sbarati@apple.com | 2318ef5 | 2017-04-25 00:04:00 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2017 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | "use strict"; |
| 27 | |
| 28 | let currentTime; |
| 29 | if (this.performance && performance.now) |
| 30 | currentTime = function() { return performance.now() }; |
| 31 | else if (this.preciseTime) |
| 32 | currentTime = function() { return preciseTime() * 1000; }; |
| 33 | else |
| 34 | currentTime = function() { return +new Date(); }; |
| 35 | |
| 36 | class MLBenchmark { |
| 37 | constructor() { } |
| 38 | |
| 39 | runIteration() |
| 40 | { |
| 41 | let Matrix = MLMatrix; |
| 42 | let ACTIVATION_FUNCTIONS = FeedforwardNeuralNetworksActivationFunctions; |
| 43 | |
| 44 | function run() { |
| 45 | |
| 46 | let it = (name, f) => { |
| 47 | f(); |
| 48 | }; |
| 49 | |
| 50 | function assert(b) { |
| 51 | if (!b) |
| 52 | throw new Error("Bad"); |
| 53 | } |
| 54 | |
| 55 | var functions = Object.keys(ACTIVATION_FUNCTIONS); |
| 56 | |
| 57 | it('Training the neural network with XOR operator', function () { |
| 58 | var trainingSet = new Matrix([[0, 0], [0, 1], [1, 0], [1, 1]]); |
| 59 | var predictions = [false, true, true, false]; |
| 60 | |
| 61 | for (var i = 0; i < functions.length; ++i) { |
| 62 | var options = { |
| 63 | hiddenLayers: [4], |
| 64 | iterations: 40, |
| 65 | learningRate: 0.3, |
| 66 | activation: functions[i] |
| 67 | }; |
| 68 | var xorNN = new FeedforwardNeuralNetwork(options); |
| 69 | |
| 70 | xorNN.train(trainingSet, predictions); |
| 71 | var results = xorNN.predict(trainingSet); |
| 72 | } |
| 73 | }); |
| 74 | |
| 75 | it('Training the neural network with AND operator', function () { |
| 76 | var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]]; |
| 77 | var predictions = [[1, 0], [1, 0], [1, 0], [0, 1]]; |
| 78 | |
| 79 | for (var i = 0; i < functions.length; ++i) { |
| 80 | var options = { |
| 81 | hiddenLayers: [3], |
| 82 | iterations: 75, |
| 83 | learningRate: 0.3, |
| 84 | activation: functions[i] |
| 85 | }; |
| 86 | var andNN = new FeedforwardNeuralNetwork(options); |
| 87 | andNN.train(trainingSet, predictions); |
| 88 | |
| 89 | var results = andNN.predict(trainingSet); |
| 90 | } |
| 91 | }); |
| 92 | |
| 93 | it('Export and import', function () { |
| 94 | var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]]; |
| 95 | var predictions = [0, 1, 1, 1]; |
| 96 | |
| 97 | for (var i = 0; i < functions.length; ++i) { |
| 98 | var options = { |
| 99 | hiddenLayers: [4], |
| 100 | iterations: 40, |
| 101 | learningRate: 0.3, |
| 102 | activation: functions[i] |
| 103 | }; |
| 104 | var orNN = new FeedforwardNeuralNetwork(options); |
| 105 | orNN.train(trainingSet, predictions); |
| 106 | |
| 107 | var model = JSON.parse(JSON.stringify(orNN)); |
| 108 | var networkNN = FeedforwardNeuralNetwork.load(model); |
| 109 | |
| 110 | var results = networkNN.predict(trainingSet); |
| 111 | } |
| 112 | }); |
| 113 | |
| 114 | it('Multiclass clasification', function () { |
| 115 | var trainingSet = [[0, 0], [0, 1], [1, 0], [1, 1]]; |
| 116 | var predictions = [2, 0, 1, 0]; |
| 117 | |
| 118 | for (var i = 0; i < functions.length; ++i) { |
| 119 | var options = { |
| 120 | hiddenLayers: [4], |
| 121 | iterations: 40, |
| 122 | learningRate: 0.5, |
| 123 | activation: functions[i] |
| 124 | }; |
| 125 | var nn = new FeedforwardNeuralNetwork(options); |
| 126 | nn.train(trainingSet, predictions); |
| 127 | |
| 128 | var result = nn.predict(trainingSet); |
| 129 | } |
| 130 | }); |
| 131 | |
| 132 | it('Big case', function () { |
| 133 | var trainingSet = [[1, 1], [1, 2], [2, 1], [2, 2], [3, 1], [1, 3], [1, 4], [4, 1], |
| 134 | [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [5, 5], [4, 5], [3, 5]]; |
| 135 | var predictions = [[1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], |
| 136 | [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]; |
| 137 | for (var i = 0; i < functions.length; ++i) { |
| 138 | var options = { |
| 139 | hiddenLayers: [20], |
| 140 | iterations: 60, |
| 141 | learningRate: 0.01, |
| 142 | activation: functions[i] |
| 143 | }; |
| 144 | var nn = new FeedforwardNeuralNetwork(options); |
| 145 | nn.train(trainingSet, predictions); |
| 146 | |
| 147 | var result = nn.predict([[5, 4]]); |
| 148 | |
| 149 | assert(result[0][0] < result[0][1]); |
| 150 | } |
| 151 | }); |
| 152 | } |
| 153 | |
| 154 | run(); |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | function runBenchmark() |
| 159 | { |
| 160 | const numIterations = 60; |
| 161 | |
| 162 | let before = currentTime(); |
| 163 | |
| 164 | let benchmark = new Benchmark(); |
| 165 | |
| 166 | for (let iteration = 0; iteration < numIterations; ++iteration) |
| 167 | benchmark.runIteration(); |
| 168 | |
| 169 | let after = currentTime(); |
| 170 | return after - before; |
| 171 | } |