blob: eda24be469564b2e50c64fe6081ba21f9ced9aef [file] [log] [blame]
/*
* Copyright (C) 2018-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "GetPutInfo.h"
#include "Interpreter.h"
#include "Label.h"
#include "OpcodeSize.h"
#include "ProfileTypeBytecodeFlag.h"
#include "PutByIdFlags.h"
#include "ResultType.h"
#include "SymbolTableOrScopeDepth.h"
#include "VirtualRegister.h"
#include <type_traits>
namespace JSC {
enum FitsAssertion {
Assert,
NoAssert
};
// Fits template
template<typename, OpcodeSize, typename = std::true_type>
struct Fits;
// Implicit conversion for types of the same size
template<typename T, OpcodeSize size>
struct Fits<T, size, std::enable_if_t<sizeof(T) == size, std::true_type>> {
using TargetType = typename TypeBySize<size>::unsignedType;
static bool check(T) { return true; }
static TargetType convert(T t) { return bitwise_cast<TargetType>(t); }
template<class T1 = T, OpcodeSize size1 = size, typename = std::enable_if_t<!std::is_same<T1, TargetType>::value, std::true_type>>
static T1 convert(TargetType t) { return bitwise_cast<T1>(t); }
};
template<typename T, OpcodeSize size>
struct Fits<T, size, std::enable_if_t<std::is_integral<T>::value && sizeof(T) != size && !std::is_same<bool, T>::value, std::true_type>> {
using TargetType = std::conditional_t<std::is_unsigned<T>::value, typename TypeBySize<size>::unsignedType, typename TypeBySize<size>::signedType>;
static bool check(T t)
{
return t >= std::numeric_limits<TargetType>::min() && t <= std::numeric_limits<TargetType>::max();
}
static TargetType convert(T t)
{
ASSERT(check(t));
return static_cast<TargetType>(t);
}
template<class T1 = T, OpcodeSize size1 = size, typename TargetType1 = TargetType, typename = std::enable_if_t<!std::is_same<T1, TargetType1>::value, std::true_type>>
static T1 convert(TargetType1 t) { return static_cast<T1>(t); }
};
template<OpcodeSize size>
struct Fits<bool, size, std::enable_if_t<size != sizeof(bool), std::true_type>> : public Fits<uint8_t, size> {
using Base = Fits<uint8_t, size>;
static bool check(bool e) { return Base::check(static_cast<uint8_t>(e)); }
static typename Base::TargetType convert(bool e)
{
return Base::convert(static_cast<uint8_t>(e));
}
static bool convert(typename Base::TargetType e)
{
return Base::convert(e);
}
};
template<OpcodeSize size>
struct FirstConstant;
template<>
struct FirstConstant<OpcodeSize::Narrow> {
static constexpr int index = FirstConstantRegisterIndex8;
};
template<>
struct FirstConstant<OpcodeSize::Wide16> {
static constexpr int index = FirstConstantRegisterIndex16;
};
template<OpcodeSize size>
struct Fits<VirtualRegister, size, std::enable_if_t<size != OpcodeSize::Wide32, std::true_type>> {
// Narrow:
// -128..-1 local variables
// 0..15 arguments
// 16..127 constants
//
// Wide16:
// -2**15..-1 local variables
// 0..64 arguments
// 64..2**15-1 constants
using TargetType = typename TypeBySize<size>::signedType;
static constexpr int s_firstConstantIndex = FirstConstant<size>::index;
static bool check(VirtualRegister r)
{
if (r.isConstant())
return (s_firstConstantIndex + r.toConstantIndex()) <= std::numeric_limits<TargetType>::max();
return r.offset() >= std::numeric_limits<TargetType>::min() && r.offset() < s_firstConstantIndex;
}
static TargetType convert(VirtualRegister r)
{
ASSERT(check(r));
if (r.isConstant())
return static_cast<TargetType>(s_firstConstantIndex + r.toConstantIndex());
return static_cast<TargetType>(r.offset());
}
static VirtualRegister convert(TargetType u)
{
int i = static_cast<int>(static_cast<TargetType>(u));
if (i >= s_firstConstantIndex)
return VirtualRegister { (i - s_firstConstantIndex) + FirstConstantRegisterIndex };
return VirtualRegister { i };
}
};
template<OpcodeSize size>
struct Fits<SymbolTableOrScopeDepth, size, std::enable_if_t<size != OpcodeSize::Wide32, std::true_type>> : public Fits<unsigned, size> {
static_assert(sizeof(SymbolTableOrScopeDepth) == sizeof(unsigned));
using TargetType = typename TypeBySize<size>::unsignedType;
using Base = Fits<unsigned, size>;
static bool check(SymbolTableOrScopeDepth u) { return Base::check(u.raw()); }
static TargetType convert(SymbolTableOrScopeDepth u)
{
return Base::convert(u.raw());
}
static SymbolTableOrScopeDepth convert(TargetType u)
{
return SymbolTableOrScopeDepth::raw(Base::convert(u));
}
};
template<OpcodeSize size>
struct Fits<GetPutInfo, size, std::enable_if_t<size != OpcodeSize::Wide32, std::true_type>> {
using TargetType = typename TypeBySize<size>::unsignedType;
// 13 Resolve Types
// 3 Initialization Modes
// 2 Resolve Modes
//
// Try to encode encode as
//
// initialization mode
// v
// free bit-> 0|0000|00|0
// ^ ^
// resolve type resolve mode
static constexpr int s_resolveTypeMax = 1 << 4;
static constexpr int s_initializationModeMax = 1 << 2;
static constexpr int s_resolveModeMax = 1 << 1;
static constexpr int s_resolveTypeBits = (s_resolveTypeMax - 1) << 3;
static constexpr int s_initializationModeBits = (s_initializationModeMax - 1) << 1;
static constexpr int s_resolveModeBits = (s_resolveModeMax - 1);
static_assert(!(s_resolveTypeBits & s_initializationModeBits & s_resolveModeBits), "There should be no intersection between ResolveMode, ResolveType and InitializationMode");
static bool check(GetPutInfo gpi)
{
auto resolveType = static_cast<int>(gpi.resolveType());
auto initializationMode = static_cast<int>(gpi.initializationMode());
auto resolveMode = static_cast<int>(gpi.resolveMode());
return resolveType < s_resolveTypeMax && initializationMode < s_initializationModeMax && resolveMode < s_resolveModeMax;
}
static TargetType convert(GetPutInfo gpi)
{
ASSERT(check(gpi));
auto resolveType = static_cast<uint8_t>(gpi.resolveType());
auto initializationMode = static_cast<uint8_t>(gpi.initializationMode());
auto resolveMode = static_cast<uint8_t>(gpi.resolveMode());
return (resolveType << 3) | (initializationMode << 1) | resolveMode;
}
static GetPutInfo convert(TargetType gpi)
{
auto resolveType = static_cast<ResolveType>((gpi & s_resolveTypeBits) >> 3);
auto initializationMode = static_cast<InitializationMode>((gpi & s_initializationModeBits) >> 1);
auto resolveMode = static_cast<ResolveMode>(gpi & s_resolveModeBits);
return GetPutInfo(resolveMode, resolveType, initializationMode);
}
};
template<typename E, OpcodeSize size>
struct Fits<E, size, std::enable_if_t<sizeof(E) != size && std::is_enum<E>::value, std::true_type>> : public Fits<std::underlying_type_t<E>, size> {
using Base = Fits<std::underlying_type_t<E>, size>;
static bool check(E e) { return Base::check(static_cast<std::underlying_type_t<E>>(e)); }
static typename Base::TargetType convert(E e)
{
return Base::convert(static_cast<std::underlying_type_t<E>>(e));
}
static E convert(typename Base::TargetType e)
{
return static_cast<E>(Base::convert(e));
}
};
template<OpcodeSize size>
struct Fits<OperandTypes, size, std::enable_if_t<sizeof(OperandTypes) != size, std::true_type>> {
static_assert(sizeof(OperandTypes) == sizeof(uint16_t));
using TargetType = typename TypeBySize<size>::unsignedType;
// a pair of (ResultType::Type, ResultType::Type) - try to fit each type into 4 bits
// additionally, encode unknown types as 0 rather than the | of all types
static constexpr unsigned typeWidth = 4;
static constexpr unsigned maxType = (1 << typeWidth) - 1;
static bool check(OperandTypes types)
{
if (size == OpcodeSize::Narrow) {
auto first = types.first().bits();
auto second = types.second().bits();
if (first == ResultType::unknownType().bits())
first = 0;
if (second == ResultType::unknownType().bits())
second = 0;
return first <= maxType && second <= maxType;
}
return true;
}
static TargetType convert(OperandTypes types)
{
if (size == OpcodeSize::Narrow) {
ASSERT(check(types));
auto first = types.first().bits();
auto second = types.second().bits();
if (first == ResultType::unknownType().bits())
first = 0;
if (second == ResultType::unknownType().bits())
second = 0;
return (first << typeWidth) | second;
}
return static_cast<TargetType>(types.bits());
}
static OperandTypes convert(TargetType types)
{
if (size == OpcodeSize::Narrow) {
auto first = types >> typeWidth;
auto second = types & maxType;
if (!first)
first = ResultType::unknownType().bits();
if (!second)
second = ResultType::unknownType().bits();
return OperandTypes(ResultType(first), ResultType(second));
}
return OperandTypes::fromBits(static_cast<uint16_t>(types));
}
};
template<OpcodeSize size, typename GeneratorTraits>
struct Fits<GenericBoundLabel<GeneratorTraits>, size> : public Fits<int, size> {
// This is a bit hacky: we need to delay computing jump targets, since we
// might have to emit `nop`s to align the instructions stream. Additionally,
// we have to compute the target before we start writing to the instruction
// stream, since the offset is computed from the start of the bytecode. We
// achieve this by computing the target when we `check` and saving it, then
// later we use the saved target when we call convert.
using Base = Fits<int, size>;
static bool check(GenericBoundLabel<GeneratorTraits>& label)
{
return Base::check(label.saveTarget());
}
static typename Base::TargetType convert(GenericBoundLabel<GeneratorTraits>& label)
{
return Base::convert(label.commitTarget());
}
static GenericBoundLabel<GeneratorTraits> convert(typename Base::TargetType target)
{
return GenericBoundLabel<GeneratorTraits>(Base::convert(target));
}
};
} // namespace JSC