeBlock::adjustedCounterValue(int32_t desiredThreshold) |
| { |
| return clipThreshold( |
| static_cast<double>(desiredThreshold) * |
| optimizationThresholdScalingFactor() * |
| (1 << reoptimizationRetryCounter())); |
| } |
| |
| bool CodeBlock::checkIfOptimizationThresholdReached() |
| { |
| #if ENABLE(DFG_JIT) |
| if (DFG::Worklist* worklist = DFG::existingGlobalDFGWorklistOrNull()) { |
| if (worklist->compilationState(DFG::CompilationKey(this, DFG::DFGMode)) |
| == DFG::Worklist::Compiled) { |
| optimizeNextInvocation(); |
| return true; |
| } |
| } |
| #endif |
| |
| return m_jitExecuteCounter.checkIfThresholdCrossedAndSet(this); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| auto CodeBlock::updateOSRExitCounterAndCheckIfNeedToReoptimize(DFG::OSRExitState& exitState) -> OptimizeAction |
| { |
| DFG::OSRExitBase& exit = exitState.exit; |
| if (!exitKindMayJettison(exit.m_kind)) { |
| // FIXME: We may want to notice that we're frequently exiting |
| // at an op_catch that we didn't compile an entrypoint for, and |
| // then trigger a reoptimization of this CodeBlock: |
| // https://bugs.webkit.org/show_bug.cgi?id=175842 |
| return OptimizeAction::None; |
| } |
| |
| exit.m_count++; |
| m_osrExitCounter++; |
| |
| CodeBlock* baselineCodeBlock = exitState.baselineCodeBlock; |
| ASSERT(baselineCodeBlock == baselineAlternative()); |
| if (UNLIKELY(baselineCodeBlock->jitExecuteCounter().hasCrossedThreshold())) |
| return OptimizeAction::ReoptimizeNow; |
| |
| // We want to figure out if there's a possibility that we're in a loop. For the outermost |
| // code block in the inline stack, we handle this appropriately by having the loop OSR trigger |
| // check the exit count of the replacement of the CodeBlock from which we are OSRing. The |
| // problem is the inlined functions, which might also have loops, but whose baseline versions |
| // don't know where to look for the exit count. Figure out if those loops are severe enough |
| // that we had tried to OSR enter. If so, then we should use the loop reoptimization trigger. |
| // Otherwise, we should use the normal reoptimization trigger. |
| |
| bool didTryToEnterInLoop = false; |
| for (InlineCallFrame* inlineCallFrame = exit.m_codeOrigin.inlineCallFrame; inlineCallFrame; inlineCallFrame = inlineCallFrame->directCaller.inlineCallFrame) { |
| if (inlineCallFrame->baselineCodeBlock->ownerScriptExecutable()->didTryToEnterInLoop()) { |
| didTryToEnterInLoop = true; |
| break; |
| } |
| } |
| |
| uint32_t exitCountThreshold = didTryToEnterInLoop |
| ? exitCountThresholdForReoptimizationFromLoop() |
| : exitCountThresholdForReoptimization(); |
| |
| if (m_osrExitCounter > exitCountThreshold) |
| return OptimizeAction::ReoptimizeNow; |
| |
| // Too few fails. Adjust the execution counter such that the target is to only optimize after a while. |
| baselineCodeBlock->m_jitExecuteCounter.setNewThresholdForOSRExit(exitState.activeThreshold, exitState.memoryUsageAdjustedThreshold); |
| return OptimizeAction::None; |
| } |
| #endif |
| |
| void CodeBlock::optimizeNextInvocation() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing next invocation.\n"); |
| m_jitExecuteCounter.setNewThreshold(0, this); |
| } |
| |
| void CodeBlock::dontOptimizeAnytimeSoon() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Not optimizing anytime soon.\n"); |
| m_jitExecuteCounter.deferIndefinitely(); |
| } |
| |
| void CodeBlock::optimizeAfterWarmUp() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing after warm-up.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeAfterWarmUp()), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeAfterLongWarmUp() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing after long warm-up.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp()), this); |
| #endif |
| } |
| |
| void CodeBlock::optimizeSoon() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Optimizing soon.\n"); |
| #if ENABLE(DFG_JIT) |
| m_jitExecuteCounter.setNewThreshold( |
| adjustedCounterValue(Options::thresholdForOptimizeSoon()), this); |
| #endif |
| } |
| |
| void CodeBlock::forceOptimizationSlowPathConcurrently() |
| { |
| if (Options::verboseOSR()) |
| dataLog(*this, ": Forcing slow path concurrently.\n"); |
| m_jitExecuteCounter.forceSlowPathConcurrently(); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::setOptimizationThresholdBasedOnCompilationResult(CompilationResult result) |
| { |
| JITCode::JITType type = jitType(); |
| if (type != JITCode::BaselineJIT) { |
| dataLog(*this, ": expected to have baseline code but have ", type, "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| CodeBlock* theReplacement = replacement(); |
| if ((result == CompilationSuccessful) != (theReplacement != this)) { |
| dataLog(*this, ": we have result = ", result, " but "); |
| if (theReplacement == this) |
| dataLog("we are our own replacement.\n"); |
| else |
| dataLog("our replacement is ", pointerDump(theReplacement), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| switch (result) { |
| case CompilationSuccessful: |
| RELEASE_ASSERT(JITCode::isOptimizingJIT(replacement()->jitType())); |
| optimizeNextInvocation(); |
| return; |
| case CompilationFailed: |
| dontOptimizeAnytimeSoon(); |
| return; |
| case CompilationDeferred: |
| // We'd like to do dontOptimizeAnytimeSoon() but we cannot because |
| // forceOptimizationSlowPathConcurrently() is inherently racy. It won't |
| // necessarily guarantee anything. So, we make sure that even if that |
| // function ends up being a no-op, we still eventually retry and realize |
| // that we have optimized code ready. |
| optimizeAfterWarmUp(); |
| return; |
| case CompilationInvalidated: |
| // Retry with exponential backoff. |
| countReoptimization(); |
| optimizeAfterWarmUp(); |
| return; |
| } |
| |
| dataLog("Unrecognized result: ", static_cast<int>(result), "\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| #endif |
| |
| uint32_t CodeBlock::adjustedExitCountThreshold(uint32_t desiredThreshold) |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| // Compute this the lame way so we don't saturate. This is called infrequently |
| // enough that this loop won't hurt us. |
| unsigned result = desiredThreshold; |
| for (unsigned n = baselineVersion()->reoptimizationRetryCounter(); n--;) { |
| unsigned newResult = result << 1; |
| if (newResult < result) |
| return std::numeric_limits<uint32_t>::max(); |
| result = newResult; |
| } |
| return result; |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimization() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimization() * codeTypeThresholdMultiplier()); |
| } |
| |
| uint32_t CodeBlock::exitCountThresholdForReoptimizationFromLoop() |
| { |
| return adjustedExitCountThreshold(Options::osrExitCountForReoptimizationFromLoop() * codeTypeThresholdMultiplier()); |
| } |
| |
| bool CodeBlock::shouldReoptimizeNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimization(); |
| } |
| |
| bool CodeBlock::shouldReoptimizeFromLoopNow() |
| { |
| return osrExitCounter() >= exitCountThresholdForReoptimizationFromLoop(); |
| } |
| #endif |
| |
| ArrayProfile* CodeBlock::getArrayProfile(const ConcurrentJSLocker&, unsigned bytecodeOffset) |
| { |
| for (auto& m_arrayProfile : m_arrayProfiles) { |
| if (m_arrayProfile.bytecodeOffset() == bytecodeOffset) |
| return &m_arrayProfile; |
| } |
| return 0; |
| } |
| |
| ArrayProfile* CodeBlock::getArrayProfile(unsigned bytecodeOffset) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return getArrayProfile(locker, bytecodeOffset); |
| } |
| |
| ArrayProfile* CodeBlock::addArrayProfile(const ConcurrentJSLocker&, unsigned bytecodeOffset) |
| { |
| m_arrayProfiles.append(ArrayProfile(bytecodeOffset)); |
| return &m_arrayProfiles.last(); |
| } |
| |
| ArrayProfile* CodeBlock::addArrayProfile(unsigned bytecodeOffset) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return addArrayProfile(locker, bytecodeOffset); |
| } |
| |
| ArrayProfile* CodeBlock::getOrAddArrayProfile(const ConcurrentJSLocker& locker, unsigned bytecodeOffset) |
| { |
| ArrayProfile* result = getArrayProfile(locker, bytecodeOffset); |
| if (result) |
| return result; |
| return addArrayProfile(locker, bytecodeOffset); |
| } |
| |
| ArrayProfile* CodeBlock::getOrAddArrayProfile(unsigned bytecodeOffset) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| return getOrAddArrayProfile(locker, bytecodeOffset); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| Vector<CodeOrigin, 0, UnsafeVectorOverflow>& CodeBlock::codeOrigins() |
| { |
| return m_jitCode->dfgCommon()->codeOrigins; |
| } |
| |
| size_t CodeBlock::numberOfDFGIdentifiers() const |
| { |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return 0; |
| |
| return m_jitCode->dfgCommon()->dfgIdentifiers.size(); |
| } |
| |
| const Identifier& CodeBlock::identifier(int index) const |
| { |
| size_t unlinkedIdentifiers = m_unlinkedCode->numberOfIdentifiers(); |
| if (static_cast<unsigned>(index) < unlinkedIdentifiers) |
| return m_unlinkedCode->identifier(index); |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| return m_jitCode->dfgCommon()->dfgIdentifiers[index - unlinkedIdentifiers]; |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| void CodeBlock::updateAllPredictionsAndCountLiveness(unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles) |
| { |
| ConcurrentJSLocker locker(m_lock); |
| |
| numberOfLiveNonArgumentValueProfiles = 0; |
| numberOfSamplesInProfiles = 0; // If this divided by ValueProfile::numberOfBuckets equals numberOfValueProfiles() then value profiles are full. |
| |
| for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { |
| ValueProfile& profile = getFromAllValueProfiles(i); |
| unsigned numSamples = profile.totalNumberOfSamples(); |
| if (numSamples > ValueProfile::numberOfBuckets) |
| numSamples = ValueProfile::numberOfBuckets; // We don't want profiles that are extremely hot to be given more weight. |
| numberOfSamplesInProfiles += numSamples; |
| if (profile.m_bytecodeOffset < 0) { |
| profile.computeUpdatedPrediction(locker); |
| continue; |
| } |
| if (profile.numberOfSamples() || profile.m_prediction != SpecNone) |
| numberOfLiveNonArgumentValueProfiles++; |
| profile.computeUpdatedPrediction(locker); |
| } |
| |
| for (auto& profileBucket : m_catchProfiles) { |
| profileBucket->forEach([&] (ValueProfileAndOperand& profile) { |
| profile.m_profile.computeUpdatedPrediction(locker); |
| }); |
| } |
| |
| #if ENABLE(DFG_JIT) |
| m_lazyOperandValueProfiles.computeUpdatedPredictions(locker); |
| #endif |
| } |
| |
| void CodeBlock::updateAllValueProfilePredictions() |
| { |
| unsigned ignoredValue1, ignoredValue2; |
| updateAllPredictionsAndCountLiveness(ignoredValue1, ignoredValue2); |
| } |
| |
| void CodeBlock::updateAllArrayPredictions() |
| { |
| ConcurrentJSLocker locker(m_lock); |
| |
| for (unsigned i = m_arrayProfiles.size(); i--;) |
| m_arrayProfiles[i].computeUpdatedPrediction(locker, this); |
| |
| // Don't count these either, for similar reasons. |
| for (unsigned i = m_arrayAllocationProfiles.size(); i--;) |
| m_arrayAllocationProfiles[i].updateProfile(); |
| } |
| |
| void CodeBlock::updateAllPredictions() |
| { |
| updateAllValueProfilePredictions(); |
| updateAllArrayPredictions(); |
| } |
| |
| bool CodeBlock::shouldOptimizeNow() |
| { |
| if (Options::verboseOSR()) |
| dataLog("Considering optimizing ", *this, "...\n"); |
| |
| if (m_optimizationDelayCounter >= Options::maximumOptimizationDelay()) |
| return true; |
| |
| updateAllArrayPredictions(); |
| |
| unsigned numberOfLiveNonArgumentValueProfiles; |
| unsigned numberOfSamplesInProfiles; |
| updateAllPredictionsAndCountLiveness(numberOfLiveNonArgumentValueProfiles, numberOfSamplesInProfiles); |
| |
| if (Options::verboseOSR()) { |
| dataLogF( |
| "Profile hotness: %lf (%u / %u), %lf (%u / %u)\n", |
| (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles(), |
| numberOfLiveNonArgumentValueProfiles, numberOfValueProfiles(), |
| (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / numberOfValueProfiles(), |
| numberOfSamplesInProfiles, ValueProfile::numberOfBuckets * numberOfValueProfiles()); |
| } |
| |
| if ((!numberOfValueProfiles() || (double)numberOfLiveNonArgumentValueProfiles / numberOfValueProfiles() >= Options::desiredProfileLivenessRate()) |
| && (!totalNumberOfValueProfiles() || (double)numberOfSamplesInProfiles / ValueProfile::numberOfBuckets / totalNumberOfValueProfiles() >= Options::desiredProfileFullnessRate()) |
| && static_cast<unsigned>(m_optimizationDelayCounter) + 1 >= Options::minimumOptimizationDelay()) |
| return true; |
| |
| ASSERT(m_optimizationDelayCounter < std::numeric_limits<uint8_t>::max()); |
| m_optimizationDelayCounter++; |
| optimizeAfterWarmUp(); |
| return false; |
| } |
| |
| #if ENABLE(DFG_JIT) |
| void CodeBlock::tallyFrequentExitSites() |
| { |
| ASSERT(JITCode::isOptimizingJIT(jitType())); |
| ASSERT(alternative()->jitType() == JITCode::BaselineJIT); |
| |
| CodeBlock* profiledBlock = alternative(); |
| |
| switch (jitType()) { |
| case JITCode::DFGJIT: { |
| DFG::JITCode* jitCode = m_jitCode->dfg(); |
| for (auto& exit : jitCode->osrExit) |
| exit.considerAddingAsFrequentExitSite(profiledBlock); |
| break; |
| } |
| |
| #if ENABLE(FTL_JIT) |
| case JITCode::FTLJIT: { |
| // There is no easy way to avoid duplicating this code since the FTL::JITCode::osrExit |
| // vector contains a totally different type, that just so happens to behave like |
| // DFG::JITCode::osrExit. |
| FTL::JITCode* jitCode = m_jitCode->ftl(); |
| for (unsigned i = 0; i < jitCode->osrExit.size(); ++i) { |
| FTL::OSRExit& exit = jitCode->osrExit[i]; |
| exit.considerAddingAsFrequentExitSite(profiledBlock); |
| } |
| break; |
| } |
| #endif |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| #endif // ENABLE(DFG_JIT) |
| |
| #if ENABLE(VERBOSE_VALUE_PROFILE) |
| void CodeBlock::dumpValueProfiles() |
| { |
| dataLog("ValueProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < totalNumberOfValueProfiles(); ++i) { |
| ValueProfile& profile = getFromAllValueProfiles(i); |
| if (profile.m_bytecodeOffset < 0) { |
| ASSERT(profile.m_bytecodeOffset == -1); |
| dataLogF(" arg = %u: ", i); |
| } else |
| dataLogF(" bc = %d: ", profile.m_bytecodeOffset); |
| if (!profile.numberOfSamples() && profile.m_prediction == SpecNone) { |
| dataLogF("<empty>\n"); |
| continue; |
| } |
| profile.dump(WTF::dataFile()); |
| dataLogF("\n"); |
| } |
| dataLog("RareCaseProfile for ", *this, ":\n"); |
| for (unsigned i = 0; i < numberOfRareCaseProfiles(); ++i) { |
| RareCaseProfile* profile = rareCaseProfile(i); |
| dataLogF(" bc = %d: %u\n", profile->m_bytecodeOffset, profile->m_counter); |
| } |
| } |
| #endif // ENABLE(VERBOSE_VALUE_PROFILE) |
| |
| unsigned CodeBlock::frameRegisterCount() |
| { |
| switch (jitType()) { |
| case JITCode::InterpreterThunk: |
| return LLInt::frameRegisterCountFor(this); |
| |
| #if ENABLE(JIT) |
| case JITCode::BaselineJIT: |
| return JIT::frameRegisterCountFor(this); |
| #endif // ENABLE(JIT) |
| |
| #if ENABLE(DFG_JIT) |
| case JITCode::DFGJIT: |
| case JITCode::FTLJIT: |
| return jitCode()->dfgCommon()->frameRegisterCount; |
| #endif // ENABLE(DFG_JIT) |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| } |
| |
| int CodeBlock::stackPointerOffset() |
| { |
| return virtualRegisterForLocal(frameRegisterCount() - 1).offset(); |
| } |
| |
| size_t CodeBlock::predictedMachineCodeSize() |
| { |
| VM* vm = m_poisonedVM.unpoisoned(); |
| // This will be called from CodeBlock::CodeBlock before either m_poisonedVM or the |
| // instructions have been initialized. It's OK to return 0 because what will really |
| // matter is the recomputation of this value when the slow path is triggered. |
| if (!vm) |
| return 0; |
| |
| if (!*vm->machineCodeBytesPerBytecodeWordForBaselineJIT) |
| return 0; // It's as good of a prediction as we'll get. |
| |
| // Be conservative: return a size that will be an overestimation 84% of the time. |
| double multiplier = vm->machineCodeBytesPerBytecodeWordForBaselineJIT->mean() + |
| vm->machineCodeBytesPerBytecodeWordForBaselineJIT->standardDeviation(); |
| |
| // Be paranoid: silently reject bogus multipiers. Silently doing the "wrong" thing |
| // here is OK, since this whole method is just a heuristic. |
| if (multiplier < 0 || multiplier > 1000) |
| return 0; |
| |
| double doubleResult = multiplier * m_instructions.size(); |
| |
| // Be even more paranoid: silently reject values that won't fit into a size_t. If |
| // the function is so huge that we can't even fit it into virtual memory then we |
| // should probably have some other guards in place to prevent us from even getting |
| // to this point. |
| if (doubleResult > std::numeric_limits<size_t>::max()) |
| return 0; |
| |
| return static_cast<size_t>(doubleResult); |
| } |
| |
| String CodeBlock::nameForRegister(VirtualRegister virtualRegister) |
| { |
| for (auto& constantRegister : m_constantRegisters) { |
| if (constantRegister.get().isEmpty()) |
| continue; |
| if (SymbolTable* symbolTable = jsDynamicCast<SymbolTable*>(*vm(), constantRegister.get())) { |
| ConcurrentJSLocker locker(symbolTable->m_lock); |
| auto end = symbolTable->end(locker); |
| for (auto ptr = symbolTable->begin(locker); ptr != end; ++ptr) { |
| if (ptr->value.varOffset() == VarOffset(virtualRegister)) { |
| // FIXME: This won't work from the compilation thread. |
| // https://bugs.webkit.org/show_bug.cgi?id=115300 |
| return ptr->key.get(); |
| } |
| } |
| } |
| } |
| if (virtualRegister == thisRegister()) |
| return ASCIILiteral("this"); |
| if (virtualRegister.isArgument()) |
| return String::format("arguments[%3d]", virtualRegister.toArgument()); |
| |
| return ""; |
| } |
| |
| ValueProfile* CodeBlock::tryGetValueProfileForBytecodeOffset(int bytecodeOffset) |
| { |
| return tryBinarySearch<ValueProfile, int>( |
| m_valueProfiles, m_valueProfiles.size(), bytecodeOffset, |
| getValueProfileBytecodeOffset<ValueProfile>); |
| } |
| |
| ValueProfile& CodeBlock::valueProfileForBytecodeOffset(int bytecodeOffset) |
| { |
| OpcodeID opcodeID = Interpreter::getOpcodeID(instructions()[bytecodeOffset]); |
| unsigned length = opcodeLength(opcodeID); |
| ASSERT(!!tryGetValueProfileForBytecodeOffset(bytecodeOffset)); |
| return *instructions()[bytecodeOffset + length - 1].u.profile; |
| } |
| |
| void CodeBlock::validate() |
| { |
| BytecodeLivenessAnalysis liveness(this); // Compute directly from scratch so it doesn't effect CodeBlock footprint. |
| |
| FastBitVector liveAtHead = liveness.getLivenessInfoAtBytecodeOffset(this, 0); |
| |
| if (liveAtHead.numBits() != static_cast<size_t>(m_numCalleeLocals)) { |
| beginValidationDidFail(); |
| dataLog(" Wrong number of bits in result!\n"); |
| dataLog(" Result: ", liveAtHead, "\n"); |
| dataLog(" Bit count: ", liveAtHead.numBits(), "\n"); |
| endValidationDidFail(); |
| } |
| |
| for (unsigned i = m_numCalleeLocals; i--;) { |
| VirtualRegister reg = virtualRegisterForLocal(i); |
| |
| if (liveAtHead[i]) { |
| beginValidationDidFail(); |
| dataLog(" Variable ", reg, " is expected to be dead.\n"); |
| dataLog(" Result: ", liveAtHead, "\n"); |
| endValidationDidFail(); |
| } |
| } |
| |
| for (unsigned i = 0; i + 1 < numberOfValueProfiles(); ++i) { |
| if (valueProfile(i).m_bytecodeOffset > valueProfile(i + 1).m_bytecodeOffset) { |
| beginValidationDidFail(); |
| dataLog(" Value profiles are not sorted.\n"); |
| endValidationDidFail(); |
| } |
| } |
| |
| for (unsigned bytecodeOffset = 0; bytecodeOffset < m_instructions.size(); ) { |
| OpcodeID opcode = Interpreter::getOpcodeID(m_instructions[bytecodeOffset]); |
| if (!!baselineAlternative()->handlerForBytecodeOffset(bytecodeOffset)) { |
| if (opcode == op_catch || opcode == op_enter) { |
| // op_catch/op_enter logically represent an entrypoint. Entrypoints are not allowed to be |
| // inside of a try block because they are responsible for bootstrapping state. And they |
| // are never allowed throw an exception because of this. We rely on this when compiling |
| // in the DFG. Because an entrypoint never throws, the bytecode generator will never |
| // allow once inside a try block. |
| beginValidationDidFail(); |
| dataLog(" entrypoint not allowed inside a try block."); |
| endValidationDidFail(); |
| } |
| } |
| bytecodeOffset += opcodeLength(opcode); |
| } |
| } |
| |
| void CodeBlock::beginValidationDidFail() |
| { |
| dataLog("Validation failure in ", *this, ":\n"); |
| dataLog("\n"); |
| } |
| |
| void CodeBlock::endValidationDidFail() |
| { |
| dataLog("\n"); |
| dumpBytecode(); |
| dataLog("\n"); |
| dataLog("Validation failure.\n"); |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| void CodeBlock::addBreakpoint(unsigned numBreakpoints) |
| { |
| m_numBreakpoints += numBreakpoints; |
| ASSERT(m_numBreakpoints); |
| if (JITCode::isOptimizingJIT(jitType())) |
| jettison(Profiler::JettisonDueToDebuggerBreakpoint); |
| } |
| |
| void CodeBlock::setSteppingMode(CodeBlock::SteppingMode mode) |
| { |
| m_steppingMode = mode; |
| if (mode == SteppingModeEnabled && JITCode::isOptimizingJIT(jitType())) |
| jettison(Profiler::JettisonDueToDebuggerStepping); |
| } |
| |
| RareCaseProfile* CodeBlock::addRareCaseProfile(int bytecodeOffset) |
| { |
| m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset)); |
| return &m_rareCaseProfiles.last(); |
| } |
| |
| RareCaseProfile* CodeBlock::rareCaseProfileForBytecodeOffset(int bytecodeOffset) |
| { |
| return tryBinarySearch<RareCaseProfile, int>( |
| m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset, |
| getRareCaseProfileBytecodeOffset); |
| } |
| |
| unsigned CodeBlock::rareCaseProfileCountForBytecodeOffset(int bytecodeOffset) |
| { |
| RareCaseProfile* profile = rareCaseProfileForBytecodeOffset(bytecodeOffset); |
| if (profile) |
| return profile->m_counter; |
| return 0; |
| } |
| |
| ArithProfile* CodeBlock::arithProfileForBytecodeOffset(int bytecodeOffset) |
| { |
| return arithProfileForPC(&instructions()[bytecodeOffset]); |
| } |
| |
| ArithProfile* CodeBlock::arithProfileForPC(Instruction* pc) |
| { |
| auto opcodeID = Interpreter::getOpcodeID(pc[0]); |
| switch (opcodeID) { |
| case op_negate: |
| return bitwise_cast<ArithProfile*>(&pc[3].u.operand); |
| case op_bitor: |
| case op_bitand: |
| case op_bitxor: |
| case op_add: |
| case op_mul: |
| case op_sub: |
| case op_div: |
| return bitwise_cast<ArithProfile*>(&pc[4].u.operand); |
| default: |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| bool CodeBlock::couldTakeSpecialFastCase(int bytecodeOffset) |
| { |
| if (!hasBaselineJITProfiling()) |
| return false; |
| ArithProfile* profile = arithProfileForBytecodeOffset(bytecodeOffset); |
| if (!profile) |
| return false; |
| return profile->tookSpecialFastPath(); |
| } |
| |
| #if ENABLE(JIT) |
| DFG::CapabilityLevel CodeBlock::capabilityLevel() |
| { |
| DFG::CapabilityLevel result = computeCapabilityLevel(); |
| m_capabilityLevelState = result; |
| return result; |
| } |
| #endif |
| |
| void CodeBlock::insertBasicBlockBoundariesForControlFlowProfiler(RefCountedArray<Instruction>& instructions) |
| { |
| if (!unlinkedCodeBlock()->hasOpProfileControlFlowBytecodeOffsets()) |
| return; |
| const Vector<size_t>& bytecodeOffsets = unlinkedCodeBlock()->opProfileControlFlowBytecodeOffsets(); |
| for (size_t i = 0, offsetsLength = bytecodeOffsets.size(); i < offsetsLength; i++) { |
| // Because op_profile_control_flow is emitted at the beginning of every basic block, finding |
| // the next op_profile_control_flow will give us the text range of a single basic block. |
| size_t startIdx = bytecodeOffsets[i]; |
| RELEASE_ASSERT(Interpreter::getOpcodeID(instructions[startIdx]) == op_profile_control_flow); |
| int basicBlockStartOffset = instructions[startIdx + 1].u.operand; |
| int basicBlockEndOffset; |
| if (i + 1 < offsetsLength) { |
| size_t endIdx = bytecodeOffsets[i + 1]; |
| RELEASE_ASSERT(Interpreter::getOpcodeID(instructions[endIdx]) == op_profile_control_flow); |
| basicBlockEndOffset = instructions[endIdx + 1].u.operand - 1; |
| } else { |
| basicBlockEndOffset = m_sourceOffset + ownerScriptExecutable()->source().length() - 1; // Offset before the closing brace. |
| basicBlockStartOffset = std::min(basicBlockStartOffset, basicBlockEndOffset); // Some start offsets may be at the closing brace, ensure it is the offset before. |
| } |
| |
| // The following check allows for the same textual JavaScript basic block to have its bytecode emitted more |
| // than once and still play nice with the control flow profiler. When basicBlockStartOffset is larger than |
| // basicBlockEndOffset, it indicates that the bytecode generator has emitted code for the same AST node |
| // more than once (for example: ForInNode, Finally blocks in TryNode, etc). Though these are different |
| // basic blocks at the bytecode level, they are generated from the same textual basic block in the JavaScript |
| // program. The condition: |
| // (basicBlockEndOffset < basicBlockStartOffset) |
| // is encountered when op_profile_control_flow lies across the boundary of these duplicated bytecode basic |
| // blocks and the textual offset goes from the end of the duplicated block back to the beginning. These |
| // ranges are dummy ranges and are ignored. The duplicated bytecode basic blocks point to the same |
| // internal data structure, so if any of them execute, it will record the same textual basic block in the |
| // JavaScript program as executing. |
| // At the bytecode level, this situation looks like: |
| // j: op_profile_control_flow (from j->k, we have basicBlockEndOffset < basicBlockStartOffset) |
| // ... |
| // k: op_profile_control_flow (we want to skip over the j->k block and start fresh at offset k as the start of a new basic block k->m). |
| // ... |
| // m: op_profile_control_flow |
| if (basicBlockEndOffset < basicBlockStartOffset) { |
| RELEASE_ASSERT(i + 1 < offsetsLength); // We should never encounter dummy blocks at the end of a CodeBlock. |
| instructions[startIdx + 1].u.basicBlockLocation = vm()->controlFlowProfiler()->dummyBasicBlock(); |
| continue; |
| } |
| |
| BasicBlockLocation* basicBlockLocation = vm()->controlFlowProfiler()->getBasicBlockLocation(ownerScriptExecutable()->sourceID(), basicBlockStartOffset, basicBlockEndOffset); |
| |
| // Find all functions that are enclosed within the range: [basicBlockStartOffset, basicBlockEndOffset] |
| // and insert these functions' start/end offsets as gaps in the current BasicBlockLocation. |
| // This is necessary because in the original source text of a JavaScript program, |
| // function literals form new basic blocks boundaries, but they aren't represented |
| // inside the CodeBlock's instruction stream. |
| auto insertFunctionGaps = [basicBlockLocation, basicBlockStartOffset, basicBlockEndOffset] (const WriteBarrier<FunctionExecutable>& functionExecutable) { |
| const UnlinkedFunctionExecutable* executable = functionExecutable->unlinkedExecutable(); |
| int functionStart = executable->typeProfilingStartOffset(); |
| int functionEnd = executable->typeProfilingEndOffset(); |
| if (functionStart >= basicBlockStartOffset && functionEnd <= basicBlockEndOffset) |
| basicBlockLocation->insertGap(functionStart, functionEnd); |
| }; |
| |
| for (const WriteBarrier<FunctionExecutable>& executable : m_functionDecls) |
| insertFunctionGaps(executable); |
| for (const WriteBarrier<FunctionExecutable>& executable : m_functionExprs) |
| insertFunctionGaps(executable); |
| |
| instructions[startIdx + 1].u.basicBlockLocation = basicBlockLocation; |
| } |
| } |
| |
| #if ENABLE(JIT) |
| void CodeBlock::setPCToCodeOriginMap(std::unique_ptr<PCToCodeOriginMap>&& map) |
| { |
| m_pcToCodeOriginMap = WTFMove(map); |
| } |
| |
| std::optional<CodeOrigin> CodeBlock::findPC(void* pc) |
| { |
| if (m_pcToCodeOriginMap) { |
| if (std::optional<CodeOrigin> codeOrigin = m_pcToCodeOriginMap->findPC(pc)) |
| return codeOrigin; |
| } |
| |
| for (auto iter = m_stubInfos.begin(); !!iter; ++iter) { |
| StructureStubInfo* stub = *iter; |
| if (stub->containsPC(pc)) |
| return std::optional<CodeOrigin>(stub->codeOrigin); |
| } |
| |
| if (std::optional<CodeOrigin> codeOrigin = m_jitCode->findPC(this, pc)) |
| return codeOrigin; |
| |
| return std::nullopt; |
| } |
| #endif // ENABLE(JIT) |
| |
| std::optional<unsigned> CodeBlock::bytecodeOffsetFromCallSiteIndex(CallSiteIndex callSiteIndex) |
| { |
| std::optional<unsigned> bytecodeOffset; |
| JITCode::JITType jitType = this->jitType(); |
| if (jitType == JITCode::InterpreterThunk || jitType == JITCode::BaselineJIT) { |
| #if USE(JSVALUE64) |
| bytecodeOffset = callSiteIndex.bits(); |
| #else |
| Instruction* instruction = bitwise_cast<Instruction*>(callSiteIndex.bits()); |
| bytecodeOffset = this->bytecodeOffset(instruction); |
| #endif |
| } else if (jitType == JITCode::DFGJIT || jitType == JITCode::FTLJIT) { |
| #if ENABLE(DFG_JIT) |
| RELEASE_ASSERT(canGetCodeOrigin(callSiteIndex)); |
| CodeOrigin origin = codeOrigin(callSiteIndex); |
| bytecodeOffset = origin.bytecodeIndex; |
| #else |
| RELEASE_ASSERT_NOT_REACHED(); |
| #endif |
| } |
| |
| return bytecodeOffset; |
| } |
| |
| int32_t CodeBlock::thresholdForJIT(int32_t threshold) |
| { |
| switch (unlinkedCodeBlock()->didOptimize()) { |
| case MixedTriState: |
| return threshold; |
| case FalseTriState: |
| return threshold * 4; |
| case TrueTriState: |
| return threshold / 2; |
| } |
| ASSERT_NOT_REACHED(); |
| return threshold; |
| } |
| |
| void CodeBlock::jitAfterWarmUp() |
| { |
| m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITAfterWarmUp()), this); |
| } |
| |
| void CodeBlock::jitSoon() |
| { |
| m_llintExecuteCounter.setNewThreshold(thresholdForJIT(Options::thresholdForJITSoon()), this); |
| } |
| |
| bool CodeBlock::hasInstalledVMTrapBreakpoints() const |
| { |
| #if ENABLE(SIGNAL_BASED_VM_TRAPS) |
| // This function may be called from a signal handler. We need to be |
| // careful to not call anything that is not signal handler safe, e.g. |
| // we should not perturb the refCount of m_jitCode. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return false; |
| return m_jitCode->dfgCommon()->hasInstalledVMTrapsBreakpoints(); |
| #else |
| return false; |
| #endif |
| } |
| |
| bool CodeBlock::installVMTrapBreakpoints() |
| { |
| #if ENABLE(SIGNAL_BASED_VM_TRAPS) |
| // This function may be called from a signal handler. We need to be |
| // careful to not call anything that is not signal handler safe, e.g. |
| // we should not perturb the refCount of m_jitCode. |
| if (!JITCode::isOptimizingJIT(jitType())) |
| return false; |
| auto& commonData = *m_jitCode->dfgCommon(); |
| commonData.installVMTrapBreakpoints(this); |
| return true; |
| #else |
| UNREACHABLE_FOR_PLATFORM(); |
| return false; |
| #endif |
| } |
| |
| void CodeBlock::dumpMathICStats() |
| { |
| #if ENABLE(MATH_IC_STATS) |
| double numAdds = 0.0; |
| double totalAddSize = 0.0; |
| double numMuls = 0.0; |
| double totalMulSize = 0.0; |
| double numNegs = 0.0; |
| double totalNegSize = 0.0; |
| double numSubs = 0.0; |
| double totalSubSize = 0.0; |
| |
| auto countICs = [&] (CodeBlock* codeBlock) { |
| for (JITAddIC* addIC : codeBlock->m_addICs) { |
| numAdds++; |
| totalAddSize += addIC->codeSize(); |
| } |
| |
| for (JITMulIC* mulIC : codeBlock->m_mulICs) { |
| numMuls++; |
| totalMulSize += mulIC->codeSize(); |
| } |
| |
| for (JITNegIC* negIC : codeBlock->m_negICs) { |
| numNegs++; |
| totalNegSize += negIC->codeSize(); |
| } |
| |
| for (JITSubIC* subIC : codeBlock->m_subICs) { |
| numSubs++; |
| totalSubSize += subIC->codeSize(); |
| } |
| }; |
| heap()->forEachCodeBlock(countICs); |
| |
| dataLog("Num Adds: ", numAdds, "\n"); |
| dataLog("Total Add size in bytes: ", totalAddSize, "\n"); |
| dataLog("Average Add size: ", totalAddSize / numAdds, "\n"); |
| dataLog("\n"); |
| dataLog("Num Muls: ", numMuls, "\n"); |
| dataLog("Total Mul size in bytes: ", totalMulSize, "\n"); |
| dataLog("Average Mul size: ", totalMulSize / numMuls, "\n"); |
| dataLog("\n"); |
| dataLog("Num Negs: ", numNegs, "\n"); |
| dataLog("Total Neg size in bytes: ", totalNegSize, "\n"); |
| dataLog("Average Neg size: ", totalNegSize / numNegs, "\n"); |
| dataLog("\n"); |
| dataLog("Num Subs: ", numSubs, "\n"); |
| dataLog("Total Sub size in bytes: ", totalSubSize, "\n"); |
| dataLog("Average Sub size: ", totalSubSize / numSubs, "\n"); |
| |
| dataLog("-----------------------\n"); |
| #endif |
| } |
| |
| void setPrinter(Printer::PrintRecord& record, CodeBlock* codeBlock) |
| { |
| Printer::setPrinter(record, toCString(codeBlock)); |
| } |
| |
| } // namespace JSC |
| |
| namespace WTF { |
| |
| void printInternal(PrintStream& out, JSC::CodeBlock* codeBlock) |
| { |
| if (UNLIKELY(!codeBlock)) { |
| out.print("<null codeBlock>"); |
| return; |
| } |
| out.print(*codeBlock); |
| } |
| |
| } // namespace WTF |