| /* |
| * Copyright (C) 2009 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RegexCompiler.h" |
| |
| #include "RegexInterpreter.h" |
| #include "RegexPattern.h" |
| #include <wtf/Vector.h> |
| |
| #if ENABLE(YARR) |
| |
| using namespace WTF; |
| |
| namespace JSC { namespace Yarr { |
| |
| class CharacterClassConstructor { |
| public: |
| CharacterClassConstructor(bool isCaseInsensitive = false) |
| : m_isCaseInsensitive(isCaseInsensitive) |
| { |
| } |
| |
| void reset() |
| { |
| m_matches.clear(); |
| m_ranges.clear(); |
| m_matchesUnicode.clear(); |
| m_rangesUnicode.clear(); |
| } |
| |
| void append(const CharacterClass* other) |
| { |
| for (size_t i = 0; i < other->m_matches.size(); ++i) |
| addSorted(m_matches, other->m_matches[i]); |
| for (size_t i = 0; i < other->m_ranges.size(); ++i) |
| addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end); |
| for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i) |
| addSorted(m_matchesUnicode, other->m_matchesUnicode[i]); |
| for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i) |
| addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end); |
| } |
| |
| void putChar(UChar ch) |
| { |
| if (ch <= 0x7f) { |
| if (m_isCaseInsensitive && isASCIIAlpha(ch)) { |
| addSorted(m_matches, toASCIIUpper(ch)); |
| addSorted(m_matches, toASCIILower(ch)); |
| } else |
| addSorted(m_matches, ch); |
| } else { |
| UChar upper, lower; |
| if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) { |
| addSorted(m_matchesUnicode, upper); |
| addSorted(m_matchesUnicode, lower); |
| } else |
| addSorted(m_matchesUnicode, ch); |
| } |
| } |
| |
| // returns true if this character has another case, and 'ch' is the upper case form. |
| static inline bool isUnicodeUpper(UChar ch) |
| { |
| return ch != Unicode::toLower(ch); |
| } |
| |
| // returns true if this character has another case, and 'ch' is the lower case form. |
| static inline bool isUnicodeLower(UChar ch) |
| { |
| return ch != Unicode::toUpper(ch); |
| } |
| |
| void putRange(UChar lo, UChar hi) |
| { |
| if (lo <= 0x7f) { |
| char asciiLo = lo; |
| char asciiHi = std::min(hi, (UChar)0x7f); |
| addSortedRange(m_ranges, lo, asciiHi); |
| |
| if (m_isCaseInsensitive) { |
| if ((asciiLo <= 'Z') && (asciiHi >= 'A')) |
| addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A')); |
| if ((asciiLo <= 'z') && (asciiHi >= 'a')) |
| addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a')); |
| } |
| } |
| if (hi >= 0x80) { |
| uint32_t unicodeCurr = std::max(lo, (UChar)0x80); |
| addSortedRange(m_rangesUnicode, unicodeCurr, hi); |
| |
| if (m_isCaseInsensitive) { |
| while (unicodeCurr <= hi) { |
| // If the upper bound of the range (hi) is 0xffff, the increments to |
| // unicodeCurr in this loop may take it to 0x10000. This is fine |
| // (if so we won't re-enter the loop, since the loop condition above |
| // will definitely fail) - but this does mean we cannot use a UChar |
| // to represent unicodeCurr, we must use a 32-bit value instead. |
| ASSERT(unicodeCurr <= 0xffff); |
| |
| if (isUnicodeUpper(unicodeCurr)) { |
| UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr); |
| UChar lowerCaseRangeEnd = lowerCaseRangeBegin; |
| while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1))) |
| lowerCaseRangeEnd++; |
| addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd); |
| } else if (isUnicodeLower(unicodeCurr)) { |
| UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr); |
| UChar upperCaseRangeEnd = upperCaseRangeBegin; |
| while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1))) |
| upperCaseRangeEnd++; |
| addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd); |
| } else |
| ++unicodeCurr; |
| } |
| } |
| } |
| } |
| |
| CharacterClass* charClass() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_matches.append(m_matches); |
| characterClass->m_ranges.append(m_ranges); |
| characterClass->m_matchesUnicode.append(m_matchesUnicode); |
| characterClass->m_rangesUnicode.append(m_rangesUnicode); |
| |
| reset(); |
| |
| return characterClass; |
| } |
| |
| private: |
| void addSorted(Vector<UChar>& matches, UChar ch) |
| { |
| unsigned pos = 0; |
| unsigned range = matches.size(); |
| |
| // binary chop, find position to insert char. |
| while (range) { |
| unsigned index = range >> 1; |
| |
| int val = matches[pos+index] - ch; |
| if (!val) |
| return; |
| else if (val > 0) |
| range = index; |
| else { |
| pos += (index+1); |
| range -= (index+1); |
| } |
| } |
| |
| if (pos == matches.size()) |
| matches.append(ch); |
| else |
| matches.insert(pos, ch); |
| } |
| |
| void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi) |
| { |
| unsigned end = ranges.size(); |
| |
| // Simple linear scan - I doubt there are that many ranges anyway... |
| // feel free to fix this with something faster (eg binary chop). |
| for (unsigned i = 0; i < end; ++i) { |
| // does the new range fall before the current position in the array |
| if (hi < ranges[i].begin) { |
| // optional optimization: concatenate appending ranges? - may not be worthwhile. |
| if (hi == (ranges[i].begin - 1)) { |
| ranges[i].begin = lo; |
| return; |
| } |
| ranges.insert(i, CharacterRange(lo, hi)); |
| return; |
| } |
| // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining |
| // If the new range start at or before the end of the last range, then the overlap (if it starts one after the |
| // end of the last range they concatenate, which is just as good. |
| if (lo <= (ranges[i].end + 1)) { |
| // found an intersect! we'll replace this entry in the array. |
| ranges[i].begin = std::min(ranges[i].begin, lo); |
| ranges[i].end = std::max(ranges[i].end, hi); |
| |
| // now check if the new range can subsume any subsequent ranges. |
| unsigned next = i+1; |
| // each iteration of the loop we will either remove something from the list, or break the loop. |
| while (next < ranges.size()) { |
| if (ranges[next].begin <= (ranges[i].end + 1)) { |
| // the next entry now overlaps / concatenates this one. |
| ranges[i].end = std::max(ranges[i].end, ranges[next].end); |
| ranges.remove(next); |
| } else |
| break; |
| } |
| |
| return; |
| } |
| } |
| |
| // CharacterRange comes after all existing ranges. |
| ranges.append(CharacterRange(lo, hi)); |
| } |
| |
| bool m_isCaseInsensitive; |
| |
| Vector<UChar> m_matches; |
| Vector<CharacterRange> m_ranges; |
| Vector<UChar> m_matchesUnicode; |
| Vector<CharacterRange> m_rangesUnicode; |
| }; |
| |
| |
| CharacterClass* newlineCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_matches.append('\n'); |
| characterClass->m_matches.append('\r'); |
| characterClass->m_matchesUnicode.append(0x2028); |
| characterClass->m_matchesUnicode.append(0x2029); |
| |
| return characterClass; |
| } |
| |
| CharacterClass* digitsCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_ranges.append(CharacterRange('0', '9')); |
| |
| return characterClass; |
| } |
| |
| CharacterClass* spacesCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_matches.append(' '); |
| characterClass->m_ranges.append(CharacterRange('\t', '\r')); |
| characterClass->m_matchesUnicode.append(0x00a0); |
| characterClass->m_matchesUnicode.append(0x1680); |
| characterClass->m_matchesUnicode.append(0x180e); |
| characterClass->m_matchesUnicode.append(0x2028); |
| characterClass->m_matchesUnicode.append(0x2029); |
| characterClass->m_matchesUnicode.append(0x202f); |
| characterClass->m_matchesUnicode.append(0x205f); |
| characterClass->m_matchesUnicode.append(0x3000); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x2000, 0x200a)); |
| |
| return characterClass; |
| } |
| |
| CharacterClass* wordcharCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_matches.append('_'); |
| characterClass->m_ranges.append(CharacterRange('0', '9')); |
| characterClass->m_ranges.append(CharacterRange('A', 'Z')); |
| characterClass->m_ranges.append(CharacterRange('a', 'z')); |
| |
| return characterClass; |
| } |
| |
| CharacterClass* nondigitsCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_ranges.append(CharacterRange(0, '0' - 1)); |
| characterClass->m_ranges.append(CharacterRange('9' + 1, 0x7f)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff)); |
| |
| return characterClass; |
| } |
| |
| CharacterClass* nonspacesCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_ranges.append(CharacterRange(0, '\t' - 1)); |
| characterClass->m_ranges.append(CharacterRange('\r' + 1, ' ' - 1)); |
| characterClass->m_ranges.append(CharacterRange(' ' + 1, 0x7f)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x0080, 0x009f)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x00a1, 0x167f)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x1681, 0x180d)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x180f, 0x1fff)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x200b, 0x2027)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x202a, 0x202e)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x2030, 0x205e)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x2060, 0x2fff)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x3001, 0xffff)); |
| |
| return characterClass; |
| } |
| |
| CharacterClass* nonwordcharCreate() |
| { |
| CharacterClass* characterClass = new CharacterClass(); |
| |
| characterClass->m_matches.append('`'); |
| characterClass->m_ranges.append(CharacterRange(0, '0' - 1)); |
| characterClass->m_ranges.append(CharacterRange('9' + 1, 'A' - 1)); |
| characterClass->m_ranges.append(CharacterRange('Z' + 1, '_' - 1)); |
| characterClass->m_ranges.append(CharacterRange('z' + 1, 0x7f)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff)); |
| |
| return characterClass; |
| } |
| |
| |
| class RegexPatternConstructor { |
| public: |
| RegexPatternConstructor(RegexPattern& pattern) |
| : m_pattern(pattern) |
| , m_characterClassConstructor(pattern.m_ignoreCase) |
| { |
| } |
| |
| ~RegexPatternConstructor() |
| { |
| } |
| |
| void reset() |
| { |
| m_pattern.reset(); |
| m_characterClassConstructor.reset(); |
| } |
| |
| void assertionBOL() |
| { |
| m_alternative->m_terms.append(PatternTerm::BOL()); |
| } |
| void assertionEOL() |
| { |
| m_alternative->m_terms.append(PatternTerm::EOL()); |
| } |
| void assertionWordBoundary(bool invert) |
| { |
| m_alternative->m_terms.append(PatternTerm::WordBoundary(invert)); |
| } |
| |
| void atomPatternCharacter(UChar ch) |
| { |
| // We handle case-insensitive checking of unicode characters which do have both |
| // cases by handling them as if they were defined using a CharacterClass. |
| if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) { |
| atomCharacterClassBegin(); |
| atomCharacterClassAtom(ch); |
| atomCharacterClassEnd(); |
| } else |
| m_alternative->m_terms.append(PatternTerm(ch)); |
| } |
| |
| void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert) |
| { |
| switch (classID) { |
| case DigitClassID: |
| m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert)); |
| break; |
| case SpaceClassID: |
| m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert)); |
| break; |
| case WordClassID: |
| m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert)); |
| break; |
| case NewlineClassID: |
| m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert)); |
| break; |
| } |
| } |
| |
| void atomCharacterClassBegin(bool invert = false) |
| { |
| m_invertCharacterClass = invert; |
| } |
| |
| void atomCharacterClassAtom(UChar ch) |
| { |
| m_characterClassConstructor.putChar(ch); |
| } |
| |
| void atomCharacterClassRange(UChar begin, UChar end) |
| { |
| m_characterClassConstructor.putRange(begin, end); |
| } |
| |
| void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert) |
| { |
| ASSERT(classID != NewlineClassID); |
| |
| switch (classID) { |
| case DigitClassID: |
| m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass()); |
| break; |
| |
| case SpaceClassID: |
| m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass()); |
| break; |
| |
| case WordClassID: |
| m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass()); |
| break; |
| |
| default: |
| ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| void atomCharacterClassEnd() |
| { |
| CharacterClass* newCharacterClass = m_characterClassConstructor.charClass(); |
| m_pattern.m_userCharacterClasses.append(newCharacterClass); |
| m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass)); |
| } |
| |
| void atomParenthesesSubpatternBegin(bool capture = true) |
| { |
| unsigned subpatternId = m_pattern.m_numSubpatterns + 1; |
| if (capture) |
| m_pattern.m_numSubpatterns++; |
| |
| PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative); |
| m_pattern.m_disjunctions.append(parenthesesDisjunction); |
| m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture)); |
| m_alternative = parenthesesDisjunction->addNewAlternative(); |
| } |
| |
| void atomParentheticalAssertionBegin(bool invert = false) |
| { |
| PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative); |
| m_pattern.m_disjunctions.append(parenthesesDisjunction); |
| m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, invert)); |
| m_alternative = parenthesesDisjunction->addNewAlternative(); |
| } |
| |
| void atomParenthesesEnd() |
| { |
| ASSERT(m_alternative->m_parent); |
| ASSERT(m_alternative->m_parent->m_parent); |
| m_alternative = m_alternative->m_parent->m_parent; |
| |
| m_alternative->lastTerm().parentheses.lastSubpatternId = m_pattern.m_numSubpatterns; |
| } |
| |
| void atomBackReference(unsigned subpatternId) |
| { |
| ASSERT(subpatternId); |
| m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId); |
| |
| if (subpatternId > m_pattern.m_numSubpatterns) { |
| m_alternative->m_terms.append(PatternTerm::ForwardReference()); |
| return; |
| } |
| |
| PatternAlternative* currentAlternative = m_alternative; |
| ASSERT(currentAlternative); |
| |
| // Note to self: if we waited until the AST was baked, we could also remove forwards refs |
| while ((currentAlternative = currentAlternative->m_parent->m_parent)) { |
| PatternTerm& term = currentAlternative->lastTerm(); |
| ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion)); |
| |
| if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.invertOrCapture && (subpatternId == term.subpatternId)) { |
| m_alternative->m_terms.append(PatternTerm::ForwardReference()); |
| return; |
| } |
| } |
| |
| m_alternative->m_terms.append(PatternTerm(subpatternId)); |
| } |
| |
| PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction) |
| { |
| PatternDisjunction* newDisjunction = new PatternDisjunction(); |
| |
| newDisjunction->m_parent = disjunction->m_parent; |
| for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { |
| PatternAlternative* alternative = disjunction->m_alternatives[alt]; |
| PatternAlternative* newAlternative = newDisjunction->addNewAlternative(); |
| for (unsigned i = 0; i < alternative->m_terms.size(); ++i) |
| newAlternative->m_terms.append(copyTerm(alternative->m_terms[i])); |
| } |
| |
| m_pattern.m_disjunctions.append(newDisjunction); |
| return newDisjunction; |
| } |
| |
| PatternTerm copyTerm(PatternTerm& term) |
| { |
| if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion)) |
| return PatternTerm(term); |
| |
| PatternTerm termCopy = term; |
| termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction); |
| return termCopy; |
| } |
| |
| void quantifyAtom(unsigned min, unsigned max, bool greedy) |
| { |
| ASSERT(min <= max); |
| ASSERT(m_alternative->m_terms.size()); |
| |
| if (!max) { |
| m_alternative->removeLastTerm(); |
| return; |
| } |
| |
| PatternTerm& term = m_alternative->lastTerm(); |
| ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary); |
| ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount)); |
| |
| // For any assertion with a zero minimum, not matching is valid and has no effect, |
| // remove it. Otherwise, we need to match as least once, but there is no point |
| // matching more than once, so remove the quantifier. It is not entirely clear |
| // from the spec whether or not this behavior is correct, but I believe this |
| // matches Firefox. :-/ |
| if (term.type == PatternTerm::TypeParentheticalAssertion) { |
| if (!min) |
| m_alternative->removeLastTerm(); |
| return; |
| } |
| |
| if (min == 0) |
| term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy); |
| else if (min == max) |
| term.quantify(min, QuantifierFixedCount); |
| else { |
| term.quantify(min, QuantifierFixedCount); |
| m_alternative->m_terms.append(copyTerm(term)); |
| // NOTE: this term is interesting from an analysis perspective, in that it can be ignored..... |
| m_alternative->lastTerm().quantify((max == UINT_MAX) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy); |
| if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern) |
| m_alternative->lastTerm().parentheses.isCopy = true; |
| } |
| } |
| |
| void disjunction() |
| { |
| m_alternative = m_alternative->m_parent->addNewAlternative(); |
| } |
| |
| void regexBegin() |
| { |
| m_pattern.m_body = new PatternDisjunction(); |
| m_alternative = m_pattern.m_body->addNewAlternative(); |
| m_pattern.m_disjunctions.append(m_pattern.m_body); |
| } |
| void regexEnd() |
| { |
| } |
| void regexError() |
| { |
| } |
| |
| unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition) |
| { |
| alternative->m_hasFixedSize = true; |
| unsigned currentInputPosition = initialInputPosition; |
| |
| for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { |
| PatternTerm& term = alternative->m_terms[i]; |
| |
| switch (term.type) { |
| case PatternTerm::TypeAssertionBOL: |
| case PatternTerm::TypeAssertionEOL: |
| case PatternTerm::TypeAssertionWordBoundary: |
| term.inputPosition = currentInputPosition; |
| break; |
| |
| case PatternTerm::TypeBackReference: |
| term.inputPosition = currentInputPosition; |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += RegexStackSpaceForBackTrackInfoBackReference; |
| alternative->m_hasFixedSize = false; |
| break; |
| |
| case PatternTerm::TypeForwardReference: |
| break; |
| |
| case PatternTerm::TypePatternCharacter: |
| term.inputPosition = currentInputPosition; |
| if (term.quantityType != QuantifierFixedCount) { |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += RegexStackSpaceForBackTrackInfoPatternCharacter; |
| alternative->m_hasFixedSize = false; |
| } else |
| currentInputPosition += term.quantityCount; |
| break; |
| |
| case PatternTerm::TypeCharacterClass: |
| term.inputPosition = currentInputPosition; |
| if (term.quantityType != QuantifierFixedCount) { |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += RegexStackSpaceForBackTrackInfoCharacterClass; |
| alternative->m_hasFixedSize = false; |
| } else |
| currentInputPosition += term.quantityCount; |
| break; |
| |
| case PatternTerm::TypeParenthesesSubpattern: |
| // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own. |
| term.frameLocation = currentCallFrameSize; |
| if ((term.quantityCount == 1) && !term.parentheses.isCopy) { |
| if (term.quantityType == QuantifierFixedCount) { |
| currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition); |
| currentInputPosition += term.parentheses.disjunction->m_minimumSize; |
| } else { |
| currentCallFrameSize += RegexStackSpaceForBackTrackInfoParenthesesOnce; |
| currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition); |
| } |
| term.inputPosition = currentInputPosition; |
| } else { |
| term.inputPosition = currentInputPosition; |
| setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition); |
| currentCallFrameSize += RegexStackSpaceForBackTrackInfoParentheses; |
| } |
| // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length. |
| alternative->m_hasFixedSize = false; |
| break; |
| |
| case PatternTerm::TypeParentheticalAssertion: |
| term.inputPosition = currentInputPosition; |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + RegexStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition); |
| break; |
| } |
| } |
| |
| alternative->m_minimumSize = currentInputPosition - initialInputPosition; |
| return currentCallFrameSize; |
| } |
| |
| unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition) |
| { |
| if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1)) |
| initialCallFrameSize += RegexStackSpaceForBackTrackInfoAlternative; |
| |
| unsigned minimumInputSize = UINT_MAX; |
| unsigned maximumCallFrameSize = 0; |
| bool hasFixedSize = true; |
| |
| for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { |
| PatternAlternative* alternative = disjunction->m_alternatives[alt]; |
| unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition); |
| minimumInputSize = min(minimumInputSize, alternative->m_minimumSize); |
| maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize); |
| hasFixedSize &= alternative->m_hasFixedSize; |
| } |
| |
| ASSERT(minimumInputSize != UINT_MAX); |
| ASSERT(maximumCallFrameSize >= initialCallFrameSize); |
| |
| disjunction->m_hasFixedSize = hasFixedSize; |
| disjunction->m_minimumSize = minimumInputSize; |
| disjunction->m_callFrameSize = maximumCallFrameSize; |
| return maximumCallFrameSize; |
| } |
| |
| void setupOffsets() |
| { |
| setupDisjunctionOffsets(m_pattern.m_body, 0, 0); |
| } |
| |
| private: |
| RegexPattern& m_pattern; |
| PatternAlternative* m_alternative; |
| CharacterClassConstructor m_characterClassConstructor; |
| bool m_invertCharacterClass; |
| }; |
| |
| |
| const char* compileRegex(const UString& patternString, RegexPattern& pattern) |
| { |
| RegexPatternConstructor constructor(pattern); |
| |
| if (const char* error = parse(constructor, patternString)) |
| return error; |
| |
| // If the pattern contains illegal backreferences reset & reparse. |
| // Quoting Netscape's "What's new in JavaScript 1.2", |
| // "Note: if the number of left parentheses is less than the number specified |
| // in \#, the \# is taken as an octal escape as described in the next row." |
| if (pattern.containsIllegalBackReference()) { |
| unsigned numSubpatterns = pattern.m_numSubpatterns; |
| |
| constructor.reset(); |
| #ifndef NDEBUG |
| const char* error = |
| #endif |
| parse(constructor, patternString, numSubpatterns); |
| |
| ASSERT(!error); |
| ASSERT(numSubpatterns == pattern.m_numSubpatterns); |
| } |
| |
| constructor.setupOffsets(); |
| |
| return false; |
| }; |
| |
| |
| } } |
| |
| #endif |