blob: 7f03c331ee2010c98929a0324dcac955d65f8bbf [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "AudioBus.h"
#include "DenormalDisabler.h"
#include "SincResampler.h"
#include "VectorMath.h"
#include <algorithm>
#include <assert.h>
#include <math.h>
namespace WebCore {
constexpr unsigned MaxBusChannels = 32;
RefPtr<AudioBus> AudioBus::create(unsigned numberOfChannels, size_t length, bool allocate)
{
ASSERT(numberOfChannels <= MaxBusChannels);
if (numberOfChannels > MaxBusChannels)
return nullptr;
return adoptRef(*new AudioBus(numberOfChannels, length, allocate));
}
AudioBus::AudioBus(unsigned numberOfChannels, size_t length, bool allocate)
: m_length(length)
{
m_channels.reserveInitialCapacity(numberOfChannels);
for (unsigned i = 0; i < numberOfChannels; ++i) {
auto channel = allocate ? makeUnique<AudioChannel>(length) : makeUnique<AudioChannel>(nullptr, length);
m_channels.uncheckedAppend(WTFMove(channel));
}
m_layout = LayoutCanonical; // for now this is the only layout we define
}
void AudioBus::setChannelMemory(unsigned channelIndex, float* storage, size_t length)
{
if (channelIndex < m_channels.size()) {
channel(channelIndex)->set(storage, length);
m_length = length; // FIXME: verify that this length matches all the other channel lengths
}
}
void AudioBus::setLength(size_t newLength)
{
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(newLength <= m_length);
if (newLength == m_length)
return;
for (unsigned i = 0; i < m_channels.size(); ++i)
m_channels[i]->setLength(newLength);
m_length = newLength;
}
void AudioBus::zero()
{
for (unsigned i = 0; i < m_channels.size(); ++i)
m_channels[i]->zero();
}
AudioChannel* AudioBus::channelByType(unsigned channelType)
{
// For now we only support canonical channel layouts...
if (m_layout != LayoutCanonical)
return 0;
switch (numberOfChannels()) {
case 1: // mono
if (channelType == ChannelMono || channelType == ChannelLeft)
return channel(0);
return 0;
case 2: // stereo
switch (channelType) {
case ChannelLeft: return channel(0);
case ChannelRight: return channel(1);
default: return 0;
}
case 4: // quad
switch (channelType) {
case ChannelLeft: return channel(0);
case ChannelRight: return channel(1);
case ChannelSurroundLeft: return channel(2);
case ChannelSurroundRight: return channel(3);
default: return 0;
}
case 5: // 5.0
switch (channelType) {
case ChannelLeft: return channel(0);
case ChannelRight: return channel(1);
case ChannelCenter: return channel(2);
case ChannelSurroundLeft: return channel(3);
case ChannelSurroundRight: return channel(4);
default: return 0;
}
case 6: // 5.1
switch (channelType) {
case ChannelLeft: return channel(0);
case ChannelRight: return channel(1);
case ChannelCenter: return channel(2);
case ChannelLFE: return channel(3);
case ChannelSurroundLeft: return channel(4);
case ChannelSurroundRight: return channel(5);
default: return 0;
}
}
ASSERT_NOT_REACHED();
return 0;
}
const AudioChannel* AudioBus::channelByType(unsigned type) const
{
return const_cast<AudioBus*>(this)->channelByType(type);
}
// Returns true if the channel count and frame-size match.
bool AudioBus::topologyMatches(const AudioBus& bus) const
{
if (numberOfChannels() != bus.numberOfChannels())
return false; // channel mismatch
// Make sure source bus has enough frames.
if (length() > bus.length())
return false; // frame-size mismatch
return true;
}
RefPtr<AudioBus> AudioBus::createBufferFromRange(const AudioBus* sourceBuffer, unsigned startFrame, unsigned endFrame)
{
size_t numberOfSourceFrames = sourceBuffer->length();
unsigned numberOfChannels = sourceBuffer->numberOfChannels();
// Sanity checking
bool isRangeSafe = startFrame < endFrame && endFrame <= numberOfSourceFrames;
ASSERT(isRangeSafe);
if (!isRangeSafe)
return nullptr;
size_t rangeLength = endFrame - startFrame;
RefPtr<AudioBus> audioBus = create(numberOfChannels, rangeLength);
audioBus->setSampleRate(sourceBuffer->sampleRate());
for (unsigned i = 0; i < numberOfChannels; ++i)
audioBus->channel(i)->copyFromRange(sourceBuffer->channel(i), startFrame, endFrame);
return audioBus;
}
float AudioBus::maxAbsValue() const
{
float max = 0.0f;
for (unsigned i = 0; i < numberOfChannels(); ++i) {
const AudioChannel* channel = this->channel(i);
max = std::max(max, channel->maxAbsValue());
}
return max;
}
void AudioBus::normalize()
{
float max = maxAbsValue();
if (max)
scale(1.0f / max);
}
void AudioBus::scale(float scale)
{
for (unsigned i = 0; i < numberOfChannels(); ++i)
channel(i)->scale(scale);
}
void AudioBus::copyFromRange(const AudioBus& sourceBus, unsigned startFrame, unsigned endFrame)
{
if (!topologyMatches(sourceBus)) {
ASSERT_NOT_REACHED();
zero();
return;
}
size_t numberOfSourceFrames = sourceBus.length();
bool isRangeSafe = startFrame < endFrame && endFrame <= numberOfSourceFrames;
ASSERT(isRangeSafe);
if (!isRangeSafe) {
zero();
return;
}
unsigned numberOfChannels = this->numberOfChannels();
ASSERT(numberOfChannels <= MaxBusChannels);
if (numberOfChannels > MaxBusChannels) {
zero();
return;
}
for (unsigned i = 0; i < numberOfChannels; ++i)
channel(i)->copyFromRange(sourceBus.channel(i), startFrame, endFrame);
}
void AudioBus::copyFrom(const AudioBus& sourceBus, ChannelInterpretation channelInterpretation)
{
if (&sourceBus == this)
return;
// Copying bus is equivalent to zeroing and then summing.
zero();
sumFrom(sourceBus, channelInterpretation);
}
void AudioBus::sumFrom(const AudioBus& sourceBus, ChannelInterpretation channelInterpretation)
{
if (&sourceBus == this)
return;
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if (numberOfDestinationChannels == numberOfSourceChannels) {
for (unsigned i = 0; i < numberOfSourceChannels; ++i)
channel(i)->sumFrom(sourceBus.channel(i));
} else {
switch (channelInterpretation) {
case ChannelInterpretation::Speakers:
if (numberOfSourceChannels < numberOfDestinationChannels)
speakersSumFromByUpMixing(sourceBus);
else
speakersSumFromByDownMixing(sourceBus);
break;
case ChannelInterpretation::Discrete:
discreteSumFrom(sourceBus);
break;
default:
ASSERT_NOT_REACHED();
}
}
}
void AudioBus::speakersSumFromByUpMixing(const AudioBus& sourceBus)
{
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if ((numberOfSourceChannels == 1 && numberOfDestinationChannels == 2)
|| (numberOfSourceChannels == 1 && numberOfDestinationChannels == 4)) {
// Handle mono -> stereo case (summing mono channel into both left and right).
auto* sourceL = sourceBus.channelByType(ChannelLeft);
channelByType(ChannelLeft)->sumFrom(sourceL);
channelByType(ChannelRight)->sumFrom(sourceL);
} else if (numberOfSourceChannels == 1 && numberOfDestinationChannels == 6) {
// Handle mono -> 5.1 case, sum mono channel into center.
channelByType(ChannelCenter)->sumFrom(sourceBus.channelByType(ChannelLeft));
} else if ((numberOfSourceChannels == 2 && numberOfDestinationChannels == 4)
|| (numberOfSourceChannels == 2 && numberOfDestinationChannels == 6)) {
// Up-mixing: 2 -> 4, 2 -> 5.1
channelByType(ChannelLeft)->sumFrom(sourceBus.channelByType(ChannelLeft));
channelByType(ChannelRight)->sumFrom(sourceBus.channelByType(ChannelRight));
} else if (numberOfSourceChannels == 4 && numberOfDestinationChannels == 6) {
// Up-mixing: 4 -> 5.1
channelByType(ChannelLeft)->sumFrom(sourceBus.channelByType(ChannelLeft));
channelByType(ChannelRight)->sumFrom(sourceBus.channelByType(ChannelRight));
channelByType(ChannelSurroundLeft)->sumFrom(sourceBus.channelByType(ChannelSurroundLeft));
channelByType(ChannelSurroundRight)->sumFrom(sourceBus.channelByType(ChannelSurroundRight));
} else {
// Fallback for unknown combinations.
discreteSumFrom(sourceBus);
}
}
void AudioBus::speakersSumFromByDownMixing(const AudioBus& sourceBus)
{
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if (numberOfSourceChannels == 2 && numberOfDestinationChannels == 1) {
// Handle stereo -> mono case. output += 0.5 * (input.L + input.R).
AudioBus& sourceBusSafe = const_cast<AudioBus&>(sourceBus);
const float* sourceL = sourceBusSafe.channelByType(ChannelLeft)->data();
const float* sourceR = sourceBusSafe.channelByType(ChannelRight)->data();
float* destination = channelByType(ChannelLeft)->mutableData();
VectorMath::multiplyByScalarThenAddToOutput(sourceL, 0.5, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceR, 0.5, destination, length());
} else if (numberOfSourceChannels == 4 && numberOfDestinationChannels == 1) {
// Down-mixing: 4 -> 1
// output = 0.25 * (input.L + input.R + input.SL + input.SR)
auto* sourceL = sourceBus.channelByType(ChannelLeft)->data();
auto* sourceR = sourceBus.channelByType(ChannelRight)->data();
auto* sourceSL = sourceBus.channelByType(ChannelSurroundLeft)->data();
auto* sourceSR = sourceBus.channelByType(ChannelSurroundRight)->data();
auto* destination = channelByType(ChannelLeft)->mutableData();
VectorMath::multiplyByScalarThenAddToOutput(sourceL, 0.25, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceR, 0.25, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSL, 0.25, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSR, 0.25, destination, length());
} else if (numberOfSourceChannels == 6 && numberOfDestinationChannels == 1) {
// Down-mixing: 5.1 -> 1
// output = sqrt(1/2) * (input.L + input.R) + input.C + 0.5 * (input.SL + input.SR)
auto* sourceL = sourceBus.channelByType(ChannelLeft)->data();
auto* sourceR = sourceBus.channelByType(ChannelRight)->data();
auto* sourceC = sourceBus.channelByType(ChannelCenter)->data();
auto* sourceSL = sourceBus.channelByType(ChannelSurroundLeft)->data();
auto* sourceSR = sourceBus.channelByType(ChannelSurroundRight)->data();
auto* destination = channelByType(ChannelLeft)->mutableData();
float scaleSqrtHalf = sqrtf(0.5);
VectorMath::multiplyByScalarThenAddToOutput(sourceL, scaleSqrtHalf, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceR, scaleSqrtHalf, destination, length());
VectorMath::add(sourceC, destination, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSL, 0.5, destination, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSR, 0.5, destination, length());
} else if (numberOfSourceChannels == 4 && numberOfDestinationChannels == 2) {
// Down-mixing: 4 -> 2
// output.L = 0.5 * (input.L + input.SL)
// output.R = 0.5 * (input.R + input.SR)
auto* sourceL = sourceBus.channelByType(ChannelLeft)->data();
auto* sourceR = sourceBus.channelByType(ChannelRight)->data();
auto* sourceSL = sourceBus.channelByType(ChannelSurroundLeft)->data();
auto* sourceSR = sourceBus.channelByType(ChannelSurroundRight)->data();
auto* destinationL = channelByType(ChannelLeft)->mutableData();
auto* destinationR = channelByType(ChannelRight)->mutableData();
VectorMath::multiplyByScalarThenAddToOutput(sourceL, 0.5, destinationL, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSL, 0.5, destinationL, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceR, 0.5, destinationR, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSR, 0.5, destinationR, length());
} else if (numberOfSourceChannels == 6 && numberOfDestinationChannels == 2) {
// Down-mixing: 5.1 -> 2
// output.L = input.L + sqrt(1/2) * (input.C + input.SL)
// output.R = input.R + sqrt(1/2) * (input.C + input.SR)
auto* sourceL = sourceBus.channelByType(ChannelLeft)->data();
auto* sourceR = sourceBus.channelByType(ChannelRight)->data();
auto* sourceC = sourceBus.channelByType(ChannelCenter)->data();
auto* sourceSL = sourceBus.channelByType(ChannelSurroundLeft)->data();
auto* sourceSR = sourceBus.channelByType(ChannelSurroundRight)->data();
float* destinationL = channelByType(ChannelLeft)->mutableData();
float* destinationR = channelByType(ChannelRight)->mutableData();
float scaleSqrtHalf = sqrtf(0.5);
VectorMath::add(sourceL, destinationL, destinationL, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceC, scaleSqrtHalf, destinationL, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSL, scaleSqrtHalf, destinationL, length());
VectorMath::add(sourceR, destinationR, destinationR, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceC, scaleSqrtHalf, destinationR, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceSR, scaleSqrtHalf, destinationR, length());
} else if (numberOfSourceChannels == 6 && numberOfDestinationChannels == 4) {
// Down-mixing: 5.1 -> 4
// output.L = input.L + sqrt(1/2) * input.C
// output.R = input.R + sqrt(1/2) * input.C
// output.SL = input.SL
// output.SR = input.SR
auto* sourceL = sourceBus.channelByType(ChannelLeft)->data();
auto* sourceR = sourceBus.channelByType(ChannelRight)->data();
auto* sourceC = sourceBus.channelByType(ChannelCenter)->data();
auto* destinationL = channelByType(ChannelLeft)->mutableData();
auto* destinationR = channelByType(ChannelRight)->mutableData();
auto scaleSqrtHalf = sqrtf(0.5);
VectorMath::add(sourceL, destinationL, destinationL, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceC, scaleSqrtHalf, destinationL, length());
VectorMath::add(sourceR, destinationR, destinationR, length());
VectorMath::multiplyByScalarThenAddToOutput(sourceC, scaleSqrtHalf, destinationR, length());
channel(2)->sumFrom(sourceBus.channel(4));
channel(3)->sumFrom(sourceBus.channel(5));
} else {
// Fallback for unknown combinations.
discreteSumFrom(sourceBus);
}
}
void AudioBus::discreteSumFrom(const AudioBus& sourceBus)
{
unsigned numberOfSourceChannels = sourceBus.numberOfChannels();
unsigned numberOfDestinationChannels = numberOfChannels();
if (numberOfDestinationChannels < numberOfSourceChannels) {
// Down-mix by summing channels and dropping the remaining.
for (unsigned i = 0; i < numberOfDestinationChannels; ++i)
channel(i)->sumFrom(sourceBus.channel(i));
} else if (numberOfDestinationChannels > numberOfSourceChannels) {
// Up-mix by summing as many channels as we have.
for (unsigned i = 0; i < numberOfSourceChannels; ++i)
channel(i)->sumFrom(sourceBus.channel(i));
}
}
void AudioBus::copyWithGainFrom(const AudioBus& sourceBus, float gain)
{
if (!topologyMatches(sourceBus)) {
ASSERT_NOT_REACHED();
zero();
return;
}
if (sourceBus.isSilent()) {
zero();
return;
}
unsigned numberOfChannels = this->numberOfChannels();
ASSERT(numberOfChannels <= MaxBusChannels);
if (numberOfChannels > MaxBusChannels)
return;
// If it is copying from the same bus and no need to change gain, just return.
if (this == &sourceBus && gain == 1)
return;
AudioBus& sourceBusSafe = const_cast<AudioBus&>(sourceBus);
const float* sources[MaxBusChannels];
float* destinations[MaxBusChannels];
for (unsigned i = 0; i < numberOfChannels; ++i) {
sources[i] = sourceBusSafe.channel(i)->data();
destinations[i] = channel(i)->mutableData();
}
unsigned framesToProcess = length();
// Handle gains of 0 and 1 (exactly) specially.
if (gain == 1) {
for (unsigned channelIndex = 0; channelIndex < numberOfChannels; ++channelIndex)
memcpy(destinations[channelIndex], sources[channelIndex], framesToProcess * sizeof(*destinations[channelIndex]));
} else if (!gain) {
for (unsigned channelIndex = 0; channelIndex < numberOfChannels; ++channelIndex)
memset(destinations[channelIndex], 0, framesToProcess * sizeof(*destinations[channelIndex]));
} else {
for (unsigned channelIndex = 0; channelIndex < numberOfChannels; ++channelIndex)
VectorMath::multiplyByScalar(sources[channelIndex], gain, destinations[channelIndex], framesToProcess);
}
}
void AudioBus::copyWithSampleAccurateGainValuesFrom(const AudioBus &sourceBus, float* gainValues, unsigned numberOfGainValues)
{
// Make sure we're processing from the same type of bus.
// We *are* able to process from mono -> stereo
if (sourceBus.numberOfChannels() != 1 && !topologyMatches(sourceBus)) {
ASSERT_NOT_REACHED();
return;
}
if (!gainValues || numberOfGainValues > sourceBus.length()) {
ASSERT_NOT_REACHED();
return;
}
if (sourceBus.length() == numberOfGainValues && sourceBus.length() == length() && sourceBus.isSilent()) {
zero();
return;
}
// We handle both the 1 -> N and N -> N case here.
const float* source = sourceBus.channel(0)->data();
for (unsigned channelIndex = 0; channelIndex < numberOfChannels(); ++channelIndex) {
if (sourceBus.numberOfChannels() == numberOfChannels())
source = sourceBus.channel(channelIndex)->data();
float* destination = channel(channelIndex)->mutableData();
VectorMath::multiply(source, gainValues, destination, numberOfGainValues);
}
}
RefPtr<AudioBus> AudioBus::createBySampleRateConverting(const AudioBus* sourceBus, bool mixToMono, double newSampleRate)
{
// sourceBus's sample-rate must be known.
ASSERT(sourceBus && sourceBus->sampleRate());
if (!sourceBus || !sourceBus->sampleRate())
return nullptr;
double sourceSampleRate = sourceBus->sampleRate();
double destinationSampleRate = newSampleRate;
double sampleRateRatio = sourceSampleRate / destinationSampleRate;
unsigned numberOfSourceChannels = sourceBus->numberOfChannels();
if (numberOfSourceChannels == 1)
mixToMono = false; // already mono
if (sourceSampleRate == destinationSampleRate) {
// No sample-rate conversion is necessary.
if (mixToMono)
return AudioBus::createByMixingToMono(sourceBus);
// Return exact copy.
return AudioBus::createBufferFromRange(sourceBus, 0, sourceBus->length());
}
if (sourceBus->isSilent()) {
RefPtr<AudioBus> silentBus = create(numberOfSourceChannels, sourceBus->length() / sampleRateRatio);
silentBus->setSampleRate(newSampleRate);
return silentBus;
}
// First, mix to mono (if necessary) then sample-rate convert.
const AudioBus* resamplerSourceBus;
RefPtr<AudioBus> mixedMonoBus;
if (mixToMono) {
mixedMonoBus = AudioBus::createByMixingToMono(sourceBus);
resamplerSourceBus = mixedMonoBus.get();
} else {
// Directly resample without down-mixing.
resamplerSourceBus = sourceBus;
}
// Calculate destination length based on the sample-rates.
int sourceLength = resamplerSourceBus->length();
int destinationLength = sourceLength / sampleRateRatio;
// Create destination bus with same number of channels.
unsigned numberOfDestinationChannels = resamplerSourceBus->numberOfChannels();
RefPtr<AudioBus> destinationBus = create(numberOfDestinationChannels, destinationLength);
// Sample-rate convert each channel.
for (unsigned i = 0; i < numberOfDestinationChannels; ++i) {
const float* source = resamplerSourceBus->channel(i)->data();
float* destination = destinationBus->channel(i)->mutableData();
SincResampler::processBuffer(source, destination, sourceLength, sampleRateRatio);
}
destinationBus->clearSilentFlag();
destinationBus->setSampleRate(newSampleRate);
return destinationBus;
}
RefPtr<AudioBus> AudioBus::createByMixingToMono(const AudioBus* sourceBus)
{
if (sourceBus->isSilent())
return create(1, sourceBus->length());
switch (sourceBus->numberOfChannels()) {
case 1:
// Simply create an exact copy.
return AudioBus::createBufferFromRange(sourceBus, 0, sourceBus->length());
case 2:
{
unsigned n = sourceBus->length();
RefPtr<AudioBus> destinationBus = create(1, n);
const float* sourceL = sourceBus->channel(0)->data();
const float* sourceR = sourceBus->channel(1)->data();
float* destination = destinationBus->channel(0)->mutableData();
// Do the mono mixdown.
VectorMath::addVectorsThenMultiplyByScalar(sourceL, sourceR, 0.5, destination, n);
destinationBus->clearSilentFlag();
destinationBus->setSampleRate(sourceBus->sampleRate());
return destinationBus;
}
}
ASSERT_NOT_REACHED();
return nullptr;
}
bool AudioBus::isSilent() const
{
for (size_t i = 0; i < m_channels.size(); ++i) {
if (!m_channels[i]->isSilent())
return false;
}
return true;
}
void AudioBus::clearSilentFlag()
{
for (size_t i = 0; i < m_channels.size(); ++i)
m_channels[i]->clearSilentFlag();
}
} // WebCore
#endif // ENABLE(WEB_AUDIO)