| /* |
| * Copyright (C) 2009, 2010 University of Szeged |
| * Copyright (C) 2017 Apple Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) |
| |
| #include "AssemblerBufferWithConstantPool.h" |
| #include "JITCompilationEffort.h" |
| #include <wtf/Assertions.h> |
| namespace JSC { |
| |
| typedef uint32_t ARMWord; |
| |
| namespace ARMRegisters { |
| |
| typedef enum { |
| r0, |
| r1, |
| r2, |
| r3, |
| r4, |
| r5, |
| r6, |
| r7, |
| r8, |
| r9, |
| r10, |
| fp, |
| ip, |
| sp, |
| lr, |
| pc, |
| |
| // Pseudonyms for some of the registers. |
| S0 = r6, |
| r11 = fp, // frame pointer |
| r12 = ip, S1 = ip, |
| r13 = sp, |
| r14 = lr, |
| r15 = pc |
| } RegisterID; |
| |
| typedef enum { |
| apsr, |
| fpscr |
| } SPRegisterID; |
| |
| typedef enum { |
| d0, |
| d1, |
| d2, |
| d3, |
| d4, |
| d5, |
| d6, |
| d7, |
| d8, |
| d9, |
| d10, |
| d11, |
| d12, |
| d13, |
| d14, |
| d15, |
| #if CPU(ARM_NEON) || CPU(ARM_VFP_V3_D32) |
| d16, |
| d17, |
| d18, |
| d19, |
| d20, |
| d21, |
| d22, |
| d23, |
| d24, |
| d25, |
| d26, |
| d27, |
| d28, |
| d29, |
| d30, |
| d31, |
| #endif // CPU(ARM_NEON) || CPU(ARM_VFP_V3_D32) |
| } FPRegisterID; |
| |
| } // namespace ARMRegisters |
| |
| class ARMAssembler { |
| public: |
| typedef ARMRegisters::RegisterID RegisterID; |
| typedef ARMRegisters::SPRegisterID SPRegisterID; |
| typedef ARMRegisters::FPRegisterID FPRegisterID; |
| typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer; |
| typedef SegmentedVector<AssemblerLabel, 64> Jumps; |
| |
| ARMAssembler() |
| : m_indexOfTailOfLastWatchpoint(1) |
| { |
| } |
| |
| ARMBuffer& buffer() { return m_buffer; } |
| |
| static constexpr RegisterID firstRegister() { return ARMRegisters::r0; } |
| static constexpr RegisterID lastRegister() { return ARMRegisters::r15; } |
| static constexpr unsigned numberOfRegisters() { return lastRegister() - firstRegister() + 1; } |
| |
| static constexpr SPRegisterID firstSPRegister() { return ARMRegisters::apsr; } |
| static constexpr SPRegisterID lastSPRegister() { return ARMRegisters::fpscr; } |
| static constexpr unsigned numberOfSPRegisters() { return lastSPRegister() - firstSPRegister() + 1; } |
| |
| static constexpr FPRegisterID firstFPRegister() { return ARMRegisters::d0; } |
| #if CPU(ARM_NEON) || CPU(ARM_VFP_V3_D32) |
| static constexpr FPRegisterID lastFPRegister() { return ARMRegisters::d31; } |
| #else |
| static constexpr FPRegisterID lastFPRegister() { return ARMRegisters::d15; } |
| #endif |
| static constexpr unsigned numberOfFPRegisters() { return lastFPRegister() - firstFPRegister() + 1; } |
| |
| static const char* gprName(RegisterID id) |
| { |
| ASSERT(id >= firstRegister() && id <= lastRegister()); |
| static const char* const nameForRegister[numberOfRegisters()] = { |
| "r0", "r1", "r2", "r3", |
| "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "fp", |
| "ip", "sp", "lr", "pc" |
| }; |
| return nameForRegister[id]; |
| } |
| |
| static const char* sprName(SPRegisterID id) |
| { |
| ASSERT(id >= firstSPRegister() && id <= lastSPRegister()); |
| static const char* const nameForRegister[numberOfSPRegisters()] = { |
| "apsr", "fpscr" |
| }; |
| return nameForRegister[id]; |
| } |
| |
| static const char* fprName(FPRegisterID id) |
| { |
| ASSERT(id >= firstFPRegister() && id <= lastFPRegister()); |
| static const char* const nameForRegister[numberOfFPRegisters()] = { |
| "d0", "d1", "d2", "d3", |
| "d4", "d5", "d6", "d7", |
| "d8", "d9", "d10", "d11", |
| "d12", "d13", "d14", "d15", |
| #if CPU(ARM_NEON) || CPU(ARM_VFP_V3_D32) |
| "d16", "d17", "d18", "d19", |
| "d20", "d21", "d22", "d23", |
| "d24", "d25", "d26", "d27", |
| "d28", "d29", "d30", "d31" |
| #endif // CPU(ARM_NEON) || CPU(ARM_VFP_V3_D32) |
| }; |
| return nameForRegister[id]; |
| } |
| |
| // ARM conditional constants |
| typedef enum { |
| EQ = 0x00000000, // Zero / Equal. |
| NE = 0x10000000, // Non-zero / Not equal. |
| CS = 0x20000000, // Unsigned higher or same. |
| CC = 0x30000000, // Unsigned lower. |
| MI = 0x40000000, // Negative. |
| PL = 0x50000000, // Positive or zero. |
| VS = 0x60000000, // Overflowed. |
| VC = 0x70000000, // Not overflowed. |
| HI = 0x80000000, // Unsigned higher. |
| LS = 0x90000000, // Unsigned lower or same. |
| GE = 0xa0000000, // Signed greater than or equal. |
| LT = 0xb0000000, // Signed less than. |
| GT = 0xc0000000, // Signed greater than. |
| LE = 0xd0000000, // Signed less than or equal. |
| AL = 0xe0000000 // Unconditional / Always execute. |
| } Condition; |
| |
| // ARM instruction constants |
| enum { |
| AND = (0x0 << 21), |
| EOR = (0x1 << 21), |
| SUB = (0x2 << 21), |
| RSB = (0x3 << 21), |
| ADD = (0x4 << 21), |
| ADC = (0x5 << 21), |
| SBC = (0x6 << 21), |
| RSC = (0x7 << 21), |
| TST = (0x8 << 21), |
| TEQ = (0x9 << 21), |
| CMP = (0xa << 21), |
| CMN = (0xb << 21), |
| ORR = (0xc << 21), |
| MOV = (0xd << 21), |
| BIC = (0xe << 21), |
| MVN = (0xf << 21), |
| MUL = 0x00000090, |
| MULL = 0x00c00090, |
| VMOV_F64 = 0x0eb00b40, |
| VADD_F64 = 0x0e300b00, |
| VDIV_F64 = 0x0e800b00, |
| VSUB_F64 = 0x0e300b40, |
| VMUL_F64 = 0x0e200b00, |
| VCMP_F64 = 0x0eb40b40, |
| VSQRT_F64 = 0x0eb10bc0, |
| VABS_F64 = 0x0eb00bc0, |
| VNEG_F64 = 0x0eb10b40, |
| STMDB = 0x09200000, |
| LDMIA = 0x08b00000, |
| B = 0x0a000000, |
| BL = 0x0b000000, |
| BX = 0x012fff10, |
| VMOV_VFP64 = 0x0c400a10, |
| VMOV_ARM64 = 0x0c500a10, |
| VMOV_VFP32 = 0x0e000a10, |
| VMOV_ARM32 = 0x0e100a10, |
| VCVT_F64_S32 = 0x0eb80bc0, |
| VCVT_S32_F64 = 0x0ebd0bc0, |
| VCVT_U32_F64 = 0x0ebc0bc0, |
| VCVT_F32_F64 = 0x0eb70bc0, |
| VCVT_F64_F32 = 0x0eb70ac0, |
| VMRS_APSR = 0x0ef1fa10, |
| CLZ = 0x016f0f10, |
| BKPT = 0xe1200070, |
| BLX = 0x012fff30, |
| #if WTF_ARM_ARCH_AT_LEAST(7) |
| MOVW = 0x03000000, |
| MOVT = 0x03400000, |
| #endif |
| NOP = 0xe1a00000, |
| DMB_SY = 0xf57ff05f, |
| DMB_ISHST = 0xf57ff05a, |
| #if HAVE(ARM_IDIV_INSTRUCTIONS) |
| SDIV = 0x0710f010, |
| UDIV = 0x0730f010, |
| #endif |
| }; |
| |
| enum { |
| Op2Immediate = (1 << 25), |
| ImmediateForHalfWordTransfer = (1 << 22), |
| Op2InvertedImmediate = (1 << 26), |
| SetConditionalCodes = (1 << 20), |
| Op2IsRegisterArgument = (1 << 25), |
| // Data transfer flags. |
| DataTransferUp = (1 << 23), |
| DataTransferWriteBack = (1 << 21), |
| DataTransferPostUpdate = (1 << 24), |
| DataTransferLoad = (1 << 20), |
| ByteDataTransfer = (1 << 22), |
| }; |
| |
| enum DataTransferTypeA { |
| LoadUint32 = 0x05000000 | DataTransferLoad, |
| LoadUint8 = 0x05400000 | DataTransferLoad, |
| StoreUint32 = 0x05000000, |
| StoreUint8 = 0x05400000, |
| }; |
| |
| enum DataTransferTypeB { |
| LoadUint16 = 0x010000b0 | DataTransferLoad, |
| LoadInt16 = 0x010000f0 | DataTransferLoad, |
| LoadInt8 = 0x010000d0 | DataTransferLoad, |
| StoreUint16 = 0x010000b0, |
| }; |
| |
| enum DataTransferTypeFloat { |
| LoadFloat = 0x0d000a00 | DataTransferLoad, |
| LoadDouble = 0x0d000b00 | DataTransferLoad, |
| StoreFloat = 0x0d000a00, |
| StoreDouble = 0x0d000b00, |
| }; |
| |
| // Masks of ARM instructions |
| enum { |
| BranchOffsetMask = 0x00ffffff, |
| ConditionalFieldMask = 0xf0000000, |
| DataTransferOffsetMask = 0xfff, |
| }; |
| |
| enum { |
| MinimumBranchOffsetDistance = -0x00800000, |
| MaximumBranchOffsetDistance = 0x007fffff, |
| }; |
| |
| enum { |
| padForAlign8 = 0x00, |
| padForAlign16 = 0x0000, |
| padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction. |
| }; |
| |
| static const ARMWord InvalidImmediate = 0xf0000000; |
| static const ARMWord InvalidBranchTarget = 0xffffffff; |
| static const int DefaultPrefetchOffset = 2; |
| |
| static const ARMWord BlxInstructionMask = 0x012fff30; |
| static const ARMWord LdrOrAddInstructionMask = 0x0ff00000; |
| static const ARMWord LdrPcImmediateInstructionMask = 0x0f7f0000; |
| |
| static const ARMWord AddImmediateInstruction = 0x02800000; |
| static const ARMWord BlxInstruction = 0x012fff30; |
| static const ARMWord LdrImmediateInstruction = 0x05900000; |
| static const ARMWord LdrPcImmediateInstruction = 0x051f0000; |
| |
| // Instruction formating |
| |
| void emitInstruction(ARMWord op, int rd, int rn, ARMWord op2) |
| { |
| ASSERT(((op2 & ~Op2Immediate) <= 0xfff) || (((op2 & ~ImmediateForHalfWordTransfer) <= 0xfff))); |
| m_buffer.putInt(op | RN(rn) | RD(rd) | op2); |
| } |
| |
| void emitDoublePrecisionInstruction(ARMWord op, int dd, int dn, int dm) |
| { |
| ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31)); |
| m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4)) |
| | ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4)) |
| | (dm & 0xf) | ((dm & 0x10) << (5 - 4))); |
| } |
| |
| void emitSinglePrecisionInstruction(ARMWord op, int sd, int sn, int sm) |
| { |
| ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31)); |
| m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22) |
| | ((sn >> 1) << 16) | ((sn & 0x1) << 7) |
| | (sm >> 1) | ((sm & 0x1) << 5)); |
| } |
| |
| void bitAnd(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | AND, rd, rn, op2); |
| } |
| |
| void bitAnds(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | AND | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void eor(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | EOR, rd, rn, op2); |
| } |
| |
| void eors(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | EOR | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void sub(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | SUB, rd, rn, op2); |
| } |
| |
| void subs(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | SUB | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void rsb(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | RSB, rd, rn, op2); |
| } |
| |
| void rsbs(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | RSB | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void add(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | ADD, rd, rn, op2); |
| } |
| |
| void adds(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | ADD | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void adc(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | ADC, rd, rn, op2); |
| } |
| |
| void adcs(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | ADC | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void sbc(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | SBC, rd, rn, op2); |
| } |
| |
| void sbcs(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | SBC | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void rsc(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | RSC, rd, rn, op2); |
| } |
| |
| void rscs(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | RSC | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void tst(int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | TST | SetConditionalCodes, 0, rn, op2); |
| } |
| |
| void teq(int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | TEQ | SetConditionalCodes, 0, rn, op2); |
| } |
| |
| void cmp(int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | CMP | SetConditionalCodes, 0, rn, op2); |
| } |
| |
| void cmn(int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | CMN | SetConditionalCodes, 0, rn, op2); |
| } |
| |
| void orr(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | ORR, rd, rn, op2); |
| } |
| |
| void orrs(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | ORR | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void mov(int rd, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | MOV, rd, ARMRegisters::r0, op2); |
| } |
| |
| #if WTF_ARM_ARCH_AT_LEAST(7) |
| void movw(int rd, ARMWord op2, Condition cc = AL) |
| { |
| ASSERT((op2 | 0xf0fff) == 0xf0fff); |
| m_buffer.putInt(toARMWord(cc) | MOVW | RD(rd) | op2); |
| } |
| |
| void movt(int rd, ARMWord op2, Condition cc = AL) |
| { |
| ASSERT((op2 | 0xf0fff) == 0xf0fff); |
| m_buffer.putInt(toARMWord(cc) | MOVT | RD(rd) | op2); |
| } |
| #endif |
| |
| void movs(int rd, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | MOV | SetConditionalCodes, rd, ARMRegisters::r0, op2); |
| } |
| |
| void bic(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | BIC, rd, rn, op2); |
| } |
| |
| void bics(int rd, int rn, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | BIC | SetConditionalCodes, rd, rn, op2); |
| } |
| |
| void mvn(int rd, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | MVN, rd, ARMRegisters::r0, op2); |
| } |
| |
| void mvns(int rd, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | MVN | SetConditionalCodes, rd, ARMRegisters::r0, op2); |
| } |
| |
| void mul(int rd, int rn, int rm, Condition cc = AL) |
| { |
| m_buffer.putInt(toARMWord(cc) | MUL | RN(rd) | RS(rn) | RM(rm)); |
| } |
| |
| void muls(int rd, int rn, int rm, Condition cc = AL) |
| { |
| m_buffer.putInt(toARMWord(cc) | MUL | SetConditionalCodes | RN(rd) | RS(rn) | RM(rm)); |
| } |
| |
| void mull(int rdhi, int rdlo, int rn, int rm, Condition cc = AL) |
| { |
| m_buffer.putInt(toARMWord(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm)); |
| } |
| |
| #if HAVE(ARM_IDIV_INSTRUCTIONS) |
| template<int datasize> |
| void sdiv(int rd, int rn, int rm, Condition cc = AL) |
| { |
| static_assert(datasize == 32, "sdiv datasize must be 32 for armv7s"); |
| ASSERT(rd != ARMRegisters::pc); |
| ASSERT(rn != ARMRegisters::pc); |
| ASSERT(rm != ARMRegisters::pc); |
| m_buffer.putInt(toARMWord(cc) | SDIV | RN(rd) | RM(rn) | RS(rm)); |
| } |
| |
| void udiv(int rd, int rn, int rm, Condition cc = AL) |
| { |
| ASSERT(rd != ARMRegisters::pc); |
| ASSERT(rn != ARMRegisters::pc); |
| ASSERT(rm != ARMRegisters::pc); |
| m_buffer.putInt(toARMWord(cc) | UDIV | RN(rd) | RM(rn) | RS(rm)); |
| } |
| #endif |
| |
| void vmov_f64(int dd, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VMOV_F64, dd, 0, dm); |
| } |
| |
| void vadd_f64(int dd, int dn, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VADD_F64, dd, dn, dm); |
| } |
| |
| void vdiv_f64(int dd, int dn, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VDIV_F64, dd, dn, dm); |
| } |
| |
| void vsub_f64(int dd, int dn, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VSUB_F64, dd, dn, dm); |
| } |
| |
| void vmul_f64(int dd, int dn, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VMUL_F64, dd, dn, dm); |
| } |
| |
| void vcmp_f64(int dd, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VCMP_F64, dd, 0, dm); |
| } |
| |
| void vsqrt_f64(int dd, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VSQRT_F64, dd, 0, dm); |
| } |
| |
| void vabs_f64(int dd, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VABS_F64, dd, 0, dm); |
| } |
| |
| void vneg_f64(int dd, int dm, Condition cc = AL) |
| { |
| emitDoublePrecisionInstruction(toARMWord(cc) | VNEG_F64, dd, 0, dm); |
| } |
| |
| void ldrImmediate(int rd, ARMWord imm, Condition cc = AL) |
| { |
| m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm, true); |
| } |
| |
| void ldrUniqueImmediate(int rd, ARMWord imm, Condition cc = AL) |
| { |
| m_buffer.putIntWithConstantInt(toARMWord(cc) | LoadUint32 | DataTransferUp | RN(ARMRegisters::pc) | RD(rd), imm); |
| } |
| |
| void dtrUp(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2); |
| } |
| |
| void dtrUpRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType | DataTransferUp | Op2IsRegisterArgument, rd, rb, rm); |
| } |
| |
| void dtrDown(DataTransferTypeA transferType, int rd, int rb, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType, rd, rb, op2); |
| } |
| |
| void dtrDownRegister(DataTransferTypeA transferType, int rd, int rb, int rm, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType | Op2IsRegisterArgument, rd, rb, rm); |
| } |
| |
| void halfDtrUp(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rb, op2); |
| } |
| |
| void halfDtrUpRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType | DataTransferUp, rd, rn, rm); |
| } |
| |
| void halfDtrDown(DataTransferTypeB transferType, int rd, int rb, ARMWord op2, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType, rd, rb, op2); |
| } |
| |
| void halfDtrDownRegister(DataTransferTypeB transferType, int rd, int rn, int rm, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | transferType, rd, rn, rm); |
| } |
| |
| void doubleDtrUp(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL) |
| { |
| ASSERT(op2 <= 0xff && rd <= 15); |
| /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */ |
| m_buffer.putInt(toARMWord(cc) | DataTransferUp | type | (rd << 12) | RN(rb) | op2); |
| } |
| |
| void doubleDtrDown(DataTransferTypeFloat type, int rd, int rb, ARMWord op2, Condition cc = AL) |
| { |
| ASSERT(op2 <= 0xff && rd <= 15); |
| /* Only d0-d15 and s0, s2, s4 ... s30 are supported. */ |
| m_buffer.putInt(toARMWord(cc) | type | (rd << 12) | RN(rb) | op2); |
| } |
| |
| void push(int reg, Condition cc = AL) |
| { |
| ASSERT(ARMWord(reg) <= 0xf); |
| m_buffer.putInt(toARMWord(cc) | StoreUint32 | DataTransferWriteBack | RN(ARMRegisters::sp) | RD(reg) | 0x4); |
| } |
| |
| void pop(int reg, Condition cc = AL) |
| { |
| ASSERT(ARMWord(reg) <= 0xf); |
| m_buffer.putInt(toARMWord(cc) | (LoadUint32 ^ DataTransferPostUpdate) | DataTransferUp | RN(ARMRegisters::sp) | RD(reg) | 0x4); |
| } |
| |
| inline void poke(int reg, Condition cc = AL) |
| { |
| dtrDown(StoreUint32, ARMRegisters::sp, 0, reg, cc); |
| } |
| |
| inline void peek(int reg, Condition cc = AL) |
| { |
| dtrUp(LoadUint32, reg, ARMRegisters::sp, 0, cc); |
| } |
| |
| void vmov_vfp64(int sm, int rt, int rt2, Condition cc = AL) |
| { |
| ASSERT(rt != rt2); |
| m_buffer.putInt(toARMWord(cc) | VMOV_VFP64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4))); |
| } |
| |
| void vmov_arm64(int rt, int rt2, int sm, Condition cc = AL) |
| { |
| ASSERT(rt != rt2); |
| m_buffer.putInt(toARMWord(cc) | VMOV_ARM64 | RN(rt2) | RD(rt) | (sm & 0xf) | ((sm & 0x10) << (5 - 4))); |
| } |
| |
| void vmov_vfp32(int sn, int rt, Condition cc = AL) |
| { |
| ASSERT(rt <= 15); |
| emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_VFP32, rt << 1, sn, 0); |
| } |
| |
| void vmov_arm32(int rt, int sn, Condition cc = AL) |
| { |
| ASSERT(rt <= 15); |
| emitSinglePrecisionInstruction(toARMWord(cc) | VMOV_ARM32, rt << 1, sn, 0); |
| } |
| |
| void vcvt_f64_s32(int dd, int sm, Condition cc = AL) |
| { |
| ASSERT(!(sm & 0x1)); // sm must be divisible by 2 |
| emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_S32, dd, 0, (sm >> 1)); |
| } |
| |
| void vcvt_s32_f64(int sd, int dm, Condition cc = AL) |
| { |
| ASSERT(!(sd & 0x1)); // sd must be divisible by 2 |
| emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_S32_F64, (sd >> 1), 0, dm); |
| } |
| |
| void vcvt_u32_f64(int sd, int dm, Condition cc = AL) |
| { |
| ASSERT(!(sd & 0x1)); // sd must be divisible by 2 |
| emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_U32_F64, (sd >> 1), 0, dm); |
| } |
| |
| void vcvt_f64_f32(int dd, int sm, Condition cc = AL) |
| { |
| ASSERT(dd <= 15 && sm <= 15); |
| emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F64_F32, dd, 0, sm); |
| } |
| |
| void vcvt_f32_f64(int dd, int sm, Condition cc = AL) |
| { |
| ASSERT(dd <= 15 && sm <= 15); |
| emitDoublePrecisionInstruction(toARMWord(cc) | VCVT_F32_F64, dd, 0, sm); |
| } |
| |
| void vmrs_apsr(Condition cc = AL) |
| { |
| m_buffer.putInt(toARMWord(cc) | VMRS_APSR); |
| } |
| |
| void clz(int rd, int rm, Condition cc = AL) |
| { |
| m_buffer.putInt(toARMWord(cc) | CLZ | RD(rd) | RM(rm)); |
| } |
| |
| void bkpt(ARMWord value) |
| { |
| m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf)); |
| } |
| |
| static bool isBkpt(void* address) |
| { |
| ARMWord expected = BKPT; |
| ARMWord immediateMask = (0xff0 << 4) | 0xf; |
| ARMWord candidateInstruction = *reinterpret_cast<ARMWord*>(address); |
| return (candidateInstruction & ~immediateMask) == expected; |
| } |
| |
| void nop() |
| { |
| m_buffer.putInt(NOP); |
| } |
| |
| static void fillNops(void* base, size_t size, bool isCopyingToExecutableMemory) |
| { |
| UNUSED_PARAM(isCopyingToExecutableMemory); |
| RELEASE_ASSERT(!(size % sizeof(int32_t))); |
| |
| int32_t* ptr = static_cast<int32_t*>(base); |
| const size_t num32s = size / sizeof(int32_t); |
| const int32_t insn = NOP; |
| for (size_t i = 0; i < num32s; i++) |
| *ptr++ = insn; |
| } |
| |
| void dmbSY() |
| { |
| m_buffer.putInt(DMB_SY); |
| } |
| |
| void dmbISHST() |
| { |
| m_buffer.putInt(DMB_ISHST); |
| } |
| |
| void bx(int rm, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | BX, 0, 0, RM(rm)); |
| } |
| |
| AssemblerLabel blx(int rm, Condition cc = AL) |
| { |
| emitInstruction(toARMWord(cc) | BLX, 0, 0, RM(rm)); |
| return m_buffer.label(); |
| } |
| |
| static ARMWord lsl(int reg, ARMWord value) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| ASSERT(value <= 0x1f); |
| return reg | (value << 7) | 0x00; |
| } |
| |
| static ARMWord lsr(int reg, ARMWord value) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| ASSERT(value <= 0x1f); |
| return reg | (value << 7) | 0x20; |
| } |
| |
| static ARMWord asr(int reg, ARMWord value) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| ASSERT(value <= 0x1f); |
| return reg | (value << 7) | 0x40; |
| } |
| |
| static ARMWord lslRegister(int reg, int shiftReg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| ASSERT(shiftReg <= ARMRegisters::pc); |
| return reg | (shiftReg << 8) | 0x10; |
| } |
| |
| static ARMWord lsrRegister(int reg, int shiftReg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| ASSERT(shiftReg <= ARMRegisters::pc); |
| return reg | (shiftReg << 8) | 0x30; |
| } |
| |
| static ARMWord asrRegister(int reg, int shiftReg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| ASSERT(shiftReg <= ARMRegisters::pc); |
| return reg | (shiftReg << 8) | 0x50; |
| } |
| |
| // General helpers |
| |
| size_t codeSize() const |
| { |
| return m_buffer.codeSize(); |
| } |
| |
| void ensureSpace(int insnSpace, int constSpace) |
| { |
| m_buffer.ensureSpace(insnSpace, constSpace); |
| } |
| |
| int sizeOfConstantPool() |
| { |
| return m_buffer.sizeOfConstantPool(); |
| } |
| |
| AssemblerLabel labelIgnoringWatchpoints() |
| { |
| m_buffer.ensureSpaceForAnyInstruction(); |
| return m_buffer.label(); |
| } |
| |
| AssemblerLabel labelForWatchpoint() |
| { |
| m_buffer.ensureSpaceForAnyInstruction(maxJumpReplacementSize() / sizeof(ARMWord)); |
| AssemblerLabel result = m_buffer.label(); |
| if (result.m_offset != (m_indexOfTailOfLastWatchpoint - maxJumpReplacementSize())) |
| result = label(); |
| m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize(); |
| return label(); |
| } |
| |
| AssemblerLabel label() |
| { |
| AssemblerLabel result = labelIgnoringWatchpoints(); |
| while (result.m_offset + 1 < m_indexOfTailOfLastWatchpoint) { |
| nop(); |
| // The available number of instructions are ensured by labelForWatchpoint. |
| result = m_buffer.label(); |
| } |
| return result; |
| } |
| |
| AssemblerLabel align(int alignment) |
| { |
| while (!m_buffer.isAligned(alignment)) |
| mov(ARMRegisters::r0, ARMRegisters::r0); |
| |
| return label(); |
| } |
| |
| AssemblerLabel loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0) |
| { |
| ensureSpace(sizeof(ARMWord), sizeof(ARMWord)); |
| m_jumps.append(m_buffer.codeSize() | (useConstantPool & 0x1)); |
| ldrUniqueImmediate(rd, InvalidBranchTarget, cc); |
| return m_buffer.label(); |
| } |
| |
| AssemblerLabel jmp(Condition cc = AL, int useConstantPool = 0) |
| { |
| return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool); |
| } |
| |
| void prepareExecutableCopy(void* to); |
| |
| unsigned debugOffset() { return m_buffer.debugOffset(); } |
| |
| // DFG assembly helpers for moving data between fp and registers. |
| void vmov(RegisterID rd1, RegisterID rd2, FPRegisterID rn) |
| { |
| vmov_arm64(rd1, rd2, rn); |
| } |
| |
| void vmov(FPRegisterID rd, RegisterID rn1, RegisterID rn2) |
| { |
| vmov_vfp64(rd, rn1, rn2); |
| } |
| |
| // Patching helpers |
| |
| static ARMWord* getLdrImmAddress(ARMWord* insn) |
| { |
| // Check for call |
| if ((*insn & LdrPcImmediateInstructionMask) != LdrPcImmediateInstruction) { |
| // Must be BLX |
| ASSERT((*insn & BlxInstructionMask) == BlxInstruction); |
| insn--; |
| } |
| |
| // Must be an ldr ..., [pc +/- imm] |
| ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction); |
| |
| ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetchOffset * sizeof(ARMWord); |
| if (*insn & DataTransferUp) |
| return reinterpret_cast<ARMWord*>(addr + (*insn & DataTransferOffsetMask)); |
| return reinterpret_cast<ARMWord*>(addr - (*insn & DataTransferOffsetMask)); |
| } |
| |
| static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool) |
| { |
| // Must be an ldr ..., [pc +/- imm] |
| ASSERT((*insn & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction); |
| |
| if (*insn & 0x1) |
| return reinterpret_cast<ARMWord*>(constPool + ((*insn & DataTransferOffsetMask) >> 1)); |
| return getLdrImmAddress(insn); |
| } |
| |
| static void patchPointerInternal(intptr_t from, void* to) |
| { |
| ARMWord* insn = reinterpret_cast<ARMWord*>(from); |
| ARMWord* addr = getLdrImmAddress(insn); |
| *addr = reinterpret_cast<ARMWord>(to); |
| } |
| |
| static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value) |
| { |
| value = (value << 1) + 1; |
| ASSERT(!(value & ~DataTransferOffsetMask)); |
| return (load & ~DataTransferOffsetMask) | value; |
| } |
| |
| static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr); |
| |
| // Read pointers |
| static void* readPointer(void* from) |
| { |
| ARMWord* instruction = reinterpret_cast<ARMWord*>(from); |
| ARMWord* address = getLdrImmAddress(instruction); |
| return *reinterpret_cast<void**>(address); |
| } |
| |
| // Patch pointers |
| |
| static void linkPointer(void* code, AssemblerLabel from, void* to) |
| { |
| patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to); |
| } |
| |
| static void repatchInt32(void* where, int32_t to) |
| { |
| patchPointerInternal(reinterpret_cast<intptr_t>(where), reinterpret_cast<void*>(to)); |
| } |
| |
| static void repatchCompact(void* where, int32_t value) |
| { |
| ARMWord* instruction = reinterpret_cast<ARMWord*>(where); |
| ASSERT((*instruction & 0x0f700000) == LoadUint32); |
| if (value >= 0) |
| *instruction = (*instruction & 0xff7ff000) | DataTransferUp | value; |
| else |
| *instruction = (*instruction & 0xff7ff000) | -value; |
| cacheFlush(instruction, sizeof(ARMWord)); |
| } |
| |
| static void repatchPointer(void* from, void* to) |
| { |
| patchPointerInternal(reinterpret_cast<intptr_t>(from), to); |
| } |
| |
| // Linkers |
| static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0) |
| { |
| return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord); |
| } |
| |
| void linkJump(AssemblerLabel from, AssemblerLabel to) |
| { |
| ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset)); |
| ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress()); |
| *addr = toARMWord(to.m_offset); |
| } |
| |
| static void linkJump(void* code, AssemblerLabel from, void* to) |
| { |
| patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to); |
| } |
| |
| static void relinkJump(void* from, void* to) |
| { |
| patchPointerInternal(getAbsoluteJumpAddress(from), to); |
| } |
| |
| static void relinkJumpToNop(void* from) |
| { |
| relinkJump(from, from); |
| } |
| |
| static void linkCall(void* code, AssemblerLabel from, void* to) |
| { |
| patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to); |
| } |
| |
| static void relinkCall(void* from, void* to) |
| { |
| patchPointerInternal(getAbsoluteJumpAddress(from), to); |
| } |
| |
| static void* readCallTarget(void* from) |
| { |
| return reinterpret_cast<void*>(readPointer(reinterpret_cast<void*>(getAbsoluteJumpAddress(from)))); |
| } |
| |
| static void replaceWithJump(void* instructionStart, void* to) |
| { |
| ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart); |
| intptr_t difference = reinterpret_cast<intptr_t>(to) - (reinterpret_cast<intptr_t>(instruction) + DefaultPrefetchOffset * sizeof(ARMWord)); |
| |
| if (!(difference & 1)) { |
| difference >>= 2; |
| if ((difference <= MaximumBranchOffsetDistance && difference >= MinimumBranchOffsetDistance)) { |
| // Direct branch. |
| instruction[0] = B | AL | (difference & BranchOffsetMask); |
| cacheFlush(instruction, sizeof(ARMWord)); |
| return; |
| } |
| } |
| |
| // Load target. |
| instruction[0] = LoadUint32 | AL | RN(ARMRegisters::pc) | RD(ARMRegisters::pc) | 4; |
| instruction[1] = reinterpret_cast<ARMWord>(to); |
| cacheFlush(instruction, sizeof(ARMWord) * 2); |
| } |
| |
| static ptrdiff_t maxJumpReplacementSize() |
| { |
| return sizeof(ARMWord) * 2; |
| } |
| |
| static constexpr ptrdiff_t patchableJumpSize() |
| { |
| return sizeof(ARMWord) * 3; |
| } |
| |
| static void replaceWithLoad(void* instructionStart) |
| { |
| ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart); |
| cacheFlush(instruction, sizeof(ARMWord)); |
| |
| ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction); |
| if ((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction) { |
| *instruction = (*instruction & ~LdrOrAddInstructionMask) | LdrImmediateInstruction; |
| cacheFlush(instruction, sizeof(ARMWord)); |
| } |
| } |
| |
| static void replaceWithAddressComputation(void* instructionStart) |
| { |
| ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart); |
| cacheFlush(instruction, sizeof(ARMWord)); |
| |
| ASSERT((*instruction & LdrOrAddInstructionMask) == AddImmediateInstruction || (*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction); |
| if ((*instruction & LdrOrAddInstructionMask) == LdrImmediateInstruction) { |
| *instruction = (*instruction & ~LdrOrAddInstructionMask) | AddImmediateInstruction; |
| cacheFlush(instruction, sizeof(ARMWord)); |
| } |
| } |
| |
| static void revertBranchPtrWithPatch(void* instructionStart, RegisterID rn, ARMWord imm) |
| { |
| ARMWord* instruction = reinterpret_cast<ARMWord*>(instructionStart); |
| |
| ASSERT((instruction[2] & LdrPcImmediateInstructionMask) == LdrPcImmediateInstruction); |
| instruction[0] = toARMWord(AL) | ((instruction[2] & 0x0fff0fff) + sizeof(ARMWord)) | RD(ARMRegisters::S1); |
| *getLdrImmAddress(instruction) = imm; |
| instruction[1] = toARMWord(AL) | CMP | SetConditionalCodes | RN(rn) | RM(ARMRegisters::S1); |
| cacheFlush(instruction, 2 * sizeof(ARMWord)); |
| } |
| |
| // Address operations |
| |
| static void* getRelocatedAddress(void* code, AssemblerLabel label) |
| { |
| return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset); |
| } |
| |
| // Address differences |
| |
| static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b) |
| { |
| return b.m_offset - a.m_offset; |
| } |
| |
| static unsigned getCallReturnOffset(AssemblerLabel call) |
| { |
| return call.m_offset; |
| } |
| |
| // Handle immediates |
| |
| static ARMWord getOp2(ARMWord imm); |
| |
| // Fast case if imm is known to be between 0 and 0xff |
| static ARMWord getOp2Byte(ARMWord imm) |
| { |
| ASSERT(imm <= 0xff); |
| return Op2Immediate | imm; |
| } |
| |
| static ARMWord getOp2Half(ARMWord imm) |
| { |
| ASSERT(imm <= 0xff); |
| return ImmediateForHalfWordTransfer | (imm & 0x0f) | ((imm & 0xf0) << 4); |
| } |
| |
| #if WTF_ARM_ARCH_AT_LEAST(7) |
| static ARMWord getImm16Op2(ARMWord imm) |
| { |
| if (imm <= 0xffff) |
| return (imm & 0xf000) << 4 | (imm & 0xfff); |
| return InvalidImmediate; |
| } |
| #endif |
| ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false); |
| void moveImm(ARMWord imm, int dest); |
| ARMWord encodeComplexImm(ARMWord imm, int dest); |
| |
| // Memory load/store helpers |
| |
| void dataTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, int32_t offset); |
| void baseIndexTransfer32(DataTransferTypeA, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset); |
| void dataTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, int32_t offset); |
| void baseIndexTransfer16(DataTransferTypeB, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset); |
| void dataTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, int32_t offset); |
| void baseIndexTransferFloat(DataTransferTypeFloat, FPRegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset); |
| |
| // Constant pool hnadlers |
| |
| static ARMWord placeConstantPoolBarrier(int offset) |
| { |
| offset = (offset - sizeof(ARMWord)) >> 2; |
| ASSERT((offset <= MaximumBranchOffsetDistance && offset >= MinimumBranchOffsetDistance)); |
| return AL | B | (offset & BranchOffsetMask); |
| } |
| |
| #if OS(LINUX) && COMPILER(GCC_OR_CLANG) |
| static inline void linuxPageFlush(uintptr_t begin, uintptr_t end) |
| { |
| asm volatile( |
| "push {r7}\n" |
| "mov r0, %0\n" |
| "mov r1, %1\n" |
| "mov r7, #0xf0000\n" |
| "add r7, r7, #0x2\n" |
| "mov r2, #0x0\n" |
| "svc 0x0\n" |
| "pop {r7}\n" |
| : |
| : "r" (begin), "r" (end) |
| : "r0", "r1", "r2"); |
| } |
| #endif |
| |
| static void cacheFlush(void* code, size_t size) |
| { |
| #if OS(LINUX) && COMPILER(GCC_OR_CLANG) |
| size_t page = pageSize(); |
| uintptr_t current = reinterpret_cast<uintptr_t>(code); |
| uintptr_t end = current + size; |
| uintptr_t firstPageEnd = (current & ~(page - 1)) + page; |
| |
| if (end <= firstPageEnd) { |
| linuxPageFlush(current, end); |
| return; |
| } |
| |
| linuxPageFlush(current, firstPageEnd); |
| |
| for (current = firstPageEnd; current + page < end; current += page) |
| linuxPageFlush(current, current + page); |
| |
| linuxPageFlush(current, end); |
| #else |
| #error "The cacheFlush support is missing on this platform." |
| #endif |
| } |
| |
| private: |
| static ARMWord RM(int reg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| return reg; |
| } |
| |
| static ARMWord RS(int reg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| return reg << 8; |
| } |
| |
| static ARMWord RD(int reg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| return reg << 12; |
| } |
| |
| static ARMWord RN(int reg) |
| { |
| ASSERT(reg <= ARMRegisters::pc); |
| return reg << 16; |
| } |
| |
| static ARMWord getConditionalField(ARMWord i) |
| { |
| return i & ConditionalFieldMask; |
| } |
| |
| static ARMWord toARMWord(Condition cc) |
| { |
| return static_cast<ARMWord>(cc); |
| } |
| |
| static ARMWord toARMWord(uint32_t u) |
| { |
| return static_cast<ARMWord>(u); |
| } |
| |
| int genInt(int reg, ARMWord imm, bool positive); |
| |
| ARMBuffer m_buffer; |
| Jumps m_jumps; |
| uint32_t m_indexOfTailOfLastWatchpoint; |
| }; |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL) |