| /* |
| * Copyright (C) 2013-2016 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "ArrayConstructor.h" |
| #include "DFGAbstractInterpreter.h" |
| #include "DOMJITGetterSetter.h" |
| #include "DOMJITSignature.h" |
| #include "GetByIdStatus.h" |
| #include "GetterSetter.h" |
| #include "HashMapImpl.h" |
| #include "JITOperations.h" |
| #include "MathCommon.h" |
| #include "Operations.h" |
| #include "PutByIdStatus.h" |
| #include "StringObject.h" |
| |
| namespace JSC { namespace DFG { |
| |
| template<typename AbstractStateType> |
| AbstractInterpreter<AbstractStateType>::AbstractInterpreter(Graph& graph, AbstractStateType& state) |
| : m_codeBlock(graph.m_codeBlock) |
| , m_graph(graph) |
| , m_state(state) |
| { |
| if (m_graph.m_form == SSA) |
| m_phiChildren = std::make_unique<PhiChildren>(m_graph); |
| } |
| |
| template<typename AbstractStateType> |
| AbstractInterpreter<AbstractStateType>::~AbstractInterpreter() |
| { |
| } |
| |
| template<typename AbstractStateType> |
| typename AbstractInterpreter<AbstractStateType>::BooleanResult |
| AbstractInterpreter<AbstractStateType>::booleanResult( |
| Node* node, AbstractValue& value) |
| { |
| JSValue childConst = value.value(); |
| if (childConst) { |
| if (childConst.toBoolean(m_codeBlock->globalObjectFor(node->origin.semantic)->globalExec())) |
| return DefinitelyTrue; |
| return DefinitelyFalse; |
| } |
| |
| // Next check if we can fold because we know that the source is an object or string and does not equal undefined. |
| if (isCellSpeculation(value.m_type) && !value.m_structure.isTop()) { |
| bool allTrue = true; |
| for (unsigned i = value.m_structure.size(); i--;) { |
| Structure* structure = value.m_structure[i]; |
| if (structure->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic)) |
| || structure->typeInfo().type() == StringType) { |
| allTrue = false; |
| break; |
| } |
| } |
| if (allTrue) |
| return DefinitelyTrue; |
| } |
| |
| return UnknownBooleanResult; |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::startExecuting() |
| { |
| ASSERT(m_state.block()); |
| ASSERT(m_state.isValid()); |
| |
| m_state.setDidClobber(false); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::executeEdges(Node* node) |
| { |
| m_graph.doToChildren( |
| node, |
| [&] (Edge& edge) { |
| filterEdgeByUse(edge); |
| }); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::executeKnownEdgeTypes(Node* node) |
| { |
| // Some use kinds are required to not have checks, because we know somehow that the incoming |
| // value will already have the type we want. In those cases, AI may not be smart enough to |
| // prove that this is indeed the case. But the existance of the edge is enough to prove that |
| // it is indeed the case. Taking advantage of this is not optional, since otherwise the DFG |
| // and FTL backends may emit checks in a node that lacks a valid exit origin. |
| m_graph.doToChildren( |
| node, |
| [&] (Edge& edge) { |
| if (mayHaveTypeCheck(edge.useKind())) |
| return; |
| |
| filterEdgeByUse(edge); |
| }); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::verifyEdge(Node* node, Edge edge) |
| { |
| if (!(forNode(edge).m_type & ~typeFilterFor(edge.useKind()))) |
| return; |
| |
| DFG_CRASH(m_graph, node, toCString("Edge verification error: ", node, "->", edge, " was expected to have type ", SpeculationDump(typeFilterFor(edge.useKind())), " but has type ", SpeculationDump(forNode(edge).m_type), " (", forNode(edge).m_type, ")").data()); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::verifyEdges(Node* node) |
| { |
| DFG_NODE_DO_TO_CHILDREN(m_graph, node, verifyEdge); |
| } |
| |
| inline bool isToThisAnIdentity(bool isStrictMode, AbstractValue& valueForNode) |
| { |
| // We look at the type first since that will cover most cases and does not require iterating all the structures. |
| if (isStrictMode) { |
| if (valueForNode.m_type && !(valueForNode.m_type & SpecObjectOther)) |
| return true; |
| } else { |
| if (valueForNode.m_type && !(valueForNode.m_type & (~SpecObject | SpecObjectOther))) |
| return true; |
| } |
| |
| if ((isStrictMode || (valueForNode.m_type && !(valueForNode.m_type & ~SpecObject))) && valueForNode.m_structure.isFinite()) { |
| bool overridesToThis = false; |
| valueForNode.m_structure.forEach([&](Structure* structure) { |
| TypeInfo type = structure->typeInfo(); |
| ASSERT(type.isObject() || type.type() == StringType || type.type() == SymbolType); |
| if (!isStrictMode) |
| ASSERT(type.isObject()); |
| // We don't need to worry about strings/symbols here since either: |
| // 1) We are in strict mode and strings/symbols are not wrapped |
| // 2) The AI has proven that the type of this is a subtype of object |
| if (type.isObject() && type.overridesToThis()) |
| overridesToThis = true; |
| }); |
| return !overridesToThis; |
| } |
| |
| return false; |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::executeEffects(unsigned clobberLimit, Node* node) |
| { |
| if (!ASSERT_DISABLED) |
| verifyEdges(node); |
| |
| m_state.createValueForNode(node); |
| |
| switch (node->op()) { |
| case JSConstant: |
| case DoubleConstant: |
| case Int52Constant: { |
| setBuiltInConstant(node, *node->constant()); |
| break; |
| } |
| |
| case LazyJSConstant: { |
| LazyJSValue value = node->lazyJSValue(); |
| switch (value.kind()) { |
| case LazyJSValue::KnownValue: |
| setConstant(node, value.value()->value()); |
| break; |
| case LazyJSValue::SingleCharacterString: |
| case LazyJSValue::KnownStringImpl: |
| case LazyJSValue::NewStringImpl: |
| forNode(node).setType(m_graph, SpecString); |
| break; |
| } |
| break; |
| } |
| |
| case Identity: { |
| forNode(node) = forNode(node->child1()); |
| if (forNode(node).value()) |
| m_state.setFoundConstants(true); |
| break; |
| } |
| |
| case ExtractOSREntryLocal: { |
| forNode(node).makeBytecodeTop(); |
| break; |
| } |
| |
| case GetLocal: { |
| VariableAccessData* variableAccessData = node->variableAccessData(); |
| AbstractValue value = m_state.variables().operand(variableAccessData->local().offset()); |
| // The value in the local should already be checked. |
| DFG_ASSERT(m_graph, node, value.isType(typeFilterFor(variableAccessData->flushFormat()))); |
| if (value.value()) |
| m_state.setFoundConstants(true); |
| forNode(node) = value; |
| break; |
| } |
| |
| case GetStack: { |
| StackAccessData* data = node->stackAccessData(); |
| AbstractValue value = m_state.variables().operand(data->local); |
| // The value in the local should already be checked. |
| DFG_ASSERT(m_graph, node, value.isType(typeFilterFor(data->format))); |
| if (value.value()) |
| m_state.setFoundConstants(true); |
| forNode(node) = value; |
| break; |
| } |
| |
| case GetLocalUnlinked: { |
| AbstractValue value = m_state.variables().operand(node->unlinkedLocal().offset()); |
| if (value.value()) |
| m_state.setFoundConstants(true); |
| forNode(node) = value; |
| break; |
| } |
| |
| case SetLocal: { |
| m_state.variables().operand(node->local()) = forNode(node->child1()); |
| break; |
| } |
| |
| case PutStack: { |
| m_state.variables().operand(node->stackAccessData()->local) = forNode(node->child1()); |
| break; |
| } |
| |
| case MovHint: { |
| // Don't need to do anything. A MovHint only informs us about what would have happened |
| // in bytecode, but this code is just concerned with what is actually happening during |
| // DFG execution. |
| break; |
| } |
| |
| case KillStack: { |
| // This is just a hint telling us that the OSR state of the local is no longer inside the |
| // flushed data. |
| break; |
| } |
| |
| case SetArgument: |
| // Assert that the state of arguments has been set. SetArgument means that someone set |
| // the argument values out-of-band, and currently this always means setting to a |
| // non-clear value. |
| ASSERT(!m_state.variables().operand(node->local()).isClear()); |
| break; |
| |
| case LoadVarargs: |
| case ForwardVarargs: { |
| // FIXME: ForwardVarargs should check if the count becomes known, and if it does, it should turn |
| // itself into a straight-line sequence of GetStack/PutStack. |
| // https://bugs.webkit.org/show_bug.cgi?id=143071 |
| clobberWorld(node->origin.semantic, clobberLimit); |
| LoadVarargsData* data = node->loadVarargsData(); |
| m_state.variables().operand(data->count).setType(SpecInt32Only); |
| for (unsigned i = data->limit - 1; i--;) |
| m_state.variables().operand(data->start.offset() + i).makeHeapTop(); |
| break; |
| } |
| |
| case BitAnd: |
| case BitOr: |
| case BitXor: |
| case BitRShift: |
| case BitLShift: |
| case BitURShift: { |
| if (node->child1().useKind() == UntypedUse || node->child2().useKind() == UntypedUse) { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecInt32Only); |
| break; |
| } |
| |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| if (left && right && left.isInt32() && right.isInt32()) { |
| int32_t a = left.asInt32(); |
| int32_t b = right.asInt32(); |
| switch (node->op()) { |
| case BitAnd: |
| setConstant(node, JSValue(a & b)); |
| break; |
| case BitOr: |
| setConstant(node, JSValue(a | b)); |
| break; |
| case BitXor: |
| setConstant(node, JSValue(a ^ b)); |
| break; |
| case BitRShift: |
| setConstant(node, JSValue(a >> static_cast<uint32_t>(b))); |
| break; |
| case BitLShift: |
| setConstant(node, JSValue(a << static_cast<uint32_t>(b))); |
| break; |
| case BitURShift: |
| setConstant(node, JSValue(static_cast<uint32_t>(a) >> static_cast<uint32_t>(b))); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| if (node->op() == BitAnd |
| && (isBoolInt32Speculation(forNode(node->child1()).m_type) || |
| isBoolInt32Speculation(forNode(node->child2()).m_type))) { |
| forNode(node).setType(SpecBoolInt32); |
| break; |
| } |
| |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case UInt32ToNumber: { |
| JSValue child = forNode(node->child1()).value(); |
| if (doesOverflow(node->arithMode())) { |
| if (enableInt52()) { |
| if (child && child.isAnyInt()) { |
| int64_t machineInt = child.asAnyInt(); |
| setConstant(node, jsNumber(static_cast<uint32_t>(machineInt))); |
| break; |
| } |
| forNode(node).setType(SpecAnyInt); |
| break; |
| } |
| if (child && child.isInt32()) { |
| uint32_t value = child.asInt32(); |
| setConstant(node, jsNumber(value)); |
| break; |
| } |
| forNode(node).setType(SpecAnyIntAsDouble); |
| break; |
| } |
| if (child && child.isInt32()) { |
| int32_t value = child.asInt32(); |
| if (value >= 0) { |
| setConstant(node, jsNumber(value)); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case BooleanToNumber: { |
| JSValue concreteValue = forNode(node->child1()).value(); |
| if (concreteValue) { |
| if (concreteValue.isBoolean()) |
| setConstant(node, jsNumber(concreteValue.asBoolean())); |
| else |
| setConstant(node, *m_graph.freeze(concreteValue)); |
| break; |
| } |
| AbstractValue& value = forNode(node); |
| value = forNode(node->child1()); |
| if (node->child1().useKind() == UntypedUse && !(value.m_type & ~SpecBoolean)) |
| m_state.setFoundConstants(true); |
| if (value.m_type & SpecBoolean) { |
| value.merge(SpecBoolInt32); |
| value.filter(~SpecBoolean); |
| } |
| break; |
| } |
| |
| case DoubleAsInt32: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child && child.isNumber()) { |
| double asDouble = child.asNumber(); |
| int32_t asInt = JSC::toInt32(asDouble); |
| if (bitwise_cast<int64_t>(static_cast<double>(asInt)) == bitwise_cast<int64_t>(asDouble)) { |
| setConstant(node, JSValue(asInt)); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case ValueToInt32: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child) { |
| if (child.isNumber()) { |
| if (child.isInt32()) |
| setConstant(node, child); |
| else |
| setConstant(node, JSValue(JSC::toInt32(child.asDouble()))); |
| break; |
| } |
| if (child.isBoolean()) { |
| setConstant(node, jsNumber(child.asBoolean())); |
| break; |
| } |
| if (child.isUndefinedOrNull()) { |
| setConstant(node, jsNumber(0)); |
| break; |
| } |
| } |
| |
| if (isBooleanSpeculation(forNode(node->child1()).m_type)) { |
| forNode(node).setType(SpecBoolInt32); |
| break; |
| } |
| |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case DoubleRep: { |
| JSValue child = forNode(node->child1()).value(); |
| if (Optional<double> number = child.toNumberFromPrimitive()) { |
| setConstant(node, jsDoubleNumber(*number)); |
| break; |
| } |
| |
| SpeculatedType type = forNode(node->child1()).m_type; |
| switch (node->child1().useKind()) { |
| case NotCellUse: { |
| if (type & SpecOther) { |
| type &= ~SpecOther; |
| type |= SpecDoublePureNaN | SpecBoolInt32; // Null becomes zero, undefined becomes NaN. |
| } |
| if (type & SpecBoolean) { |
| type &= ~SpecBoolean; |
| type |= SpecBoolInt32; // True becomes 1, false becomes 0. |
| } |
| type &= SpecBytecodeNumber; |
| break; |
| } |
| |
| case Int52RepUse: |
| case NumberUse: |
| case RealNumberUse: |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| forNode(node).setType(type); |
| forNode(node).fixTypeForRepresentation(m_graph, node); |
| break; |
| } |
| |
| case Int52Rep: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child && child.isAnyInt()) { |
| setConstant(node, child); |
| break; |
| } |
| |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case ValueRep: { |
| JSValue value = forNode(node->child1()).value(); |
| if (value) { |
| setConstant(node, value); |
| break; |
| } |
| |
| forNode(node).setType(m_graph, forNode(node->child1()).m_type & ~SpecDoubleImpureNaN); |
| forNode(node).fixTypeForRepresentation(m_graph, node); |
| break; |
| } |
| |
| case ValueAdd: { |
| ASSERT(node->binaryUseKind() == UntypedUse); |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecString | SpecBytecodeNumber); |
| break; |
| } |
| |
| case StrCat: { |
| forNode(node).setType(m_graph, SpecString); |
| break; |
| } |
| |
| case ArithAdd: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(left.asInt32() + right.asInt32())); |
| break; |
| } |
| JSValue result = jsNumber(left.asNumber() + right.asNumber()); |
| if (result.isInt32()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (left && right && left.isAnyInt() && right.isAnyInt()) { |
| JSValue result = jsNumber(left.asAnyInt() + right.asAnyInt()); |
| if (result.isAnyInt()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| forNode(node).setType(SpecAnyInt); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() + right.asNumber())); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleSum( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithClz32: { |
| JSValue operand = forNode(node->child1()).value(); |
| if (Optional<double> number = operand.toNumberFromPrimitive()) { |
| uint32_t value = toUInt32(*number); |
| setConstant(node, jsNumber(clz32(value))); |
| break; |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case MakeRope: { |
| forNode(node).set(m_graph, m_graph.m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case ArithSub: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(left.asInt32() - right.asInt32())); |
| break; |
| } |
| JSValue result = jsNumber(left.asNumber() - right.asNumber()); |
| if (result.isInt32()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (left && right && left.isAnyInt() && right.isAnyInt()) { |
| JSValue result = jsNumber(left.asAnyInt() - right.asAnyInt()); |
| if (result.isAnyInt() || !shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| forNode(node).setType(SpecAnyInt); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() - right.asNumber())); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleDifference( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| case UntypedUse: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecBytecodeNumber); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithNegate: { |
| JSValue child = forNode(node->child1()).value(); |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| if (child && child.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(-child.asInt32())); |
| break; |
| } |
| double doubleResult; |
| if (shouldCheckNegativeZero(node->arithMode())) |
| doubleResult = -child.asNumber(); |
| else |
| doubleResult = 0 - child.asNumber(); |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (child && child.isAnyInt()) { |
| double doubleResult; |
| if (shouldCheckNegativeZero(node->arithMode())) |
| doubleResult = -child.asNumber(); |
| else |
| doubleResult = 0 - child.asNumber(); |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isAnyInt()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| forNode(node).setType(SpecAnyInt); |
| break; |
| case DoubleRepUse: |
| if (child && child.isNumber()) { |
| setConstant(node, jsDoubleNumber(-child.asNumber())); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleNegation( |
| forNode(node->child1()).m_type)); |
| break; |
| default: |
| DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse); |
| forNode(node).setType(SpecBytecodeNumber); |
| break; |
| } |
| break; |
| } |
| |
| case ArithMul: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| if (!shouldCheckOverflow(node->arithMode())) { |
| setConstant(node, jsNumber(left.asInt32() * right.asInt32())); |
| break; |
| } |
| double doubleResult = left.asNumber() * right.asNumber(); |
| if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; // Sanitizes zero. |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Int52RepUse: |
| if (left && right && left.isAnyInt() && right.isAnyInt()) { |
| double doubleResult = left.asNumber() * right.asNumber(); |
| if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isAnyInt()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| forNode(node).setType(SpecAnyInt); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() * right.asNumber())); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleProduct( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| case UntypedUse: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecBytecodeNumber); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithDiv: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| double doubleResult = left.asNumber() / right.asNumber(); |
| if (!shouldCheckOverflow(node->arithMode())) |
| doubleResult = toInt32(doubleResult); |
| else if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; // Sanitizes zero. |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(left.asNumber() / right.asNumber())); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleQuotient( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| case UntypedUse: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecBytecodeNumber); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithMod: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| double doubleResult = fmod(left.asNumber(), right.asNumber()); |
| if (!shouldCheckOverflow(node->arithMode())) |
| doubleResult = toInt32(doubleResult); |
| else if (!shouldCheckNegativeZero(node->arithMode())) |
| doubleResult += 0; // Sanitizes zero. |
| JSValue valueResult = jsNumber(doubleResult); |
| if (valueResult.isInt32()) { |
| setConstant(node, valueResult); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| setConstant(node, jsDoubleNumber(fmod(left.asNumber(), right.asNumber()))); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleBinaryOp( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithMin: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| setConstant(node, jsNumber(std::min(left.asInt32(), right.asInt32()))); |
| break; |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| double a = left.asNumber(); |
| double b = right.asNumber(); |
| setConstant(node, jsDoubleNumber(a < b ? a : (b <= a ? b : a + b))); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleMinMax( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithMax: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| switch (node->binaryUseKind()) { |
| case Int32Use: |
| if (left && right && left.isInt32() && right.isInt32()) { |
| setConstant(node, jsNumber(std::max(left.asInt32(), right.asInt32()))); |
| break; |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (left && right && left.isNumber() && right.isNumber()) { |
| double a = left.asNumber(); |
| double b = right.asNumber(); |
| setConstant(node, jsDoubleNumber(a > b ? a : (b >= a ? b : a + b))); |
| break; |
| } |
| forNode(node).setType( |
| typeOfDoubleMinMax( |
| forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case ArithAbs: { |
| JSValue child = forNode(node->child1()).value(); |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| if (Optional<double> number = child.toNumberFromPrimitive()) { |
| JSValue result = jsNumber(fabs(*number)); |
| if (result.isInt32()) { |
| setConstant(node, result); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case DoubleRepUse: |
| if (Optional<double> number = child.toNumberFromPrimitive()) { |
| setConstant(node, jsDoubleNumber(fabs(*number))); |
| break; |
| } |
| forNode(node).setType(typeOfDoubleAbs(forNode(node->child1()).m_type)); |
| break; |
| default: |
| DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse); |
| forNode(node).setType(SpecFullNumber); |
| break; |
| } |
| break; |
| } |
| |
| case ArithPow: { |
| JSValue childY = forNode(node->child2()).value(); |
| if (childY && childY.isNumber()) { |
| if (!childY.asNumber()) { |
| setConstant(node, jsDoubleNumber(1)); |
| break; |
| } |
| |
| JSValue childX = forNode(node->child1()).value(); |
| if (childX && childX.isNumber()) { |
| setConstant(node, jsDoubleNumber(operationMathPow(childX.asNumber(), childY.asNumber()))); |
| break; |
| } |
| } |
| forNode(node).setType(typeOfDoublePow(forNode(node->child1()).m_type, forNode(node->child2()).m_type)); |
| break; |
| } |
| |
| case ArithRandom: { |
| forNode(node).setType(m_graph, SpecDoubleReal); |
| break; |
| } |
| |
| case ArithRound: |
| case ArithFloor: |
| case ArithCeil: |
| case ArithTrunc: { |
| JSValue operand = forNode(node->child1()).value(); |
| if (Optional<double> number = operand.toNumberFromPrimitive()) { |
| double roundedValue = 0; |
| if (node->op() == ArithRound) |
| roundedValue = jsRound(*number); |
| else if (node->op() == ArithFloor) |
| roundedValue = floor(*number); |
| else if (node->op() == ArithCeil) |
| roundedValue = ceil(*number); |
| else { |
| ASSERT(node->op() == ArithTrunc); |
| roundedValue = trunc(*number); |
| } |
| |
| if (node->child1().useKind() == UntypedUse) { |
| setConstant(node, jsNumber(roundedValue)); |
| break; |
| } |
| if (producesInteger(node->arithRoundingMode())) { |
| int32_t roundedValueAsInt32 = static_cast<int32_t>(roundedValue); |
| if (roundedValueAsInt32 == roundedValue) { |
| if (shouldCheckNegativeZero(node->arithRoundingMode())) { |
| if (roundedValueAsInt32 || !std::signbit(roundedValue)) { |
| setConstant(node, jsNumber(roundedValueAsInt32)); |
| break; |
| } |
| } else { |
| setConstant(node, jsNumber(roundedValueAsInt32)); |
| break; |
| } |
| } |
| } else { |
| setConstant(node, jsDoubleNumber(roundedValue)); |
| break; |
| } |
| } |
| if (node->child1().useKind() == DoubleRepUse) { |
| if (producesInteger(node->arithRoundingMode())) |
| forNode(node).setType(SpecInt32Only); |
| else if (node->child1().useKind() == DoubleRepUse) |
| forNode(node).setType(typeOfDoubleRounding(forNode(node->child1()).m_type)); |
| } else { |
| DFG_ASSERT(m_graph, node, node->child1().useKind() == UntypedUse); |
| forNode(node).setType(SpecFullNumber); |
| } |
| break; |
| } |
| |
| case ArithSqrt: |
| executeDoubleUnaryOpEffects(node, sqrt); |
| break; |
| |
| case ArithFRound: |
| executeDoubleUnaryOpEffects(node, [](double value) -> double { return static_cast<float>(value); }); |
| break; |
| |
| case ArithSin: |
| executeDoubleUnaryOpEffects(node, sin); |
| break; |
| |
| case ArithCos: |
| executeDoubleUnaryOpEffects(node, cos); |
| break; |
| |
| case ArithTan: |
| executeDoubleUnaryOpEffects(node, tan); |
| break; |
| |
| case ArithLog: |
| executeDoubleUnaryOpEffects(node, log); |
| break; |
| |
| case LogicalNot: { |
| switch (booleanResult(node, forNode(node->child1()))) { |
| case DefinitelyTrue: |
| setConstant(node, jsBoolean(false)); |
| break; |
| case DefinitelyFalse: |
| setConstant(node, jsBoolean(true)); |
| break; |
| default: |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| break; |
| } |
| |
| case MapHash: { |
| if (JSValue key = forNode(node->child1()).value()) { |
| if (Optional<uint32_t> hash = concurrentJSMapHash(key)) { |
| // Although C++ code uses uint32_t for the hash, the closest type in DFG IR is Int32 |
| // and that's what MapHash returns. So, we have to cast to int32_t to avoid large |
| // unsigned values becoming doubles. This casting between signed and unsigned |
| // happens in the assembly code we emit when we don't constant fold this node. |
| setConstant(node, jsNumber(static_cast<int32_t>(*hash))); |
| break; |
| } |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case ToLowerCase: { |
| forNode(node).setType(m_graph, SpecString); |
| break; |
| } |
| |
| case LoadFromJSMapBucket: |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case GetMapBucket: |
| forNode(node).setType(m_graph, SpecCellOther); |
| break; |
| |
| case IsNonEmptyMapBucket: |
| forNode(node).setType(SpecBoolean); |
| break; |
| |
| case IsEmpty: |
| case IsUndefined: |
| case IsBoolean: |
| case IsNumber: |
| case IsObject: |
| case IsObjectOrNull: |
| case IsFunction: |
| case IsCellWithType: |
| case IsTypedArrayView: { |
| AbstractValue child = forNode(node->child1()); |
| if (child.value()) { |
| bool constantWasSet = true; |
| switch (node->op()) { |
| case IsCellWithType: |
| setConstant(node, jsBoolean(child.value().isCell() && child.value().asCell()->type() == node->queriedType())); |
| break; |
| case IsUndefined: |
| setConstant(node, jsBoolean( |
| child.value().isCell() |
| ? child.value().asCell()->structure()->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic)) |
| : child.value().isUndefined())); |
| break; |
| case IsBoolean: |
| setConstant(node, jsBoolean(child.value().isBoolean())); |
| break; |
| case IsNumber: |
| setConstant(node, jsBoolean(child.value().isNumber())); |
| break; |
| case IsObject: |
| setConstant(node, jsBoolean(child.value().isObject())); |
| break; |
| case IsObjectOrNull: |
| if (child.value().isObject()) { |
| JSObject* object = asObject(child.value()); |
| if (object->type() == JSFunctionType) |
| setConstant(node, jsBoolean(false)); |
| else if (!(object->inlineTypeFlags() & TypeOfShouldCallGetCallData)) |
| setConstant(node, jsBoolean(!child.value().asCell()->structure()->masqueradesAsUndefined(m_codeBlock->globalObjectFor(node->origin.semantic)))); |
| else { |
| // FIXME: This could just call getCallData. |
| // https://bugs.webkit.org/show_bug.cgi?id=144457 |
| constantWasSet = false; |
| } |
| } else |
| setConstant(node, jsBoolean(child.value().isNull())); |
| break; |
| case IsFunction: |
| if (child.value().isObject()) { |
| JSObject* object = asObject(child.value()); |
| if (object->type() == JSFunctionType) |
| setConstant(node, jsBoolean(true)); |
| else if (!(object->inlineTypeFlags() & TypeOfShouldCallGetCallData)) |
| setConstant(node, jsBoolean(false)); |
| else { |
| // FIXME: This could just call getCallData. |
| // https://bugs.webkit.org/show_bug.cgi?id=144457 |
| constantWasSet = false; |
| } |
| } else |
| setConstant(node, jsBoolean(false)); |
| break; |
| case IsEmpty: |
| setConstant(node, jsBoolean(child.value().isEmpty())); |
| break; |
| case IsTypedArrayView: |
| setConstant(node, jsBoolean(child.value().isObject() && isTypedView(child.value().getObject()->classInfo()->typedArrayStorageType))); |
| break; |
| default: |
| constantWasSet = false; |
| break; |
| } |
| if (constantWasSet) |
| break; |
| } |
| |
| // FIXME: This code should really use AbstractValue::isType() and |
| // AbstractValue::couldBeType(). |
| // https://bugs.webkit.org/show_bug.cgi?id=146870 |
| |
| bool constantWasSet = false; |
| switch (node->op()) { |
| case IsEmpty: { |
| if (child.m_type && !(child.m_type & SpecEmpty)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (child.m_type && !(child.m_type & ~SpecEmpty)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| } |
| case IsUndefined: |
| // FIXME: Use the masquerades-as-undefined watchpoint thingy. |
| // https://bugs.webkit.org/show_bug.cgi?id=144456 |
| |
| if (!(child.m_type & (SpecOther | SpecObjectOther))) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsBoolean: |
| if (!(child.m_type & ~SpecBoolean)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecBoolean)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsNumber: |
| if (!(child.m_type & ~SpecFullNumber)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecFullNumber)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsObject: |
| if (!(child.m_type & ~SpecObject)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & SpecObject)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsObjectOrNull: |
| // FIXME: Use the masquerades-as-undefined watchpoint thingy. |
| // https://bugs.webkit.org/show_bug.cgi?id=144456 |
| |
| // These expressions are complicated to parse. A helpful way to parse this is that |
| // "!(T & ~S)" means "T is a subset of S". Conversely, "!(T & S)" means "T is a |
| // disjoint set from S". Things like "T - S" means that, provided that S is a |
| // subset of T, it's the "set of all things in T but not in S". Things like "T | S" |
| // mean the "union of T and S". |
| |
| // Is the child's type an object that isn't an other-object (i.e. object that could |
| // have masquaredes-as-undefined traps) and isn't a function? Then: we should fold |
| // this to true. |
| if (!(child.m_type & ~(SpecObject - SpecObjectOther - SpecFunction))) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| // Is the child's type definitely not either of: an object that isn't a function, |
| // or either undefined or null? Then: we should fold this to false. This means |
| // for example that if it's any non-function object, including those that have |
| // masquerades-as-undefined traps, then we don't fold. It also means we won't fold |
| // if it's undefined-or-null, since the type bits don't distinguish between |
| // undefined (which should fold to false) and null (which should fold to true). |
| if (!(child.m_type & ((SpecObject - SpecFunction) | SpecOther))) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| |
| break; |
| case IsFunction: |
| if (!(child.m_type & ~SpecFunction)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| |
| if (!(child.m_type & (SpecFunction | SpecObjectOther))) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| |
| case IsCellWithType: |
| if (!(child.m_type & ~node->speculatedTypeForQuery())) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| if (!(child.m_type & node->speculatedTypeForQuery())) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| |
| case IsTypedArrayView: |
| if (!(child.m_type & ~SpecTypedArrayView)) { |
| setConstant(node, jsBoolean(true)); |
| constantWasSet = true; |
| break; |
| } |
| if (!(child.m_type & SpecTypedArrayView)) { |
| setConstant(node, jsBoolean(false)); |
| constantWasSet = true; |
| break; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| if (constantWasSet) |
| break; |
| |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case TypeOf: { |
| VM* vm = m_codeBlock->vm(); |
| JSValue child = forNode(node->child1()).value(); |
| AbstractValue& abstractChild = forNode(node->child1()); |
| if (child) { |
| JSValue typeString = jsTypeStringForValue(*vm, m_codeBlock->globalObjectFor(node->origin.semantic), child); |
| setConstant(node, *m_graph.freeze(typeString)); |
| break; |
| } |
| |
| if (isFullNumberSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(vm->smallStrings.numberString())); |
| break; |
| } |
| |
| if (isStringSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(vm->smallStrings.stringString())); |
| break; |
| } |
| |
| // FIXME: We could use the masquerades-as-undefined watchpoint here. |
| // https://bugs.webkit.org/show_bug.cgi?id=144456 |
| if (!(abstractChild.m_type & ~(SpecObject - SpecObjectOther - SpecFunction))) { |
| setConstant(node, *m_graph.freeze(vm->smallStrings.objectString())); |
| break; |
| } |
| |
| if (isFunctionSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(vm->smallStrings.functionString())); |
| break; |
| } |
| |
| if (isBooleanSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(vm->smallStrings.booleanString())); |
| break; |
| } |
| |
| if (isSymbolSpeculation(abstractChild.m_type)) { |
| setConstant(node, *m_graph.freeze(vm->smallStrings.symbolString())); |
| break; |
| } |
| |
| forNode(node).setType(m_graph, SpecStringIdent); |
| break; |
| } |
| |
| case CompareLess: |
| case CompareLessEq: |
| case CompareGreater: |
| case CompareGreaterEq: |
| case CompareEq: { |
| JSValue leftConst = forNode(node->child1()).value(); |
| JSValue rightConst = forNode(node->child2()).value(); |
| if (leftConst && rightConst) { |
| if (leftConst.isNumber() && rightConst.isNumber()) { |
| double a = leftConst.asNumber(); |
| double b = rightConst.asNumber(); |
| switch (node->op()) { |
| case CompareLess: |
| setConstant(node, jsBoolean(a < b)); |
| break; |
| case CompareLessEq: |
| setConstant(node, jsBoolean(a <= b)); |
| break; |
| case CompareGreater: |
| setConstant(node, jsBoolean(a > b)); |
| break; |
| case CompareGreaterEq: |
| setConstant(node, jsBoolean(a >= b)); |
| break; |
| case CompareEq: |
| setConstant(node, jsBoolean(a == b)); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| if (leftConst.isString() && rightConst.isString()) { |
| const StringImpl* a = asString(leftConst)->tryGetValueImpl(); |
| const StringImpl* b = asString(rightConst)->tryGetValueImpl(); |
| if (a && b) { |
| bool result; |
| if (node->op() == CompareEq) |
| result = WTF::equal(a, b); |
| else if (node->op() == CompareLess) |
| result = codePointCompare(a, b) < 0; |
| else if (node->op() == CompareLessEq) |
| result = codePointCompare(a, b) <= 0; |
| else if (node->op() == CompareGreater) |
| result = codePointCompare(a, b) > 0; |
| else if (node->op() == CompareGreaterEq) |
| result = codePointCompare(a, b) >= 0; |
| else |
| RELEASE_ASSERT_NOT_REACHED(); |
| setConstant(node, jsBoolean(result)); |
| break; |
| } |
| } |
| |
| if (node->op() == CompareEq && leftConst.isSymbol() && rightConst.isSymbol()) { |
| setConstant(node, jsBoolean(asSymbol(leftConst) == asSymbol(rightConst))); |
| break; |
| } |
| } |
| |
| if (node->op() == CompareEq) { |
| SpeculatedType leftType = forNode(node->child1()).m_type; |
| SpeculatedType rightType = forNode(node->child2()).m_type; |
| if (!valuesCouldBeEqual(leftType, rightType)) { |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| |
| if (leftType == SpecOther) |
| std::swap(leftType, rightType); |
| if (rightType == SpecOther) { |
| // Undefined and Null are always equal when compared to eachother. |
| if (!(leftType & ~SpecOther)) { |
| setConstant(node, jsBoolean(true)); |
| break; |
| } |
| |
| // Any other type compared to Null or Undefined is always false |
| // as long as the MasqueradesAsUndefined watchpoint is valid. |
| // |
| // MasqueradesAsUndefined only matters for SpecObjectOther, other |
| // cases are always "false". |
| if (!(leftType & (SpecObjectOther | SpecOther))) { |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| |
| if (!(leftType & SpecOther) && m_graph.masqueradesAsUndefinedWatchpointIsStillValid(node->origin.semantic)) { |
| JSGlobalObject* globalObject = m_graph.globalObjectFor(node->origin.semantic); |
| m_graph.watchpoints().addLazily(globalObject->masqueradesAsUndefinedWatchpoint()); |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| } |
| } |
| |
| if (node->child1() == node->child2()) { |
| if (node->isBinaryUseKind(Int32Use) || |
| node->isBinaryUseKind(Int52RepUse) || |
| node->isBinaryUseKind(StringUse) || |
| node->isBinaryUseKind(BooleanUse) || |
| node->isBinaryUseKind(SymbolUse) || |
| node->isBinaryUseKind(StringIdentUse) || |
| node->isBinaryUseKind(ObjectUse) || |
| node->isBinaryUseKind(ObjectUse, ObjectOrOtherUse) || |
| node->isBinaryUseKind(ObjectOrOtherUse, ObjectUse)) { |
| switch (node->op()) { |
| case CompareLess: |
| case CompareGreater: |
| setConstant(node, jsBoolean(false)); |
| break; |
| case CompareLessEq: |
| case CompareGreaterEq: |
| case CompareEq: |
| setConstant(node, jsBoolean(true)); |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Unexpected node type"); |
| break; |
| } |
| break; |
| } |
| } |
| |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case CompareStrictEq: { |
| Node* leftNode = node->child1().node(); |
| Node* rightNode = node->child2().node(); |
| JSValue left = forNode(leftNode).value(); |
| JSValue right = forNode(rightNode).value(); |
| if (left && right) { |
| if (left.isString() && right.isString()) { |
| // We need this case because JSValue::strictEqual is otherwise too racy for |
| // string comparisons. |
| const StringImpl* a = asString(left)->tryGetValueImpl(); |
| const StringImpl* b = asString(right)->tryGetValueImpl(); |
| if (a && b) { |
| setConstant(node, jsBoolean(WTF::equal(a, b))); |
| break; |
| } |
| } else { |
| setConstant(node, jsBoolean(JSValue::strictEqual(0, left, right))); |
| break; |
| } |
| } |
| |
| SpeculatedType leftLUB = leastUpperBoundOfStrictlyEquivalentSpeculations(forNode(leftNode).m_type); |
| SpeculatedType rightLUB = leastUpperBoundOfStrictlyEquivalentSpeculations(forNode(rightNode).m_type); |
| if (!(leftLUB & rightLUB)) { |
| setConstant(node, jsBoolean(false)); |
| break; |
| } |
| |
| if (node->child1() == node->child2()) { |
| if (node->isBinaryUseKind(BooleanUse) || |
| node->isBinaryUseKind(Int32Use) || |
| node->isBinaryUseKind(Int52RepUse) || |
| node->isBinaryUseKind(StringUse) || |
| node->isBinaryUseKind(StringIdentUse) || |
| node->isBinaryUseKind(SymbolUse) || |
| node->isBinaryUseKind(ObjectUse) || |
| node->isBinaryUseKind(MiscUse, UntypedUse) || |
| node->isBinaryUseKind(UntypedUse, MiscUse) || |
| node->isBinaryUseKind(StringIdentUse, NotStringVarUse) || |
| node->isBinaryUseKind(NotStringVarUse, StringIdentUse) || |
| node->isBinaryUseKind(StringUse, UntypedUse) || |
| node->isBinaryUseKind(UntypedUse, StringUse)) { |
| setConstant(node, jsBoolean(true)); |
| break; |
| } |
| } |
| |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case CompareEqPtr: { |
| Node* childNode = node->child1().node(); |
| JSValue childValue = forNode(childNode).value(); |
| if (childValue) { |
| setConstant(node, jsBoolean(childValue.isCell() && childValue.asCell() == node->cellOperand()->cell())); |
| break; |
| } |
| |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case StringCharCodeAt: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| |
| case StringFromCharCode: |
| forNode(node).setType(m_graph, SpecString); |
| break; |
| |
| case StringCharAt: |
| forNode(node).set(m_graph, m_graph.m_vm.stringStructure.get()); |
| break; |
| |
| case GetByVal: { |
| switch (node->arrayMode().type()) { |
| case Array::SelectUsingPredictions: |
| case Array::Unprofiled: |
| case Array::SelectUsingArguments: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| case Array::ForceExit: |
| m_state.setIsValid(false); |
| break; |
| case Array::Undecided: { |
| JSValue index = forNode(node->child2()).value(); |
| if (index && index.isInt32() && index.asInt32() >= 0) { |
| setConstant(node, jsUndefined()); |
| break; |
| } |
| forNode(node).setType(SpecOther); |
| break; |
| } |
| case Array::Generic: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| case Array::String: |
| if (node->arrayMode().isOutOfBounds()) { |
| // If the watchpoint was still valid we could totally set this to be |
| // SpecString | SpecOther. Except that we'd have to be careful. If we |
| // tested the watchpoint state here then it could change by the time |
| // we got to the backend. So to do this right, we'd have to get the |
| // fixup phase to check the watchpoint state and then bake into the |
| // GetByVal operation the fact that we're using a watchpoint, using |
| // something like Array::SaneChain (except not quite, because that |
| // implies an in-bounds access). None of this feels like it's worth it, |
| // so we're going with TOP for now. The same thing applies to |
| // clobbering the world. |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| } else |
| forNode(node).set(m_graph, m_graph.m_vm.stringStructure.get()); |
| break; |
| case Array::DirectArguments: |
| case Array::ScopedArguments: |
| forNode(node).makeHeapTop(); |
| break; |
| case Array::Int32: |
| if (node->arrayMode().isOutOfBounds()) { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| } else |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Double: |
| if (node->arrayMode().isOutOfBounds()) { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| } else if (node->arrayMode().isSaneChain()) |
| forNode(node).setType(SpecBytecodeDouble); |
| else |
| forNode(node).setType(SpecDoubleReal); |
| break; |
| case Array::Contiguous: |
| case Array::ArrayStorage: |
| case Array::SlowPutArrayStorage: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| case Array::Int8Array: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Int16Array: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Int32Array: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Uint8Array: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Uint8ClampedArray: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Uint16Array: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| case Array::Uint32Array: |
| if (node->shouldSpeculateInt32()) |
| forNode(node).setType(SpecInt32Only); |
| else if (enableInt52() && node->shouldSpeculateAnyInt()) |
| forNode(node).setType(SpecAnyInt); |
| else |
| forNode(node).setType(SpecAnyIntAsDouble); |
| break; |
| case Array::Float32Array: |
| forNode(node).setType(SpecFullDouble); |
| break; |
| case Array::Float64Array: |
| forNode(node).setType(SpecFullDouble); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| break; |
| } |
| |
| case PutByValDirect: |
| case PutByVal: |
| case PutByValAlias: { |
| switch (node->arrayMode().modeForPut().type()) { |
| case Array::ForceExit: |
| m_state.setIsValid(false); |
| break; |
| case Array::Generic: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| case Array::Int32: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| case Array::Double: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| case Array::Contiguous: |
| case Array::ArrayStorage: |
| if (node->arrayMode().isOutOfBounds()) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| case Array::SlowPutArrayStorage: |
| if (node->arrayMode().mayStoreToHole()) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| default: |
| break; |
| } |
| break; |
| } |
| |
| case ArrayPush: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(SpecBytecodeNumber); |
| break; |
| |
| case ArrayPop: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case GetMyArgumentByVal: |
| case GetMyArgumentByValOutOfBounds: { |
| JSValue index = forNode(node->child2()).m_value; |
| InlineCallFrame* inlineCallFrame = node->child1()->origin.semantic.inlineCallFrame; |
| |
| if (index && index.isInt32()) { |
| // This pretends to return TOP for accesses that are actually proven out-of-bounds because |
| // that's the conservative thing to do. Otherwise we'd need to write more code to mark such |
| // paths as unreachable, or to return undefined. We could implement that eventually. |
| |
| unsigned argumentIndex = index.asUInt32() + node->numberOfArgumentsToSkip(); |
| if (inlineCallFrame) { |
| if (argumentIndex < inlineCallFrame->arguments.size() - 1) { |
| forNode(node) = m_state.variables().operand( |
| virtualRegisterForArgument(argumentIndex + 1) + inlineCallFrame->stackOffset); |
| m_state.setFoundConstants(true); |
| break; |
| } |
| } else { |
| if (argumentIndex < m_state.variables().numberOfArguments() - 1) { |
| forNode(node) = m_state.variables().argument(argumentIndex + 1); |
| m_state.setFoundConstants(true); |
| break; |
| } |
| } |
| } |
| |
| if (inlineCallFrame) { |
| // We have a bound on the types even though it's random access. Take advantage of this. |
| |
| AbstractValue result; |
| for (unsigned i = 1 + node->numberOfArgumentsToSkip(); i < inlineCallFrame->arguments.size(); ++i) { |
| result.merge( |
| m_state.variables().operand( |
| virtualRegisterForArgument(i) + inlineCallFrame->stackOffset)); |
| } |
| |
| if (node->op() == GetMyArgumentByValOutOfBounds) |
| result.merge(SpecOther); |
| |
| if (result.value()) |
| m_state.setFoundConstants(true); |
| |
| forNode(node) = result; |
| break; |
| } |
| |
| forNode(node).makeHeapTop(); |
| break; |
| } |
| |
| case RegExpExec: |
| if (node->child2().useKind() == RegExpObjectUse |
| && node->child3().useKind() == StringUse) { |
| // This doesn't clobber the world since there are no conversions to perform. |
| } else |
| clobberWorld(node->origin.semantic, clobberLimit); |
| if (JSValue globalObjectValue = forNode(node->child1()).m_value) { |
| if (JSGlobalObject* globalObject = jsDynamicCast<JSGlobalObject*>(globalObjectValue)) { |
| if (!globalObject->isHavingABadTime()) { |
| m_graph.watchpoints().addLazily(globalObject->havingABadTimeWatchpoint()); |
| Structure* structure = globalObject->regExpMatchesArrayStructure(); |
| m_graph.registerStructure(structure); |
| forNode(node).set(m_graph, structure); |
| forNode(node).merge(SpecOther); |
| break; |
| } |
| } |
| } |
| forNode(node).setType(m_graph, SpecOther | SpecArray); |
| break; |
| |
| case RegExpTest: |
| if (node->child2().useKind() == RegExpObjectUse |
| && node->child3().useKind() == StringUse) { |
| // This doesn't clobber the world since there are no conversions to perform. |
| } else |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(SpecBoolean); |
| break; |
| |
| case StringReplace: |
| case StringReplaceRegExp: |
| if (node->child1().useKind() == StringUse |
| && node->child2().useKind() == RegExpObjectUse |
| && node->child3().useKind() == StringUse) { |
| // This doesn't clobber the world. It just reads and writes regexp state. |
| } else |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).set(m_graph, m_graph.m_vm.stringStructure.get()); |
| break; |
| |
| case Jump: |
| break; |
| |
| case Branch: { |
| Node* child = node->child1().node(); |
| BooleanResult result = booleanResult(node, forNode(child)); |
| if (result == DefinitelyTrue) { |
| m_state.setBranchDirection(TakeTrue); |
| break; |
| } |
| if (result == DefinitelyFalse) { |
| m_state.setBranchDirection(TakeFalse); |
| break; |
| } |
| // FIXME: The above handles the trivial cases of sparse conditional |
| // constant propagation, but we can do better: |
| // We can specialize the source variable's value on each direction of |
| // the branch. |
| m_state.setBranchDirection(TakeBoth); |
| break; |
| } |
| |
| case Switch: { |
| // Nothing to do for now. |
| // FIXME: Do sparse conditional things. |
| break; |
| } |
| |
| case Return: |
| m_state.setIsValid(false); |
| break; |
| |
| case TailCall: |
| case DirectTailCall: |
| case TailCallVarargs: |
| case TailCallForwardVarargs: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| m_state.setIsValid(false); |
| break; |
| |
| case Throw: |
| case ThrowStaticError: |
| m_state.setIsValid(false); |
| break; |
| |
| case ToPrimitive: { |
| JSValue childConst = forNode(node->child1()).value(); |
| if (childConst && childConst.isNumber()) { |
| setConstant(node, childConst); |
| break; |
| } |
| |
| ASSERT(node->child1().useKind() == UntypedUse); |
| |
| if (!(forNode(node->child1()).m_type & ~(SpecFullNumber | SpecBoolean | SpecString | SpecSymbol))) { |
| m_state.setFoundConstants(true); |
| forNode(node) = forNode(node->child1()); |
| break; |
| } |
| |
| clobberWorld(node->origin.semantic, clobberLimit); |
| |
| forNode(node).setType(m_graph, SpecHeapTop & ~SpecObject); |
| break; |
| } |
| |
| case ToNumber: { |
| JSValue childConst = forNode(node->child1()).value(); |
| if (childConst && childConst.isNumber()) { |
| setConstant(node, childConst); |
| break; |
| } |
| |
| ASSERT(node->child1().useKind() == UntypedUse); |
| |
| if (!(forNode(node->child1()).m_type & ~SpecBytecodeNumber)) { |
| m_state.setFoundConstants(true); |
| forNode(node) = forNode(node->child1()); |
| break; |
| } |
| |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecBytecodeNumber); |
| break; |
| } |
| |
| case ToString: |
| case CallStringConstructor: { |
| switch (node->child1().useKind()) { |
| case StringObjectUse: |
| // This also filters that the StringObject has the primordial StringObject |
| // structure. |
| filter( |
| node->child1(), |
| m_graph.globalObjectFor(node->origin.semantic)->stringObjectStructure()); |
| break; |
| case StringOrStringObjectUse: |
| break; |
| case CellUse: |
| case UntypedUse: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| forNode(node).set(m_graph, m_graph.m_vm.stringStructure.get()); |
| break; |
| } |
| |
| case NewStringObject: { |
| ASSERT(node->structure()->classInfo() == StringObject::info()); |
| forNode(node).set(m_graph, node->structure()); |
| break; |
| } |
| |
| case NewArray: |
| forNode(node).set( |
| m_graph, |
| m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(node->indexingType())); |
| break; |
| |
| case NewArrayBuffer: |
| forNode(node).set( |
| m_graph, |
| m_graph.globalObjectFor(node->origin.semantic)->arrayStructureForIndexingTypeDuringAllocation(node->indexingType())); |
| break; |
| |
| case NewArrayWithSize: |
| forNode(node).setType(m_graph, SpecArray); |
| break; |
| |
| case NewTypedArray: |
| switch (node->child1().useKind()) { |
| case Int32Use: |
| break; |
| case UntypedUse: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| forNode(node).set( |
| m_graph, |
| m_graph.globalObjectFor(node->origin.semantic)->typedArrayStructureConcurrently( |
| node->typedArrayType())); |
| break; |
| |
| case NewRegexp: |
| forNode(node).set(m_graph, m_graph.globalObjectFor(node->origin.semantic)->regExpStructure()); |
| break; |
| |
| case ToThis: { |
| AbstractValue& source = forNode(node->child1()); |
| AbstractValue& destination = forNode(node); |
| bool strictMode = m_graph.executableFor(node->origin.semantic)->isStrictMode(); |
| |
| if (isToThisAnIdentity(strictMode, source)) { |
| m_state.setFoundConstants(true); |
| destination = source; |
| break; |
| } |
| |
| if (strictMode) |
| destination.makeHeapTop(); |
| else { |
| destination = source; |
| destination.merge(SpecObject); |
| } |
| break; |
| } |
| |
| case CreateThis: { |
| // FIXME: We can fold this to NewObject if the incoming callee is a constant. |
| forNode(node).setType(m_graph, SpecFinalObject); |
| break; |
| } |
| |
| case NewObject: |
| ASSERT(node->structure()); |
| forNode(node).set(m_graph, node->structure()); |
| break; |
| |
| case CallObjectConstructor: { |
| AbstractValue& source = forNode(node->child1()); |
| AbstractValue& destination = forNode(node); |
| |
| if (!(source.m_type & ~SpecObject)) { |
| m_state.setFoundConstants(true); |
| destination = source; |
| break; |
| } |
| |
| forNode(node).setType(m_graph, SpecObject); |
| break; |
| } |
| |
| case PhantomNewObject: |
| case PhantomNewFunction: |
| case PhantomNewGeneratorFunction: |
| case PhantomCreateActivation: |
| case PhantomDirectArguments: |
| case PhantomClonedArguments: |
| case PhantomCreateRest: |
| case BottomValue: |
| m_state.setDidClobber(true); // Prevent constant folding. |
| // This claims to return bottom. |
| break; |
| |
| case PutHint: |
| break; |
| |
| case MaterializeNewObject: { |
| forNode(node).set(m_graph, node->structureSet()); |
| break; |
| } |
| |
| case CreateActivation: |
| case MaterializeCreateActivation: |
| forNode(node).set( |
| m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->activationStructure()); |
| break; |
| |
| case CreateDirectArguments: |
| forNode(node).set(m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->directArgumentsStructure()); |
| break; |
| |
| case CreateScopedArguments: |
| forNode(node).set(m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->scopedArgumentsStructure()); |
| break; |
| |
| case CreateClonedArguments: |
| if (!m_graph.isWatchingHavingABadTimeWatchpoint(node)) { |
| forNode(node).setType(m_graph, SpecObject); |
| break; |
| } |
| forNode(node).set(m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->clonedArgumentsStructure()); |
| break; |
| |
| case NewGeneratorFunction: |
| forNode(node).set( |
| m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->generatorFunctionStructure()); |
| break; |
| |
| case NewFunction: |
| forNode(node).set( |
| m_graph, m_codeBlock->globalObjectFor(node->origin.semantic)->functionStructure()); |
| break; |
| |
| case GetCallee: |
| if (FunctionExecutable* executable = jsDynamicCast<FunctionExecutable*>(m_codeBlock->ownerExecutable())) { |
| InferredValue* singleton = executable->singletonFunction(); |
| if (JSValue value = singleton->inferredValue()) { |
| m_graph.watchpoints().addLazily(singleton); |
| JSFunction* function = jsCast<JSFunction*>(value); |
| setConstant(node, *m_graph.freeze(function)); |
| break; |
| } |
| } |
| forNode(node).setType(m_graph, SpecFunction); |
| break; |
| |
| case GetArgumentCountIncludingThis: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| |
| case GetRestLength: |
| forNode(node).setType(SpecInt32Only); |
| break; |
| |
| case GetGetter: { |
| JSValue base = forNode(node->child1()).m_value; |
| if (base) { |
| GetterSetter* getterSetter = jsCast<GetterSetter*>(base); |
| if (!getterSetter->isGetterNull()) { |
| setConstant(node, *m_graph.freeze(getterSetter->getterConcurrently())); |
| break; |
| } |
| } |
| |
| forNode(node).setType(m_graph, SpecObject); |
| break; |
| } |
| |
| case GetSetter: { |
| JSValue base = forNode(node->child1()).m_value; |
| if (base) { |
| GetterSetter* getterSetter = jsCast<GetterSetter*>(base); |
| if (!getterSetter->isSetterNull()) { |
| setConstant(node, *m_graph.freeze(getterSetter->setterConcurrently())); |
| break; |
| } |
| } |
| |
| forNode(node).setType(m_graph, SpecObject); |
| break; |
| } |
| |
| case GetScope: |
| if (JSValue base = forNode(node->child1()).m_value) { |
| if (JSFunction* function = jsDynamicCast<JSFunction*>(base)) { |
| setConstant(node, *m_graph.freeze(function->scope())); |
| break; |
| } |
| } |
| forNode(node).setType(m_graph, SpecObjectOther); |
| break; |
| |
| case SkipScope: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child) { |
| setConstant(node, *m_graph.freeze(JSValue(jsCast<JSScope*>(child.asCell())->next()))); |
| break; |
| } |
| forNode(node).setType(m_graph, SpecObjectOther); |
| break; |
| } |
| |
| case GetGlobalObject: { |
| JSValue child = forNode(node->child1()).value(); |
| if (child) { |
| setConstant(node, *m_graph.freeze(JSValue(asObject(child)->globalObject()))); |
| break; |
| } |
| |
| if (forNode(node->child1()).m_structure.isFinite()) { |
| JSGlobalObject* globalObject = nullptr; |
| bool ok = true; |
| forNode(node->child1()).m_structure.forEach( |
| [&] (Structure* structure) { |
| if (!globalObject) |
| globalObject = structure->globalObject(); |
| else if (globalObject != structure->globalObject()) |
| ok = false; |
| }); |
| if (globalObject && ok) { |
| setConstant(node, *m_graph.freeze(JSValue(globalObject))); |
| break; |
| } |
| } |
| |
| forNode(node).setType(m_graph, SpecObjectOther); |
| break; |
| } |
| |
| case GetClosureVar: |
| if (JSValue value = m_graph.tryGetConstantClosureVar(forNode(node->child1()), node->scopeOffset())) { |
| setConstant(node, *m_graph.freeze(value)); |
| break; |
| } |
| forNode(node).makeBytecodeTop(); |
| break; |
| |
| case PutClosureVar: |
| break; |
| |
| case GetRegExpObjectLastIndex: |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case SetRegExpObjectLastIndex: |
| case RecordRegExpCachedResult: |
| break; |
| |
| case GetFromArguments: |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case PutToArguments: |
| break; |
| |
| case GetArgument: |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case TryGetById: |
| // FIXME: This should constant fold at least as well as the normal GetById case. |
| // https://bugs.webkit.org/show_bug.cgi?id=156422 |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case GetById: |
| case GetByIdFlush: { |
| if (!node->prediction()) { |
| m_state.setIsValid(false); |
| break; |
| } |
| |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite() |
| && (node->child1().useKind() == CellUse || !(value.m_type & ~SpecCell))) { |
| UniquedStringImpl* uid = m_graph.identifiers()[node->identifierNumber()]; |
| GetByIdStatus status = GetByIdStatus::computeFor(value.m_structure.set(), uid); |
| if (status.isSimple()) { |
| // Figure out what the result is going to be - is it TOP, a constant, or maybe |
| // something more subtle? |
| AbstractValue result; |
| for (unsigned i = status.numVariants(); i--;) { |
| // This thing won't give us a variant that involves prototypes. If it did, we'd |
| // have more work to do here. |
| DFG_ASSERT(m_graph, node, status[i].conditionSet().isEmpty()); |
| |
| result.merge( |
| m_graph.inferredValueForProperty( |
| value, uid, status[i].offset(), m_state.structureClobberState())); |
| } |
| m_state.setFoundConstants(true); |
| forNode(node) = result; |
| break; |
| } |
| } |
| |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| } |
| |
| case GetByValWithThis: |
| case GetByIdWithThis: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case GetArrayLength: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView( |
| forNode(node->child1()).m_value, node->arrayMode()); |
| if (view) { |
| setConstant(node, jsNumber(view->length())); |
| break; |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case DeleteById: |
| case DeleteByVal: { |
| // FIXME: This could decide if the delete will be successful based on the set of structures that |
| // we get from our base value. https://bugs.webkit.org/show_bug.cgi?id=156611 |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case CheckStructure: { |
| AbstractValue& value = forNode(node->child1()); |
| |
| StructureSet& set = node->structureSet(); |
| |
| // It's interesting that we could have proven that the object has a larger structure set |
| // that includes the set we're testing. In that case we could make the structure check |
| // more efficient. We currently don't. |
| |
| if (value.m_structure.isSubsetOf(set)) |
| m_state.setFoundConstants(true); |
| |
| SpeculatedType admittedTypes = SpecNone; |
| switch (node->child1().useKind()) { |
| case CellUse: |
| case KnownCellUse: |
| admittedTypes = SpecNone; |
| break; |
| case CellOrOtherUse: |
| admittedTypes = SpecOther; |
| break; |
| default: |
| DFG_CRASH(m_graph, node, "Bad use kind"); |
| break; |
| } |
| |
| filter(value, set, admittedTypes); |
| break; |
| } |
| |
| case CheckStructureImmediate: { |
| // FIXME: This currently can only reason about one structure at a time. |
| // https://bugs.webkit.org/show_bug.cgi?id=136988 |
| |
| AbstractValue& value = forNode(node->child1()); |
| StructureSet& set = node->structureSet(); |
| |
| if (value.value()) { |
| if (Structure* structure = jsDynamicCast<Structure*>(value.value())) { |
| if (set.contains(structure)) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| } |
| m_state.setIsValid(false); |
| break; |
| } |
| |
| if (m_phiChildren) { |
| bool allGood = true; |
| m_phiChildren->forAllTransitiveIncomingValues( |
| node, |
| [&] (Node* incoming) { |
| if (Structure* structure = incoming->dynamicCastConstant<Structure*>()) { |
| if (set.contains(structure)) |
| return; |
| } |
| allGood = false; |
| }); |
| if (allGood) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| } |
| |
| if (Structure* structure = set.onlyStructure()) { |
| filterByValue(node->child1(), *m_graph.freeze(structure)); |
| break; |
| } |
| |
| // Aw shucks, we can't do anything! |
| break; |
| } |
| |
| case PutStructure: |
| if (!forNode(node->child1()).m_structure.isClear()) { |
| if (forNode(node->child1()).m_structure.onlyStructure() == node->transition()->next) |
| m_state.setFoundConstants(true); |
| else { |
| observeTransition( |
| clobberLimit, node->transition()->previous, node->transition()->next); |
| forNode(node->child1()).changeStructure(m_graph, node->transition()->next); |
| } |
| } |
| break; |
| case GetButterfly: |
| case AllocatePropertyStorage: |
| case ReallocatePropertyStorage: |
| forNode(node).clear(); // The result is not a JS value. |
| break; |
| case CheckDOM: { |
| JSValue constant = forNode(node->child1()).value(); |
| if (constant) { |
| if (constant.isCell() && constant.asCell()->inherits(node->classInfo())) { |
| m_state.setFoundConstants(true); |
| ASSERT(constant); |
| break; |
| } |
| } |
| |
| AbstractValue& value = forNode(node->child1()); |
| |
| if (value.m_structure.isSubClassOf(node->classInfo())) |
| m_state.setFoundConstants(true); |
| |
| filterClassInfo(value, node->classInfo()); |
| break; |
| } |
| case CallDOMGetter: { |
| CallDOMGetterData* callDOMGetterData = node->callDOMGetterData(); |
| DOMJIT::CallDOMGetterPatchpoint* patchpoint = callDOMGetterData->patchpoint; |
| if (patchpoint->effect.writes) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, callDOMGetterData->domJIT->resultType()); |
| break; |
| } |
| case CallDOM: { |
| const DOMJIT::Signature* signature = node->signature(); |
| if (signature->effect.writes) |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, signature->result); |
| break; |
| } |
| case CheckArray: { |
| if (node->arrayMode().alreadyChecked(m_graph, node, forNode(node->child1()))) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| switch (node->arrayMode().type()) { |
| case Array::String: |
| filter(node->child1(), SpecString); |
| break; |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::Undecided: |
| case Array::ArrayStorage: |
| case Array::SlowPutArrayStorage: |
| break; |
| case Array::DirectArguments: |
| filter(node->child1(), SpecDirectArguments); |
| break; |
| case Array::ScopedArguments: |
| filter(node->child1(), SpecScopedArguments); |
| break; |
| case Array::Int8Array: |
| filter(node->child1(), SpecInt8Array); |
| break; |
| case Array::Int16Array: |
| filter(node->child1(), SpecInt16Array); |
| break; |
| case Array::Int32Array: |
| filter(node->child1(), SpecInt32Array); |
| break; |
| case Array::Uint8Array: |
| filter(node->child1(), SpecUint8Array); |
| break; |
| case Array::Uint8ClampedArray: |
| filter(node->child1(), SpecUint8ClampedArray); |
| break; |
| case Array::Uint16Array: |
| filter(node->child1(), SpecUint16Array); |
| break; |
| case Array::Uint32Array: |
| filter(node->child1(), SpecUint32Array); |
| break; |
| case Array::Float32Array: |
| filter(node->child1(), SpecFloat32Array); |
| break; |
| case Array::Float64Array: |
| filter(node->child1(), SpecFloat64Array); |
| break; |
| case Array::AnyTypedArray: |
| filter(node->child1(), SpecTypedArrayView); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| filterArrayModes(node->child1(), node->arrayMode().arrayModesThatPassFiltering()); |
| break; |
| } |
| case Arrayify: { |
| if (node->arrayMode().alreadyChecked(m_graph, node, forNode(node->child1()))) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| ASSERT(node->arrayMode().conversion() == Array::Convert); |
| clobberStructures(clobberLimit); |
| filterArrayModes(node->child1(), node->arrayMode().arrayModesThatPassFiltering()); |
| break; |
| } |
| case ArrayifyToStructure: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isSubsetOf(StructureSet(node->structure()))) |
| m_state.setFoundConstants(true); |
| clobberStructures(clobberLimit); |
| |
| // We have a bunch of options of how to express the abstract set at this point. Let set S |
| // be the set of structures that the value had before clobbering and assume that all of |
| // them are watchable. The new value should be the least expressible upper bound of the |
| // intersection of "values that currently have structure = node->structure()" and "values |
| // that have structure in S plus any structure transition-reachable from S". Assume that |
| // node->structure() is not in S but it is transition-reachable from S. Then we would |
| // like to say that the result is "values that have structure = node->structure() until |
| // we invalidate", but there is no way to express this using the AbstractValue syntax. So |
| // we must choose between: |
| // |
| // 1) "values that currently have structure = node->structure()". This is a valid |
| // superset of the value that we really want, and it's specific enough to satisfy the |
| // preconditions of the array access that this is guarding. It's also specific enough |
| // to allow relevant optimizations in the case that we didn't have a contradiction |
| // like in this example. Notice that in the abscence of any contradiction, this result |
| // is precise rather than being a conservative LUB. |
| // |
| // 2) "values that currently hava structure in S plus any structure transition-reachable |
| // from S". This is also a valid superset of the value that we really want, but it's |
| // not specific enough to satisfy the preconditions of the array access that this is |
| // guarding - so playing such shenanigans would preclude us from having assertions on |
| // the typing preconditions of any array accesses. This would also not be a desirable |
| // answer in the absence of a contradiction. |
| // |
| // Note that it's tempting to simply say that the resulting value is BOTTOM because of |
| // the contradiction. That would be wrong, since we haven't hit an invalidation point, |
| // yet. |
| value.set(m_graph, node->structure()); |
| break; |
| } |
| case GetIndexedPropertyStorage: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView( |
| forNode(node->child1()).m_value, node->arrayMode()); |
| if (view) |
| m_state.setFoundConstants(true); |
| forNode(node).clear(); |
| break; |
| } |
| case ConstantStoragePointer: { |
| forNode(node).clear(); |
| break; |
| } |
| |
| case GetTypedArrayByteOffset: { |
| JSArrayBufferView* view = m_graph.tryGetFoldableView(forNode(node->child1()).m_value); |
| if (view) { |
| setConstant(node, jsNumber(view->byteOffset())); |
| break; |
| } |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| |
| case GetByOffset: { |
| StorageAccessData& data = node->storageAccessData(); |
| UniquedStringImpl* uid = m_graph.identifiers()[data.identifierNumber]; |
| |
| // FIXME: The part of this that handles inferred property types relies on AI knowing the structure |
| // right now. That's probably not optimal. In some cases, we may perform an optimization (usually |
| // by something other than AI, maybe by CSE for example) that obscures AI's view of the structure |
| // at the point where GetByOffset runs. Currently, when that happens, we'll have to rely entirely |
| // on the type that ByteCodeParser was able to prove. |
| AbstractValue value = m_graph.inferredValueForProperty( |
| forNode(node->child2()), uid, data.offset, m_state.structureClobberState()); |
| |
| // It's possible that the type that ByteCodeParser came up with is better. |
| AbstractValue typeFromParsing; |
| typeFromParsing.set(m_graph, data.inferredType, m_state.structureClobberState()); |
| value.filter(typeFromParsing); |
| |
| // If we decide that there does not exist any value that this can return, then it's probably |
| // because the compilation was already invalidated. |
| if (value.isClear()) |
| m_state.setIsValid(false); |
| |
| forNode(node) = value; |
| if (value.m_value) |
| m_state.setFoundConstants(true); |
| break; |
| } |
| |
| case GetGetterSetterByOffset: { |
| StorageAccessData& data = node->storageAccessData(); |
| JSValue result = m_graph.tryGetConstantProperty(forNode(node->child2()), data.offset); |
| if (result && jsDynamicCast<GetterSetter*>(result)) { |
| setConstant(node, *m_graph.freeze(result)); |
| break; |
| } |
| |
| forNode(node).set(m_graph, m_graph.globalObjectFor(node->origin.semantic)->getterSetterStructure()); |
| break; |
| } |
| |
| case MultiGetByOffset: { |
| // This code will filter the base value in a manner that is possibly different (either more |
| // or less precise) than the way it would be filtered if this was strength-reduced to a |
| // CheckStructure. This is fine. It's legal for different passes over the code to prove |
| // different things about the code, so long as all of them are sound. That even includes |
| // one guy proving that code should never execute (due to a contradiction) and another guy |
| // not finding that contradiction. If someone ever proved that there would be a |
| // contradiction then there must always be a contradiction even if subsequent passes don't |
| // realize it. This is the case here. |
| |
| // Ordinarily you have to be careful with calling setFoundConstants() |
| // because of the effect on compile times, but this node is FTL-only. |
| m_state.setFoundConstants(true); |
| |
| UniquedStringImpl* uid = m_graph.identifiers()[node->multiGetByOffsetData().identifierNumber]; |
| |
| AbstractValue base = forNode(node->child1()); |
| StructureSet baseSet; |
| AbstractValue result; |
| for (const MultiGetByOffsetCase& getCase : node->multiGetByOffsetData().cases) { |
| StructureSet set = getCase.set(); |
| set.filter(base); |
| if (set.isEmpty()) |
| continue; |
| baseSet.merge(set); |
| |
| switch (getCase.method().kind()) { |
| case GetByOffsetMethod::Constant: { |
| AbstractValue thisResult; |
| thisResult.set( |
| m_graph, |
| *getCase.method().constant(), |
| m_state.structureClobberState()); |
| result.merge(thisResult); |
| break; |
| } |
| |
| case GetByOffsetMethod::Load: { |
| result.merge( |
| m_graph.inferredValueForProperty( |
| set, uid, m_state.structureClobberState())); |
| break; |
| } |
| |
| default: { |
| result.makeHeapTop(); |
| break; |
| } } |
| } |
| |
| if (forNode(node->child1()).changeStructure(m_graph, baseSet) == Contradiction) |
| m_state.setIsValid(false); |
| |
| forNode(node) = result; |
| break; |
| } |
| |
| case PutByOffset: { |
| break; |
| } |
| |
| case MultiPutByOffset: { |
| StructureSet newSet; |
| TransitionVector transitions; |
| |
| // Ordinarily you have to be careful with calling setFoundConstants() |
| // because of the effect on compile times, but this node is FTL-only. |
| m_state.setFoundConstants(true); |
| |
| AbstractValue base = forNode(node->child1()); |
| AbstractValue originalValue = forNode(node->child2()); |
| AbstractValue resultingValue; |
| |
| for (unsigned i = node->multiPutByOffsetData().variants.size(); i--;) { |
| const PutByIdVariant& variant = node->multiPutByOffsetData().variants[i]; |
| StructureSet thisSet = variant.oldStructure(); |
| thisSet.filter(base); |
| if (thisSet.isEmpty()) |
| continue; |
| |
| AbstractValue thisValue = originalValue; |
| thisValue.filter(m_graph, variant.requiredType()); |
| resultingValue.merge(thisValue); |
| |
| if (variant.kind() == PutByIdVariant::Transition) { |
| if (thisSet.onlyStructure() != variant.newStructure()) { |
| transitions.append( |
| Transition(variant.oldStructureForTransition(), variant.newStructure())); |
| } // else this is really a replace. |
| newSet.add(variant.newStructure()); |
| } else { |
| ASSERT(variant.kind() == PutByIdVariant::Replace); |
| newSet.merge(thisSet); |
| } |
| } |
| |
| observeTransitions(clobberLimit, transitions); |
| if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction) |
| m_state.setIsValid(false); |
| forNode(node->child2()) = resultingValue; |
| if (!!originalValue && !resultingValue) |
| m_state.setIsValid(false); |
| break; |
| } |
| |
| case GetExecutable: { |
| JSValue value = forNode(node->child1()).value(); |
| if (value) { |
| JSFunction* function = jsDynamicCast<JSFunction*>(value); |
| if (function) { |
| setConstant(node, *m_graph.freeze(function->executable())); |
| break; |
| } |
| } |
| forNode(node).setType(m_graph, SpecCellOther); |
| break; |
| } |
| |
| case CheckCell: { |
| JSValue value = forNode(node->child1()).value(); |
| if (value == node->cellOperand()->value()) { |
| m_state.setFoundConstants(true); |
| ASSERT(value); |
| break; |
| } |
| filterByValue(node->child1(), *node->cellOperand()); |
| break; |
| } |
| |
| case CheckNotEmpty: { |
| AbstractValue& value = forNode(node->child1()); |
| if (!(value.m_type & SpecEmpty)) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| |
| filter(value, ~SpecEmpty); |
| break; |
| } |
| |
| case CheckStringIdent: { |
| AbstractValue& value = forNode(node->child1()); |
| UniquedStringImpl* uid = node->uidOperand(); |
| ASSERT(!(value.m_type & ~SpecStringIdent)); // Edge filtering should have already ensured this. |
| |
| JSValue childConstant = value.value(); |
| if (childConstant) { |
| ASSERT(childConstant.isString()); |
| if (asString(childConstant)->tryGetValueImpl() == uid) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| } |
| |
| filter(value, SpecStringIdent); |
| break; |
| } |
| |
| case CheckInBounds: { |
| JSValue left = forNode(node->child1()).value(); |
| JSValue right = forNode(node->child2()).value(); |
| if (left && right && left.isInt32() && right.isInt32() |
| && static_cast<uint32_t>(left.asInt32()) < static_cast<uint32_t>(right.asInt32())) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| break; |
| } |
| |
| case PutById: |
| case PutByIdFlush: |
| case PutByIdDirect: { |
| AbstractValue& value = forNode(node->child1()); |
| if (value.m_structure.isFinite()) { |
| PutByIdStatus status = PutByIdStatus::computeFor( |
| m_graph.globalObjectFor(node->origin.semantic), |
| value.m_structure.set(), |
| m_graph.identifiers()[node->identifierNumber()], |
| node->op() == PutByIdDirect); |
| |
| if (status.isSimple()) { |
| StructureSet newSet; |
| TransitionVector transitions; |
| |
| for (unsigned i = status.numVariants(); i--;) { |
| const PutByIdVariant& variant = status[i]; |
| if (variant.kind() == PutByIdVariant::Transition) { |
| transitions.append( |
| Transition( |
| variant.oldStructureForTransition(), variant.newStructure())); |
| m_graph.registerStructure(variant.newStructure()); |
| newSet.add(variant.newStructure()); |
| } else { |
| ASSERT(variant.kind() == PutByIdVariant::Replace); |
| newSet.merge(variant.oldStructure()); |
| } |
| } |
| |
| if (status.numVariants() == 1 || isFTL(m_graph.m_plan.mode)) |
| m_state.setFoundConstants(true); |
| |
| observeTransitions(clobberLimit, transitions); |
| if (forNode(node->child1()).changeStructure(m_graph, newSet) == Contradiction) |
| m_state.setIsValid(false); |
| break; |
| } |
| } |
| |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| } |
| |
| case PutByValWithThis: |
| case PutByIdWithThis: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| |
| case PutGetterById: |
| case PutSetterById: |
| case PutGetterSetterById: |
| case PutGetterByVal: |
| case PutSetterByVal: { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| } |
| |
| case DefineDataProperty: |
| case DefineAccessorProperty: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| |
| case In: { |
| // FIXME: We can determine when the property definitely exists based on abstract |
| // value information. |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case HasOwnProperty: { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| |
| case GetEnumerableLength: { |
| forNode(node).setType(SpecInt32Only); |
| break; |
| } |
| case HasGenericProperty: { |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| case HasStructureProperty: { |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| case HasIndexedProperty: { |
| ArrayMode mode = node->arrayMode(); |
| switch (mode.type()) { |
| case Array::Int32: |
| case Array::Double: |
| case Array::Contiguous: |
| case Array::ArrayStorage: { |
| break; |
| } |
| default: { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| } |
| } |
| forNode(node).setType(SpecBoolean); |
| break; |
| } |
| case GetDirectPname: { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| } |
| case GetPropertyEnumerator: { |
| forNode(node).setType(m_graph, SpecCell); |
| break; |
| } |
| case GetEnumeratorStructurePname: { |
| forNode(node).setType(m_graph, SpecString | SpecOther); |
| break; |
| } |
| case GetEnumeratorGenericPname: { |
| forNode(node).setType(m_graph, SpecString | SpecOther); |
| break; |
| } |
| case ToIndexString: { |
| forNode(node).setType(m_graph, SpecString); |
| break; |
| } |
| |
| case GetGlobalVar: |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case GetGlobalLexicalVariable: |
| forNode(node).makeBytecodeTop(); |
| break; |
| |
| case GetDynamicVar: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeBytecodeTop(); |
| break; |
| |
| case PutDynamicVar: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| |
| case ResolveScope: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecObject); |
| break; |
| |
| case PutGlobalVariable: |
| case NotifyWrite: |
| break; |
| |
| case OverridesHasInstance: |
| forNode(node).setType(SpecBoolean); |
| break; |
| |
| case InstanceOf: |
| // Sadly, we don't propagate the fact that we've done InstanceOf |
| forNode(node).setType(SpecBoolean); |
| break; |
| |
| case InstanceOfCustom: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(SpecBoolean); |
| break; |
| |
| case Phi: |
| RELEASE_ASSERT(m_graph.m_form == SSA); |
| forNode(node) = forNode(NodeFlowProjection(node, NodeFlowProjection::Shadow)); |
| // The state of this node would have already been decided, but it may have become a |
| // constant, in which case we'd like to know. |
| if (forNode(node).m_value) |
| m_state.setFoundConstants(true); |
| break; |
| |
| case Upsilon: { |
| NodeFlowProjection shadow(node->phi(), NodeFlowProjection::Shadow); |
| if (shadow.isStillValid()) { |
| m_state.createValueForNode(shadow); |
| forNode(shadow) = forNode(node->child1()); |
| } |
| break; |
| } |
| |
| case Flush: |
| case PhantomLocal: |
| break; |
| |
| case Call: |
| case TailCallInlinedCaller: |
| case Construct: |
| case CallVarargs: |
| case CallForwardVarargs: |
| case TailCallVarargsInlinedCaller: |
| case ConstructVarargs: |
| case ConstructForwardVarargs: |
| case TailCallForwardVarargsInlinedCaller: |
| case CallEval: |
| case DirectCall: |
| case DirectConstruct: |
| case DirectTailCallInlinedCaller: |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).makeHeapTop(); |
| break; |
| |
| case ForceOSRExit: |
| case CheckBadCell: |
| m_state.setIsValid(false); |
| break; |
| |
| case InvalidationPoint: |
| forAllValues(clobberLimit, AbstractValue::observeInvalidationPointFor); |
| m_state.setStructureClobberState(StructuresAreWatched); |
| break; |
| |
| case CheckWatchdogTimer: |
| case LogShadowChickenPrologue: |
| case LogShadowChickenTail: |
| break; |
| |
| case ProfileType: |
| case ProfileControlFlow: |
| case Phantom: |
| case CountExecution: |
| case CheckTierUpInLoop: |
| case CheckTierUpAtReturn: |
| case CheckTypeInfoFlags: |
| break; |
| |
| case CreateRest: |
| if (!m_graph.isWatchingHavingABadTimeWatchpoint(node)) { |
| // This means we're already having a bad time. |
| clobberWorld(node->origin.semantic, clobberLimit); |
| forNode(node).setType(m_graph, SpecArray); |
| break; |
| } |
| forNode(node).set( |
| m_graph, |
| m_graph.globalObjectFor(node->origin.semantic)->restParameterStructure()); |
| break; |
| |
| case Check: { |
| // Simplify out checks that don't actually do checking. |
| for (unsigned i = 0; i < AdjacencyList::Size; ++i) { |
| Edge edge = node->children.child(i); |
| if (!edge) |
| break; |
| if (edge.isProved() || edge.willNotHaveCheck()) { |
| m_state.setFoundConstants(true); |
| break; |
| } |
| } |
| break; |
| } |
| |
| case SetFunctionName: { |
| clobberWorld(node->origin.semantic, clobberLimit); |
| break; |
| } |
| |
| case StoreBarrier: |
| case FencedStoreBarrier: { |
| filter(node->child1(), SpecCell); |
| break; |
| } |
| |
| case CheckTierUpAndOSREnter: |
| case LoopHint: |
| case ZombieHint: |
| case ExitOK: |
| break; |
| |
| case Unreachable: |
| // It may be that during a previous run of AI we proved that something was unreachable, but |
| // during this run of AI we forget that it's unreachable. AI's proofs don't have to get |
| // monotonically stronger over time. So, we don't assert that AI doesn't reach the |
| // Unreachable. We have no choice but to take our past proof at face value. Otherwise we'll |
| // crash whenever AI fails to be as powerful on run K as it was on run K-1. |
| m_state.setIsValid(false); |
| break; |
| |
| case LastNodeType: |
| case ArithIMul: |
| case FiatInt52: |
| DFG_CRASH(m_graph, node, "Unexpected node type"); |
| break; |
| } |
| |
| return m_state.isValid(); |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::executeEffects(unsigned indexInBlock) |
| { |
| return executeEffects(indexInBlock, m_state.block()->at(indexInBlock)); |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::execute(unsigned indexInBlock) |
| { |
| Node* node = m_state.block()->at(indexInBlock); |
| |
| startExecuting(); |
| executeEdges(node); |
| return executeEffects(indexInBlock, node); |
| } |
| |
| template<typename AbstractStateType> |
| bool AbstractInterpreter<AbstractStateType>::execute(Node* node) |
| { |
| startExecuting(); |
| executeEdges(node); |
| return executeEffects(UINT_MAX, node); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::clobberWorld( |
| const CodeOrigin&, unsigned clobberLimit) |
| { |
| clobberStructures(clobberLimit); |
| } |
| |
| template<typename AbstractStateType> |
| template<typename Functor> |
| void AbstractInterpreter<AbstractStateType>::forAllValues( |
| unsigned clobberLimit, Functor& functor) |
| { |
| if (clobberLimit >= m_state.block()->size()) |
| clobberLimit = m_state.block()->size(); |
| else |
| clobberLimit++; |
| ASSERT(clobberLimit <= m_state.block()->size()); |
| for (size_t i = clobberLimit; i--;) { |
| NodeFlowProjection::forEach( |
| m_state.block()->at(i), |
| [&] (NodeFlowProjection nodeProjection) { |
| functor(forNode(nodeProjection)); |
| }); |
| } |
| if (m_graph.m_form == SSA) { |
| for (NodeFlowProjection node : m_state.block()->ssa->liveAtHead) { |
| if (node.isStillValid()) |
| functor(forNode(node)); |
| } |
| } |
| for (size_t i = m_state.variables().numberOfArguments(); i--;) |
| functor(m_state.variables().argument(i)); |
| for (size_t i = m_state.variables().numberOfLocals(); i--;) |
| functor(m_state.variables().local(i)); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::clobberStructures(unsigned clobberLimit) |
| { |
| forAllValues(clobberLimit, AbstractValue::clobberStructuresFor); |
| setDidClobber(); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::observeTransition( |
| unsigned clobberLimit, Structure* from, Structure* to) |
| { |
| AbstractValue::TransitionObserver transitionObserver(from, to); |
| forAllValues(clobberLimit, transitionObserver); |
| |
| ASSERT(!from->dfgShouldWatch()); // We don't need to claim to be in a clobbered state because 'from' was never watchable (during the time we were compiling), hence no constants ever introduced into the DFG IR that ever had a watchable structure would ever have the same structure as from. |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::observeTransitions( |
| unsigned clobberLimit, const TransitionVector& vector) |
| { |
| AbstractValue::TransitionsObserver transitionsObserver(vector); |
| forAllValues(clobberLimit, transitionsObserver); |
| |
| if (!ASSERT_DISABLED) { |
| // We don't need to claim to be in a clobbered state because none of the Transition::previous structures are watchable. |
| for (unsigned i = vector.size(); i--;) |
| ASSERT(!vector[i].previous->dfgShouldWatch()); |
| } |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::setDidClobber() |
| { |
| m_state.setDidClobber(true); |
| m_state.setStructureClobberState(StructuresAreClobbered); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::dump(PrintStream& out) const |
| { |
| const_cast<AbstractInterpreter<AbstractStateType>*>(this)->dump(out); |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::dump(PrintStream& out) |
| { |
| CommaPrinter comma(" "); |
| HashSet<NodeFlowProjection> seen; |
| if (m_graph.m_form == SSA) { |
| for (NodeFlowProjection node : m_state.block()->ssa->liveAtHead) { |
| seen.add(node); |
| AbstractValue& value = forNode(node); |
| if (value.isClear()) |
| continue; |
| out.print(comma, node, ":", value); |
| } |
| } |
| for (size_t i = 0; i < m_state.block()->size(); ++i) { |
| NodeFlowProjection::forEach( |
| m_state.block()->at(i), [&] (NodeFlowProjection nodeProjection) { |
| seen.add(nodeProjection); |
| AbstractValue& value = forNode(nodeProjection); |
| if (value.isClear()) |
| return; |
| out.print(comma, nodeProjection, ":", value); |
| }); |
| } |
| if (m_graph.m_form == SSA) { |
| for (NodeFlowProjection node : m_state.block()->ssa->liveAtTail) { |
| if (seen.contains(node)) |
| continue; |
| AbstractValue& value = forNode(node); |
| if (value.isClear()) |
| continue; |
| out.print(comma, node, ":", value); |
| } |
| } |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filter( |
| AbstractValue& value, const StructureSet& set, SpeculatedType admittedTypes) |
| { |
| if (value.filter(m_graph, set, admittedTypes) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filterArrayModes( |
| AbstractValue& value, ArrayModes arrayModes) |
| { |
| if (value.filterArrayModes(arrayModes) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filter( |
| AbstractValue& value, SpeculatedType type) |
| { |
| if (value.filter(type) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filterByValue( |
| AbstractValue& abstractValue, FrozenValue concreteValue) |
| { |
| if (abstractValue.filterByValue(concreteValue) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| FiltrationResult AbstractInterpreter<AbstractStateType>::filterClassInfo( |
| AbstractValue& value, const ClassInfo* classInfo) |
| { |
| if (value.filterClassInfo(m_graph, classInfo) == FiltrationOK) |
| return FiltrationOK; |
| m_state.setIsValid(false); |
| return Contradiction; |
| } |
| |
| template<typename AbstractStateType> |
| void AbstractInterpreter<AbstractStateType>::executeDoubleUnaryOpEffects(Node* node, double(*equivalentFunction)(double)) |
| { |
| JSValue child = forNode(node->child1()).value(); |
| if (Optional<double> number = child.toNumberFromPrimitive()) { |
| setConstant(node, jsDoubleNumber(equivalentFunction(*number))); |
| return; |
| } |
| SpeculatedType type = SpecFullNumber; |
| if (node->child1().useKind() == DoubleRepUse) |
| type = typeOfDoubleUnaryOp(forNode(node->child1()).m_type); |
| forNode(node).setType(type); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |