blob: bd249581f5cba6b3fe8f5f36706bd4ada9e38877 [file] [log] [blame]
/*
* Copyright (C) 2009-2019 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#include "JIT.h"
#include "BasicBlockLocation.h"
#include "BytecodeStructs.h"
#include "Exception.h"
#include "Heap.h"
#include "InterpreterInlines.h"
#include "JITInlines.h"
#include "JSArray.h"
#include "JSCast.h"
#include "JSFunction.h"
#include "JSPropertyNameEnumerator.h"
#include "LinkBuffer.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "OpcodeInlines.h"
#include "SlowPathCall.h"
#include "SuperSampler.h"
#include "ThunkGenerators.h"
#include "TypeLocation.h"
#include "TypeProfilerLog.h"
#include "VirtualRegister.h"
#include "Watchdog.h"
namespace JSC {
#if USE(JSVALUE64)
void JIT::emit_op_mov(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpMov>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_src.offset();
if (m_codeBlock->isConstantRegisterIndex(src)) {
JSValue value = m_codeBlock->getConstant(src);
if (!value.isNumber())
store64(TrustedImm64(JSValue::encode(value)), addressFor(dst));
else
store64(Imm64(JSValue::encode(value)), addressFor(dst));
return;
}
load64(addressFor(src), regT0);
store64(regT0, addressFor(dst));
}
void JIT::emit_op_end(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEnd>();
RELEASE_ASSERT(returnValueGPR != callFrameRegister);
emitGetVirtualRegister(bytecode.m_value.offset(), returnValueGPR);
emitRestoreCalleeSaves();
emitFunctionEpilogue();
ret();
}
void JIT::emit_op_jmp(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJmp>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
addJump(jump(), target);
}
void JIT::emit_op_new_object(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNewObject>();
auto& metadata = bytecode.metadata(m_codeBlock);
Structure* structure = metadata.m_objectAllocationProfile.structure();
size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity());
Allocator allocator = allocatorForNonVirtualConcurrently<JSFinalObject>(*m_vm, allocationSize, AllocatorForMode::AllocatorIfExists);
RegisterID resultReg = regT0;
RegisterID allocatorReg = regT1;
RegisterID scratchReg = regT2;
if (!allocator)
addSlowCase(jump());
else {
JumpList slowCases;
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject(resultReg, JITAllocator::constant(allocator), allocatorReg, TrustedImmPtr(structure), butterfly, scratchReg, slowCases);
emitInitializeInlineStorage(resultReg, structure->inlineCapacity());
addSlowCase(slowCases);
emitPutVirtualRegister(bytecode.m_dst.offset());
}
}
void JIT::emitSlow_op_new_object(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpNewObject>();
auto& metadata = bytecode.metadata(m_codeBlock);
int dst = bytecode.m_dst.offset();
Structure* structure = metadata.m_objectAllocationProfile.structure();
callOperation(operationNewObject, structure);
emitStoreCell(dst, returnValueGPR);
}
void JIT::emit_op_overrides_has_instance(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpOverridesHasInstance>();
int dst = bytecode.m_dst.offset();
int constructor = bytecode.m_constructor.offset();
int hasInstanceValue = bytecode.m_hasInstanceValue.offset();
emitGetVirtualRegister(hasInstanceValue, regT0);
// We don't jump if we know what Symbol.hasInstance would do.
Jump customhasInstanceValue = branchPtr(NotEqual, regT0, TrustedImmPtr(m_codeBlock->globalObject()->functionProtoHasInstanceSymbolFunction()));
emitGetVirtualRegister(constructor, regT0);
// Check that constructor 'ImplementsDefaultHasInstance' i.e. the object is not a C-API user nor a bound function.
test8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance), regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
Jump done = jump();
customhasInstanceValue.link(this);
move(TrustedImm32(ValueTrue), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_instanceof(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpInstanceof>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_value.offset();
int proto = bytecode.m_prototype.offset();
// Load the operands (baseVal, proto, and value respectively) into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitGetVirtualRegister(value, regT2);
emitGetVirtualRegister(proto, regT1);
// Check that proto are cells. baseVal must be a cell - this is checked by the get_by_id for Symbol.hasInstance.
emitJumpSlowCaseIfNotJSCell(regT2, value);
emitJumpSlowCaseIfNotJSCell(regT1, proto);
JITInstanceOfGenerator gen(
m_codeBlock, CodeOrigin(m_bytecodeOffset), CallSiteIndex(m_bytecodeOffset),
RegisterSet::stubUnavailableRegisters(),
regT0, // result
regT2, // value
regT1, // proto
regT3, regT4); // scratch
gen.generateFastPath(*this);
m_instanceOfs.append(gen);
emitPutVirtualRegister(dst);
}
void JIT::emitSlow_op_instanceof(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpInstanceof>();
int resultVReg = bytecode.m_dst.offset();
JITInstanceOfGenerator& gen = m_instanceOfs[m_instanceOfIndex++];
Label coldPathBegin = label();
Call call = callOperation(operationInstanceOfOptimize, resultVReg, gen.stubInfo(), regT2, regT1);
gen.reportSlowPathCall(coldPathBegin, call);
}
void JIT::emit_op_instanceof_custom(const Instruction*)
{
// This always goes to slow path since we expect it to be rare.
addSlowCase(jump());
}
void JIT::emit_op_is_empty(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsEmpty>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitGetVirtualRegister(value, regT0);
compare64(Equal, regT0, TrustedImm32(JSValue::encode(JSValue())), regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_undefined(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsUndefined>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitGetVirtualRegister(value, regT0);
Jump isCell = branchIfCell(regT0);
compare64(Equal, regT0, TrustedImm32(ValueUndefined), regT0);
Jump done = jump();
isCell.link(this);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump notMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
emitLoadStructure(*vm(), regT0, regT1, regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT1, Structure::globalObjectOffset()), regT1);
comparePtr(Equal, regT0, regT1, regT0);
notMasqueradesAsUndefined.link(this);
done.link(this);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_undefined_or_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsUndefinedOrNull>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitGetVirtualRegister(value, regT0);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(Equal, regT0, TrustedImm32(ValueNull), regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_boolean(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsBoolean>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitGetVirtualRegister(value, regT0);
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
test64(Zero, regT0, TrustedImm32(static_cast<int32_t>(~1)), regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_number(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsNumber>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitGetVirtualRegister(value, regT0);
test64(NonZero, regT0, tagTypeNumberRegister, regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_cell_with_type(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsCellWithType>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
int type = bytecode.m_type;
emitGetVirtualRegister(value, regT0);
Jump isNotCell = branchIfNotCell(regT0);
compare8(Equal, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(type), regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(ValueFalse), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_object(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpIsObject>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_operand.offset();
emitGetVirtualRegister(value, regT0);
Jump isNotCell = branchIfNotCell(regT0);
compare8(AboveOrEqual, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(ObjectType), regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(ValueFalse), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_ret(const Instruction* currentInstruction)
{
ASSERT(callFrameRegister != regT1);
ASSERT(regT1 != returnValueGPR);
ASSERT(returnValueGPR != callFrameRegister);
// Return the result in %eax.
auto bytecode = currentInstruction->as<OpRet>();
emitGetVirtualRegister(bytecode.m_value.offset(), returnValueGPR);
checkStackPointerAlignment();
emitRestoreCalleeSaves();
emitFunctionEpilogue();
ret();
}
void JIT::emit_op_to_primitive(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToPrimitive>();
int dst = bytecode.m_dst.offset();
int src = bytecode.m_src.offset();
emitGetVirtualRegister(src, regT0);
Jump isImm = branchIfNotCell(regT0);
addSlowCase(branchIfObject(regT0));
isImm.link(this);
if (dst != src)
emitPutVirtualRegister(dst);
}
void JIT::emit_op_set_function_name(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSetFunctionName>();
emitGetVirtualRegister(bytecode.m_function.offset(), regT0);
emitGetVirtualRegister(bytecode.m_name.offset(), regT1);
callOperation(operationSetFunctionName, regT0, regT1);
}
void JIT::emit_op_not(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNot>();
emitGetVirtualRegister(bytecode.m_operand.offset(), regT0);
// Invert against JSValue(false); if the value was tagged as a boolean, then all bits will be
// clear other than the low bit (which will be 0 or 1 for false or true inputs respectively).
// Then invert against JSValue(true), which will add the tag back in, and flip the low bit.
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
addSlowCase(branchTestPtr(NonZero, regT0, TrustedImm32(static_cast<int32_t>(~1))));
xor64(TrustedImm32(static_cast<int32_t>(ValueTrue)), regT0);
emitPutVirtualRegister(bytecode.m_dst.offset());
}
void JIT::emit_op_jfalse(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJfalse>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
GPRReg value = regT0;
GPRReg scratch1 = regT1;
GPRReg scratch2 = regT2;
bool shouldCheckMasqueradesAsUndefined = true;
emitGetVirtualRegister(bytecode.m_condition.offset(), value);
addJump(branchIfFalsey(*vm(), JSValueRegs(value), scratch1, scratch2, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject()), target);
}
void JIT::emit_op_jeq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJeqNull>();
int src = bytecode.m_value.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitGetVirtualRegister(src, regT0);
Jump isImmediate = branchIfNotCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
Jump isNotMasqueradesAsUndefined = branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
emitLoadStructure(*vm(), regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(Equal, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump masqueradesGlobalObjectIsForeign = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
addJump(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsNull()))), target);
isNotMasqueradesAsUndefined.link(this);
masqueradesGlobalObjectIsForeign.link(this);
};
void JIT::emit_op_jneq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJneqNull>();
int src = bytecode.m_value.offset();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitGetVirtualRegister(src, regT0);
Jump isImmediate = branchIfNotCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
addJump(branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
emitLoadStructure(*vm(), regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(NotEqual, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
addJump(branch64(NotEqual, regT0, TrustedImm64(JSValue::encode(jsNull()))), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_ptr(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJneqPtr>();
auto& metadata = bytecode.metadata(m_codeBlock);
int src = bytecode.m_value.offset();
Special::Pointer ptr = bytecode.m_specialPointer;
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitGetVirtualRegister(src, regT0);
CCallHelpers::Jump equal = branchPtr(Equal, regT0, TrustedImmPtr(actualPointerFor(m_codeBlock, ptr)));
store8(TrustedImm32(1), &metadata.m_hasJumped);
addJump(jump(), target);
equal.link(this);
}
void JIT::emit_op_eq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEq>();
emitGetVirtualRegisters(bytecode.m_lhs.offset(), regT0, bytecode.m_rhs.offset(), regT1);
emitJumpSlowCaseIfNotInt(regT0, regT1, regT2);
compare32(Equal, regT1, regT0, regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(bytecode.m_dst.offset());
}
void JIT::emit_op_jeq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJeq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitGetVirtualRegisters(bytecode.m_lhs.offset(), regT0, bytecode.m_rhs.offset(), regT1);
emitJumpSlowCaseIfNotInt(regT0, regT1, regT2);
addJump(branch32(Equal, regT0, regT1), target);
}
void JIT::emit_op_jtrue(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJtrue>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
GPRReg value = regT0;
GPRReg scratch1 = regT1;
GPRReg scratch2 = regT2;
bool shouldCheckMasqueradesAsUndefined = true;
emitGetVirtualRegister(bytecode.m_condition.offset(), value);
addJump(branchIfTruthy(*vm(), JSValueRegs(value), scratch1, scratch2, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject()), target);
}
void JIT::emit_op_neq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNeq>();
emitGetVirtualRegisters(bytecode.m_lhs.offset(), regT0, bytecode.m_rhs.offset(), regT1);
emitJumpSlowCaseIfNotInt(regT0, regT1, regT2);
compare32(NotEqual, regT1, regT0, regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(bytecode.m_dst.offset());
}
void JIT::emit_op_jneq(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpJneq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
emitGetVirtualRegisters(bytecode.m_lhs.offset(), regT0, bytecode.m_rhs.offset(), regT1);
emitJumpSlowCaseIfNotInt(regT0, regT1, regT2);
addJump(branch32(NotEqual, regT0, regT1), target);
}
void JIT::emit_op_throw(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpThrow>();
ASSERT(regT0 == returnValueGPR);
copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm()->topEntryFrame);
emitGetVirtualRegister(bytecode.m_value.offset(), regT0);
callOperationNoExceptionCheck(operationThrow, regT0);
jumpToExceptionHandler(*vm());
}
template<typename Op>
void JIT::compileOpStrictEq(const Instruction* currentInstruction, CompileOpStrictEqType type)
{
auto bytecode = currentInstruction->as<Op>();
int dst = bytecode.m_dst.offset();
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitGetVirtualRegisters(src1, regT0, src2, regT1);
// Jump slow if both are cells (to cover strings).
move(regT0, regT2);
or64(regT1, regT2);
addSlowCase(branchIfCell(regT2));
// Jump slow if either is a double. First test if it's an integer, which is fine, and then test
// if it's a double.
Jump leftOK = branchIfInt32(regT0);
addSlowCase(branchIfNumber(regT0));
leftOK.link(this);
Jump rightOK = branchIfInt32(regT1);
addSlowCase(branchIfNumber(regT1));
rightOK.link(this);
if (type == CompileOpStrictEqType::StrictEq)
compare64(Equal, regT1, regT0, regT0);
else
compare64(NotEqual, regT1, regT0, regT0);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_stricteq(const Instruction* currentInstruction)
{
compileOpStrictEq<OpStricteq>(currentInstruction, CompileOpStrictEqType::StrictEq);
}
void JIT::emit_op_nstricteq(const Instruction* currentInstruction)
{
compileOpStrictEq<OpNstricteq>(currentInstruction, CompileOpStrictEqType::NStrictEq);
}
template<typename Op>
void JIT::compileOpStrictEqJump(const Instruction* currentInstruction, CompileOpStrictEqType type)
{
auto bytecode = currentInstruction->as<Op>();
int target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
int src1 = bytecode.m_lhs.offset();
int src2 = bytecode.m_rhs.offset();
emitGetVirtualRegisters(src1, regT0, src2, regT1);
// Jump slow if both are cells (to cover strings).
move(regT0, regT2);
or64(regT1, regT2);
addSlowCase(branchIfCell(regT2));
// Jump slow if either is a double. First test if it's an integer, which is fine, and then test
// if it's a double.
Jump leftOK = branchIfInt32(regT0);
addSlowCase(branchIfNumber(regT0));
leftOK.link(this);
Jump rightOK = branchIfInt32(regT1);
addSlowCase(branchIfNumber(regT1));
rightOK.link(this);
if (type == CompileOpStrictEqType::StrictEq)
addJump(branch64(Equal, regT1, regT0), target);
else
addJump(branch64(NotEqual, regT1, regT0), target);
}
void JIT::emit_op_jstricteq(const Instruction* currentInstruction)
{
compileOpStrictEqJump<OpJstricteq>(currentInstruction, CompileOpStrictEqType::StrictEq);
}
void JIT::emit_op_jnstricteq(const Instruction* currentInstruction)
{
compileOpStrictEqJump<OpJnstricteq>(currentInstruction, CompileOpStrictEqType::NStrictEq);
}
void JIT::emitSlow_op_jstricteq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpJstricteq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
callOperation(operationCompareStrictEq, regT0, regT1);
emitJumpSlowToHot(branchTest32(NonZero, returnValueGPR), target);
}
void JIT::emitSlow_op_jnstricteq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpJnstricteq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
callOperation(operationCompareStrictEq, regT0, regT1);
emitJumpSlowToHot(branchTest32(Zero, returnValueGPR), target);
}
void JIT::emit_op_to_number(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToNumber>();
int dstVReg = bytecode.m_dst.offset();
int srcVReg = bytecode.m_operand.offset();
emitGetVirtualRegister(srcVReg, regT0);
addSlowCase(branchIfNotNumber(regT0));
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
if (srcVReg != dstVReg)
emitPutVirtualRegister(dstVReg);
}
void JIT::emit_op_to_string(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToString>();
int srcVReg = bytecode.m_operand.offset();
emitGetVirtualRegister(srcVReg, regT0);
addSlowCase(branchIfNotCell(regT0));
addSlowCase(branchIfNotString(regT0));
emitPutVirtualRegister(bytecode.m_dst.offset());
}
void JIT::emit_op_to_object(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToObject>();
int dstVReg = bytecode.m_dst.offset();
int srcVReg = bytecode.m_operand.offset();
emitGetVirtualRegister(srcVReg, regT0);
addSlowCase(branchIfNotCell(regT0));
addSlowCase(branchIfNotObject(regT0));
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
if (srcVReg != dstVReg)
emitPutVirtualRegister(dstVReg);
}
void JIT::emit_op_catch(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpCatch>();
restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm()->topEntryFrame);
move(TrustedImmPtr(m_vm), regT3);
load64(Address(regT3, VM::callFrameForCatchOffset()), callFrameRegister);
storePtr(TrustedImmPtr(nullptr), Address(regT3, VM::callFrameForCatchOffset()));
addPtr(TrustedImm32(stackPointerOffsetFor(codeBlock()) * sizeof(Register)), callFrameRegister, stackPointerRegister);
callOperationNoExceptionCheck(operationCheckIfExceptionIsUncatchableAndNotifyProfiler);
Jump isCatchableException = branchTest32(Zero, returnValueGPR);
jumpToExceptionHandler(*vm());
isCatchableException.link(this);
move(TrustedImmPtr(m_vm), regT3);
load64(Address(regT3, VM::exceptionOffset()), regT0);
store64(TrustedImm64(JSValue::encode(JSValue())), Address(regT3, VM::exceptionOffset()));
emitPutVirtualRegister(bytecode.m_exception.offset());
load64(Address(regT0, Exception::valueOffset()), regT0);
emitPutVirtualRegister(bytecode.m_thrownValue.offset());
#if ENABLE(DFG_JIT)
// FIXME: consider inline caching the process of doing OSR entry, including
// argument type proofs, storing locals to the buffer, etc
// https://bugs.webkit.org/show_bug.cgi?id=175598
auto& metadata = bytecode.metadata(m_codeBlock);
ValueProfileAndOperandBuffer* buffer = metadata.m_buffer;
if (buffer || !shouldEmitProfiling())
callOperation(operationTryOSREnterAtCatch, m_bytecodeOffset);
else
callOperation(operationTryOSREnterAtCatchAndValueProfile, m_bytecodeOffset);
auto skipOSREntry = branchTestPtr(Zero, returnValueGPR);
emitRestoreCalleeSaves();
jump(returnValueGPR, ExceptionHandlerPtrTag);
skipOSREntry.link(this);
if (buffer && shouldEmitProfiling()) {
buffer->forEach([&] (ValueProfileAndOperand& profile) {
JSValueRegs regs(regT0);
emitGetVirtualRegister(profile.m_operand, regs);
emitValueProfilingSite(profile.m_profile);
});
}
#endif // ENABLE(DFG_JIT)
}
void JIT::emit_op_identity_with_profile(const Instruction*)
{
// We don't need to do anything here...
}
void JIT::emit_op_get_parent_scope(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetParentScope>();
int currentScope = bytecode.m_scope.offset();
emitGetVirtualRegister(currentScope, regT0);
loadPtr(Address(regT0, JSScope::offsetOfNext()), regT0);
emitStoreCell(bytecode.m_dst.offset(), regT0);
}
void JIT::emit_op_switch_imm(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSwitchImm>();
size_t tableIndex = bytecode.m_tableIndex;
unsigned defaultOffset = jumpTarget(currentInstruction, bytecode.m_defaultOffset);
unsigned scrutinee = bytecode.m_scrutinee.offset();
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate));
jumpTable->ensureCTITable();
emitGetVirtualRegister(scrutinee, regT0);
callOperation(operationSwitchImmWithUnknownKeyType, regT0, tableIndex);
jump(returnValueGPR, JSSwitchPtrTag);
}
void JIT::emit_op_switch_char(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSwitchChar>();
size_t tableIndex = bytecode.m_tableIndex;
unsigned defaultOffset = jumpTarget(currentInstruction, bytecode.m_defaultOffset);
unsigned scrutinee = bytecode.m_scrutinee.offset();
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character));
jumpTable->ensureCTITable();
emitGetVirtualRegister(scrutinee, regT0);
callOperation(operationSwitchCharWithUnknownKeyType, regT0, tableIndex);
jump(returnValueGPR, JSSwitchPtrTag);
}
void JIT::emit_op_switch_string(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpSwitchString>();
size_t tableIndex = bytecode.m_tableIndex;
unsigned defaultOffset = jumpTarget(currentInstruction, bytecode.m_defaultOffset);
unsigned scrutinee = bytecode.m_scrutinee.offset();
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset));
emitGetVirtualRegister(scrutinee, regT0);
callOperation(operationSwitchStringWithUnknownKeyType, regT0, tableIndex);
jump(returnValueGPR, JSSwitchPtrTag);
}
void JIT::emit_op_debug(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpDebug>();
load32(codeBlock()->debuggerRequestsAddress(), regT0);
Jump noDebuggerRequests = branchTest32(Zero, regT0);
callOperation(operationDebug, static_cast<int>(bytecode.m_debugHookType));
noDebuggerRequests.link(this);
}
void JIT::emit_op_eq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEqNull>();
int dst = bytecode.m_dst.offset();
int src1 = bytecode.m_operand.offset();
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = branchIfNotCell(regT0);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
emitLoadStructure(*vm(), regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
comparePtr(Equal, regT0, regT2, regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(Equal, regT0, TrustedImm32(ValueNull), regT0);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_neq_null(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNeqNull>();
int dst = bytecode.m_dst.offset();
int src1 = bytecode.m_operand.offset();
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = branchIfNotCell(regT0);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(1), regT0);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
emitLoadStructure(*vm(), regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
comparePtr(NotEqual, regT0, regT2, regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(NotEqual, regT0, TrustedImm32(ValueNull), regT0);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
boxBoolean(regT0, JSValueRegs { regT0 });
emitPutVirtualRegister(dst);
}
void JIT::emit_op_enter(const Instruction*)
{
// Even though CTI doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
size_t count = m_codeBlock->numVars();
for (size_t j = CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters(); j < count; ++j)
emitInitRegister(virtualRegisterForLocal(j).offset());
emitWriteBarrier(m_codeBlock);
emitEnterOptimizationCheck();
}
void JIT::emit_op_get_scope(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetScope>();
int dst = bytecode.m_dst.offset();
emitGetFromCallFrameHeaderPtr(CallFrameSlot::callee, regT0);
loadPtr(Address(regT0, JSFunction::offsetOfScopeChain()), regT0);
emitStoreCell(dst, regT0);
}
void JIT::emit_op_to_this(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpToThis>();
auto& metadata = bytecode.metadata(m_codeBlock);
WriteBarrierBase<Structure>* cachedStructure = &metadata.m_cachedStructure;
emitGetVirtualRegister(bytecode.m_srcDst.offset(), regT1);
emitJumpSlowCaseIfNotJSCell(regT1);
addSlowCase(branchIfNotType(regT1, FinalObjectType));
loadPtr(cachedStructure, regT2);
addSlowCase(branchTestPtr(Zero, regT2));
load32(Address(regT2, Structure::structureIDOffset()), regT2);
addSlowCase(branch32(NotEqual, Address(regT1, JSCell::structureIDOffset()), regT2));
}
void JIT::emit_op_create_this(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpCreateThis>();
auto& metadata = bytecode.metadata(m_codeBlock);
int callee = bytecode.m_callee.offset();
WriteBarrierBase<JSCell>* cachedFunction = &metadata.m_cachedCallee;
RegisterID calleeReg = regT0;
RegisterID rareDataReg = regT4;
RegisterID resultReg = regT0;
RegisterID allocatorReg = regT1;
RegisterID structureReg = regT2;
RegisterID cachedFunctionReg = regT4;
RegisterID scratchReg = regT3;
emitGetVirtualRegister(callee, calleeReg);
addSlowCase(branchIfNotFunction(calleeReg));
loadPtr(Address(calleeReg, JSFunction::offsetOfRareData()), rareDataReg);
addSlowCase(branchTestPtr(Zero, rareDataReg));
xorPtr(TrustedImmPtr(JSFunctionPoison::key()), rareDataReg);
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfAllocator()), allocatorReg);
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfStructure()), structureReg);
loadPtr(cachedFunction, cachedFunctionReg);
Jump hasSeenMultipleCallees = branchPtr(Equal, cachedFunctionReg, TrustedImmPtr(JSCell::seenMultipleCalleeObjects()));
addSlowCase(branchPtr(NotEqual, calleeReg, cachedFunctionReg));
hasSeenMultipleCallees.link(this);
JumpList slowCases;
auto butterfly = TrustedImmPtr(nullptr);
emitAllocateJSObject(resultReg, JITAllocator::variable(), allocatorReg, structureReg, butterfly, scratchReg, slowCases);
emitGetVirtualRegister(callee, scratchReg);
loadPtr(Address(scratchReg, JSFunction::offsetOfRareData()), scratchReg);
xorPtr(TrustedImmPtr(JSFunctionPoison::key()), scratchReg);
load32(Address(scratchReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfInlineCapacity()), scratchReg);
emitInitializeInlineStorage(resultReg, scratchReg);
addSlowCase(slowCases);
emitPutVirtualRegister(bytecode.m_dst.offset());
}
void JIT::emit_op_check_tdz(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpCheckTdz>();
emitGetVirtualRegister(bytecode.m_targetVirtualRegister.offset(), regT0);
addSlowCase(branchIfEmpty(regT0));
}
// Slow cases
void JIT::emitSlow_op_eq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpEq>();
callOperation(operationCompareEq, regT0, regT1);
boxBoolean(returnValueGPR, JSValueRegs { returnValueGPR });
emitPutVirtualRegister(bytecode.m_dst.offset(), returnValueGPR);
}
void JIT::emitSlow_op_neq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpNeq>();
callOperation(operationCompareEq, regT0, regT1);
xor32(TrustedImm32(0x1), regT0);
boxBoolean(returnValueGPR, JSValueRegs { returnValueGPR });
emitPutVirtualRegister(bytecode.m_dst.offset(), returnValueGPR);
}
void JIT::emitSlow_op_jeq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpJeq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
callOperation(operationCompareEq, regT0, regT1);
emitJumpSlowToHot(branchTest32(NonZero, returnValueGPR), target);
}
void JIT::emitSlow_op_jneq(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpJneq>();
unsigned target = jumpTarget(currentInstruction, bytecode.m_targetLabel);
callOperation(operationCompareEq, regT0, regT1);
emitJumpSlowToHot(branchTest32(Zero, returnValueGPR), target);
}
void JIT::emitSlow_op_instanceof_custom(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpInstanceofCustom>();
int dst = bytecode.m_dst.offset();
int value = bytecode.m_value.offset();
int constructor = bytecode.m_constructor.offset();
int hasInstanceValue = bytecode.m_hasInstanceValue.offset();
emitGetVirtualRegister(value, regT0);
emitGetVirtualRegister(constructor, regT1);
emitGetVirtualRegister(hasInstanceValue, regT2);
callOperation(operationInstanceOfCustom, regT0, regT1, regT2);
boxBoolean(returnValueGPR, JSValueRegs { returnValueGPR });
emitPutVirtualRegister(dst, returnValueGPR);
}
#endif // USE(JSVALUE64)
void JIT::emit_op_loop_hint(const Instruction*)
{
// Emit the JIT optimization check:
if (canBeOptimized()) {
addSlowCase(branchAdd32(PositiveOrZero, TrustedImm32(Options::executionCounterIncrementForLoop()),
AbsoluteAddress(m_codeBlock->addressOfJITExecuteCounter())));
}
}
void JIT::emitSlow_op_loop_hint(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
#if ENABLE(DFG_JIT)
// Emit the slow path for the JIT optimization check:
if (canBeOptimized()) {
linkAllSlowCases(iter);
copyCalleeSavesFromFrameOrRegisterToEntryFrameCalleeSavesBuffer(vm()->topEntryFrame);
callOperation(operationOptimize, m_bytecodeOffset);
Jump noOptimizedEntry = branchTestPtr(Zero, returnValueGPR);
if (!ASSERT_DISABLED) {
Jump ok = branchPtr(MacroAssembler::Above, returnValueGPR, TrustedImmPtr(bitwise_cast<void*>(static_cast<intptr_t>(1000))));
abortWithReason(JITUnreasonableLoopHintJumpTarget);
ok.link(this);
}
jump(returnValueGPR, GPRInfo::callFrameRegister);
noOptimizedEntry.link(this);
emitJumpSlowToHot(jump(), currentInstruction->size());
}
#else
UNUSED_PARAM(currentInstruction);
UNUSED_PARAM(iter);
#endif
}
void JIT::emit_op_check_traps(const Instruction*)
{
addSlowCase(branchTest8(NonZero, AbsoluteAddress(m_vm->needTrapHandlingAddress())));
}
void JIT::emit_op_nop(const Instruction*)
{
}
void JIT::emit_op_super_sampler_begin(const Instruction*)
{
add32(TrustedImm32(1), AbsoluteAddress(bitwise_cast<void*>(&g_superSamplerCount)));
}
void JIT::emit_op_super_sampler_end(const Instruction*)
{
sub32(TrustedImm32(1), AbsoluteAddress(bitwise_cast<void*>(&g_superSamplerCount)));
}
void JIT::emitSlow_op_check_traps(const Instruction*, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
callOperation(operationHandleTraps);
}
void JIT::emit_op_new_regexp(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNewRegexp>();
int dst = bytecode.m_dst.offset();
int regexp = bytecode.m_regexp.offset();
callOperation(operationNewRegexp, jsCast<RegExp*>(m_codeBlock->getConstant(regexp)));
emitStoreCell(dst, returnValueGPR);
}
template<typename Op>
void JIT::emitNewFuncCommon(const Instruction* currentInstruction)
{
Jump lazyJump;
auto bytecode = currentInstruction->as<Op>();
int dst = bytecode.m_dst.offset();
#if USE(JSVALUE64)
emitGetVirtualRegister(bytecode.m_scope.offset(), regT0);
#else
emitLoadPayload(bytecode.m_scope.offset(), regT0);
#endif
FunctionExecutable* funcExec = m_codeBlock->functionDecl(bytecode.m_functionDecl);
OpcodeID opcodeID = Op::opcodeID;
if (opcodeID == op_new_func)
callOperation(operationNewFunction, dst, regT0, funcExec);
else if (opcodeID == op_new_generator_func)
callOperation(operationNewGeneratorFunction, dst, regT0, funcExec);
else if (opcodeID == op_new_async_func)
callOperation(operationNewAsyncFunction, dst, regT0, funcExec);
else {
ASSERT(opcodeID == op_new_async_generator_func);
callOperation(operationNewAsyncGeneratorFunction, dst, regT0, funcExec);
}
}
void JIT::emit_op_new_func(const Instruction* currentInstruction)
{
emitNewFuncCommon<OpNewFunc>(currentInstruction);
}
void JIT::emit_op_new_generator_func(const Instruction* currentInstruction)
{
emitNewFuncCommon<OpNewGeneratorFunc>(currentInstruction);
}
void JIT::emit_op_new_async_generator_func(const Instruction* currentInstruction)
{
emitNewFuncCommon<OpNewAsyncGeneratorFunc>(currentInstruction);
}
void JIT::emit_op_new_async_func(const Instruction* currentInstruction)
{
emitNewFuncCommon<OpNewAsyncFunc>(currentInstruction);
}
template<typename Op>
void JIT::emitNewFuncExprCommon(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<Op>();
int dst = bytecode.m_dst.offset();
#if USE(JSVALUE64)
emitGetVirtualRegister(bytecode.m_scope.offset(), regT0);
#else
emitLoadPayload(bytecode.m_scope.offset(), regT0);
#endif
FunctionExecutable* function = m_codeBlock->functionExpr(bytecode.m_functionDecl);
OpcodeID opcodeID = Op::opcodeID;
if (opcodeID == op_new_func_exp)
callOperation(operationNewFunction, dst, regT0, function);
else if (opcodeID == op_new_generator_func_exp)
callOperation(operationNewGeneratorFunction, dst, regT0, function);
else if (opcodeID == op_new_async_func_exp)
callOperation(operationNewAsyncFunction, dst, regT0, function);
else {
ASSERT(opcodeID == op_new_async_generator_func_exp);
callOperation(operationNewAsyncGeneratorFunction, dst, regT0, function);
}
}
void JIT::emit_op_new_func_exp(const Instruction* currentInstruction)
{
emitNewFuncExprCommon<OpNewFuncExp>(currentInstruction);
}
void JIT::emit_op_new_generator_func_exp(const Instruction* currentInstruction)
{
emitNewFuncExprCommon<OpNewGeneratorFuncExp>(currentInstruction);
}
void JIT::emit_op_new_async_func_exp(const Instruction* currentInstruction)
{
emitNewFuncExprCommon<OpNewAsyncFuncExp>(currentInstruction);
}
void JIT::emit_op_new_async_generator_func_exp(const Instruction* currentInstruction)
{
emitNewFuncExprCommon<OpNewAsyncGeneratorFuncExp>(currentInstruction);
}
void JIT::emit_op_new_array(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNewArray>();
auto& metadata = bytecode.metadata(m_codeBlock);
int dst = bytecode.m_dst.offset();
int valuesIndex = bytecode.m_argv.offset();
int size = bytecode.m_argc;
addPtr(TrustedImm32(valuesIndex * sizeof(Register)), callFrameRegister, regT0);
callOperation(operationNewArrayWithProfile, dst,
&metadata.m_arrayAllocationProfile, regT0, size);
}
void JIT::emit_op_new_array_with_size(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpNewArrayWithSize>();
auto& metadata = bytecode.metadata(m_codeBlock);
int dst = bytecode.m_dst.offset();
int sizeIndex = bytecode.m_length.offset();
#if USE(JSVALUE64)
emitGetVirtualRegister(sizeIndex, regT0);
callOperation(operationNewArrayWithSizeAndProfile, dst,
&metadata.m_arrayAllocationProfile, regT0);
#else
emitLoad(sizeIndex, regT1, regT0);
callOperation(operationNewArrayWithSizeAndProfile, dst,
&metadata.m_arrayAllocationProfile, JSValueRegs(regT1, regT0));
#endif
}
#if USE(JSVALUE64)
void JIT::emit_op_has_structure_property(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpHasStructureProperty>();
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int enumerator = bytecode.m_enumerator.offset();
emitGetVirtualRegister(base, regT0);
emitGetVirtualRegister(enumerator, regT1);
emitJumpSlowCaseIfNotJSCell(regT0, base);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
addSlowCase(branch32(NotEqual, regT0, Address(regT1, JSPropertyNameEnumerator::cachedStructureIDOffset())));
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
emitPutVirtualRegister(dst);
}
void JIT::privateCompileHasIndexedProperty(ByValInfo* byValInfo, ReturnAddressPtr returnAddress, JITArrayMode arrayMode)
{
const Instruction* currentInstruction = m_codeBlock->instructions().at(byValInfo->bytecodeIndex).ptr();
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, arrayMode, badType);
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
Jump done = jump();
LinkBuffer patchBuffer(*this, m_codeBlock);
patchBuffer.link(badType, byValInfo->slowPathTarget);
patchBuffer.link(slowCases, byValInfo->slowPathTarget);
patchBuffer.link(done, byValInfo->badTypeDoneTarget);
byValInfo->stubRoutine = FINALIZE_CODE_FOR_STUB(
m_codeBlock, patchBuffer, JITStubRoutinePtrTag,
"Baseline has_indexed_property stub for %s, return point %p", toCString(*m_codeBlock).data(), returnAddress.value());
MacroAssembler::repatchJump(byValInfo->badTypeJump, CodeLocationLabel<JITStubRoutinePtrTag>(byValInfo->stubRoutine->code().code()));
MacroAssembler::repatchCall(CodeLocationCall<NoPtrTag>(MacroAssemblerCodePtr<NoPtrTag>(returnAddress)), FunctionPtr<OperationPtrTag>(operationHasIndexedPropertyGeneric));
}
void JIT::emit_op_has_indexed_property(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpHasIndexedProperty>();
auto& metadata = bytecode.metadata(m_codeBlock);
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int property = bytecode.m_property.offset();
ArrayProfile* profile = &metadata.m_arrayProfile;
ByValInfo* byValInfo = m_codeBlock->addByValInfo();
emitGetVirtualRegisters(base, regT0, property, regT1);
// This is technically incorrect - we're zero-extending an int32. On the hot path this doesn't matter.
// We check the value as if it was a uint32 against the m_vectorLength - which will always fail if
// number was signed since m_vectorLength is always less than intmax (since the total allocation
// size is always less than 4Gb). As such zero extending will have been correct (and extending the value
// to 64-bits is necessary since it's used in the address calculation. We zero extend rather than sign
// extending since it makes it easier to re-tag the value in the slow case.
zeroExtend32ToPtr(regT1, regT1);
emitJumpSlowCaseIfNotJSCell(regT0, base);
emitArrayProfilingSiteWithCell(regT0, regT2, profile);
and32(TrustedImm32(IndexingShapeMask), regT2);
JITArrayMode mode = chooseArrayMode(profile);
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, mode, badType);
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
addSlowCase(badType);
addSlowCase(slowCases);
Label done = label();
emitPutVirtualRegister(dst);
Label nextHotPath = label();
m_byValCompilationInfo.append(ByValCompilationInfo(byValInfo, m_bytecodeOffset, PatchableJump(), badType, mode, profile, done, nextHotPath));
}
void JIT::emitSlow_op_has_indexed_property(const Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkAllSlowCases(iter);
auto bytecode = currentInstruction->as<OpHasIndexedProperty>();
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int property = bytecode.m_property.offset();
ByValInfo* byValInfo = m_byValCompilationInfo[m_byValInstructionIndex].byValInfo;
Label slowPath = label();
emitGetVirtualRegister(base, regT0);
emitGetVirtualRegister(property, regT1);
Call call = callOperation(operationHasIndexedPropertyDefault, dst, regT0, regT1, byValInfo);
m_byValCompilationInfo[m_byValInstructionIndex].slowPathTarget = slowPath;
m_byValCompilationInfo[m_byValInstructionIndex].returnAddress = call;
m_byValInstructionIndex++;
}
void JIT::emit_op_get_direct_pname(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetDirectPname>();
int dst = bytecode.m_dst.offset();
int base = bytecode.m_base.offset();
int index = bytecode.m_index.offset();
int enumerator = bytecode.m_enumerator.offset();
// Check that base is a cell
emitGetVirtualRegister(base, regT0);
emitJumpSlowCaseIfNotJSCell(regT0, base);
// Check the structure
emitGetVirtualRegister(enumerator, regT2);
load32(Address(regT0, JSCell::structureIDOffset()), regT1);
addSlowCase(branch32(NotEqual, regT1, Address(regT2, JSPropertyNameEnumerator::cachedStructureIDOffset())));
// Compute the offset
emitGetVirtualRegister(index, regT1);
// If index is less than the enumerator's cached inline storage, then it's an inline access
Jump outOfLineAccess = branch32(AboveOrEqual, regT1, Address(regT2, JSPropertyNameEnumerator::cachedInlineCapacityOffset()));
addPtr(TrustedImm32(JSObject::offsetOfInlineStorage()), regT0);
signExtend32ToPtr(regT1, regT1);
load64(BaseIndex(regT0, regT1, TimesEight), regT0);
Jump done = jump();
// Otherwise it's out of line
outOfLineAccess.link(this);
loadPtr(Address(regT0, JSObject::butterflyOffset()), regT0);
sub32(Address(regT2, JSPropertyNameEnumerator::cachedInlineCapacityOffset()), regT1);
neg32(regT1);
signExtend32ToPtr(regT1, regT1);
int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue);
load64(BaseIndex(regT0, regT1, TimesEight, offsetOfFirstProperty), regT0);
done.link(this);
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
emitPutVirtualRegister(dst, regT0);
}
void JIT::emit_op_enumerator_structure_pname(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEnumeratorStructurePname>();
int dst = bytecode.m_dst.offset();
int enumerator = bytecode.m_enumerator.offset();
int index = bytecode.m_index.offset();
emitGetVirtualRegister(index, regT0);
emitGetVirtualRegister(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endStructurePropertyIndexOffset()));
move(TrustedImm64(JSValue::encode(jsNull())), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
signExtend32ToPtr(regT0, regT0);
load64(BaseIndex(regT1, regT0, TimesEight), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_enumerator_generic_pname(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpEnumeratorGenericPname>();
int dst = bytecode.m_dst.offset();
int enumerator = bytecode.m_enumerator.offset();
int index = bytecode.m_index.offset();
emitGetVirtualRegister(index, regT0);
emitGetVirtualRegister(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endGenericPropertyIndexOffset()));
move(TrustedImm64(JSValue::encode(jsNull())), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
signExtend32ToPtr(regT0, regT0);
load64(BaseIndex(regT1, regT0, TimesEight), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_profile_type(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpProfileType>();
auto& metadata = bytecode.metadata(m_codeBlock);
TypeLocation* cachedTypeLocation = metadata.m_typeLocation;
int valueToProfile = bytecode.m_targetVirtualRegister.offset();
emitGetVirtualRegister(valueToProfile, regT0);
JumpList jumpToEnd;
jumpToEnd.append(branchIfEmpty(regT0));
// Compile in a predictive type check, if possible, to see if we can skip writing to the log.
// These typechecks are inlined to match those of the 64-bit JSValue type checks.
if (cachedTypeLocation->m_lastSeenType == TypeUndefined)
jumpToEnd.append(branchIfUndefined(regT0));
else if (cachedTypeLocation->m_lastSeenType == TypeNull)
jumpToEnd.append(branchIfNull(regT0));
else if (cachedTypeLocation->m_lastSeenType == TypeBoolean)
jumpToEnd.append(branchIfBoolean(regT0, regT1));
else if (cachedTypeLocation->m_lastSeenType == TypeAnyInt)
jumpToEnd.append(branchIfInt32(regT0));
else if (cachedTypeLocation->m_lastSeenType == TypeNumber)
jumpToEnd.append(branchIfNumber(regT0));
else if (cachedTypeLocation->m_lastSeenType == TypeString) {
Jump isNotCell = branchIfNotCell(regT0);
jumpToEnd.append(branchIfString(regT0));
isNotCell.link(this);
}
// Load the type profiling log into T2.
TypeProfilerLog* cachedTypeProfilerLog = m_vm->typeProfilerLog();
move(TrustedImmPtr(cachedTypeProfilerLog), regT2);
// Load the next log entry into T1.
loadPtr(Address(regT2, TypeProfilerLog::currentLogEntryOffset()), regT1);
// Store the JSValue onto the log entry.
store64(regT0, Address(regT1, TypeProfilerLog::LogEntry::valueOffset()));
// Store the structureID of the cell if T0 is a cell, otherwise, store 0 on the log entry.
Jump notCell = branchIfNotCell(regT0);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
Jump skipIsCell = jump();
notCell.link(this);
store32(TrustedImm32(0), Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
skipIsCell.link(this);
// Store the typeLocation on the log entry.
move(TrustedImmPtr(cachedTypeLocation), regT0);
store64(regT0, Address(regT1, TypeProfilerLog::LogEntry::locationOffset()));
// Increment the current log entry.
addPtr(TrustedImm32(sizeof(TypeProfilerLog::LogEntry)), regT1);
store64(regT1, Address(regT2, TypeProfilerLog::currentLogEntryOffset()));
Jump skipClearLog = branchPtr(NotEqual, regT1, TrustedImmPtr(cachedTypeProfilerLog->logEndPtr()));
// Clear the log if we're at the end of the log.
callOperation(operationProcessTypeProfilerLog);
skipClearLog.link(this);
jumpToEnd.link(this);
}
void JIT::emit_op_log_shadow_chicken_prologue(const Instruction* currentInstruction)
{
RELEASE_ASSERT(vm()->shadowChicken());
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
auto bytecode = currentInstruction->as<OpLogShadowChickenPrologue>();
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(*vm(), shadowPacketReg, scratch1Reg, scratch2Reg);
emitGetVirtualRegister(bytecode.m_scope.offset(), regT3);
logShadowChickenProloguePacket(shadowPacketReg, scratch1Reg, regT3);
}
void JIT::emit_op_log_shadow_chicken_tail(const Instruction* currentInstruction)
{
RELEASE_ASSERT(vm()->shadowChicken());
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
auto bytecode = currentInstruction->as<OpLogShadowChickenTail>();
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(*vm(), shadowPacketReg, scratch1Reg, scratch2Reg);
emitGetVirtualRegister(bytecode.m_thisValue.offset(), regT2);
emitGetVirtualRegister(bytecode.m_scope.offset(), regT3);
logShadowChickenTailPacket(shadowPacketReg, JSValueRegs(regT2), regT3, m_codeBlock, CallSiteIndex(m_bytecodeOffset));
}
#endif // USE(JSVALUE64)
void JIT::emit_op_profile_control_flow(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpProfileControlFlow>();
auto& metadata = bytecode.metadata(m_codeBlock);
BasicBlockLocation* basicBlockLocation = metadata.m_basicBlockLocation;
#if USE(JSVALUE64)
basicBlockLocation->emitExecuteCode(*this);
#else
basicBlockLocation->emitExecuteCode(*this, regT0);
#endif
}
void JIT::emit_op_argument_count(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpArgumentCount>();
int dst = bytecode.m_dst.offset();
load32(payloadFor(CallFrameSlot::argumentCount), regT0);
sub32(TrustedImm32(1), regT0);
JSValueRegs result = JSValueRegs::withTwoAvailableRegs(regT0, regT1);
boxInt32(regT0, result);
emitPutVirtualRegister(dst, result);
}
void JIT::emit_op_get_rest_length(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetRestLength>();
int dst = bytecode.m_dst.offset();
unsigned numParamsToSkip = bytecode.m_numParametersToSkip;
load32(payloadFor(CallFrameSlot::argumentCount), regT0);
sub32(TrustedImm32(1), regT0);
Jump zeroLength = branch32(LessThanOrEqual, regT0, Imm32(numParamsToSkip));
sub32(Imm32(numParamsToSkip), regT0);
#if USE(JSVALUE64)
boxInt32(regT0, JSValueRegs(regT0));
#endif
Jump done = jump();
zeroLength.link(this);
#if USE(JSVALUE64)
move(TrustedImm64(JSValue::encode(jsNumber(0))), regT0);
#else
move(TrustedImm32(0), regT0);
#endif
done.link(this);
#if USE(JSVALUE64)
emitPutVirtualRegister(dst, regT0);
#else
move(TrustedImm32(JSValue::Int32Tag), regT1);
emitPutVirtualRegister(dst, JSValueRegs(regT1, regT0));
#endif
}
void JIT::emit_op_get_argument(const Instruction* currentInstruction)
{
auto bytecode = currentInstruction->as<OpGetArgument>();
int dst = bytecode.m_dst.offset();
int index = bytecode.m_index;
#if USE(JSVALUE64)
JSValueRegs resultRegs(regT0);
#else
JSValueRegs resultRegs(regT1, regT0);
#endif
load32(payloadFor(CallFrameSlot::argumentCount), regT2);
Jump argumentOutOfBounds = branch32(LessThanOrEqual, regT2, TrustedImm32(index));
loadValue(addressFor(CallFrameSlot::thisArgument + index), resultRegs);
Jump done = jump();
argumentOutOfBounds.link(this);
moveValue(jsUndefined(), resultRegs);
done.link(this);
emitValueProfilingSite(bytecode.metadata(m_codeBlock));
emitPutVirtualRegister(dst, resultRegs);
}
} // namespace JSC
#endif // ENABLE(JIT)