blob: 481550fb9bb6edf1ad33e91f247623760f0051c7 [file] [log] [blame]
// -*- mode: c++; c-basic-offset: 4 -*-
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007 Apple Inc. All rights reserved.
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "collector.h"
#include "ExecState.h"
#include "JSGlobalObject.h"
#include "internal.h"
#include "list.h"
#include "value.h"
#include <algorithm>
#include <setjmp.h>
#include <stdlib.h>
#include <wtf/FastMalloc.h>
#include <wtf/HashCountedSet.h>
#include <wtf/UnusedParam.h>
#if USE(MULTIPLE_THREADS)
#include <pthread.h>
#endif
#if PLATFORM(DARWIN)
#include <mach/mach_port.h>
#include <mach/mach_init.h>
#include <mach/task.h>
#include <mach/thread_act.h>
#include <mach/vm_map.h>
#include "CollectorHeapIntrospector.h"
#elif PLATFORM(WIN_OS)
#include <windows.h>
#elif PLATFORM(UNIX)
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>
#if PLATFORM(SOLARIS)
#include <thread.h>
#endif
#if HAVE(PTHREAD_NP_H)
#include <pthread_np.h>
#else
#include <pthread.h>
#endif
#endif
#define DEBUG_COLLECTOR 0
using std::max;
namespace KJS {
// tunable parameters
const size_t SPARE_EMPTY_BLOCKS = 2;
const size_t MIN_ARRAY_SIZE = 14;
const size_t GROWTH_FACTOR = 2;
const size_t LOW_WATER_FACTOR = 4;
const size_t ALLOCATIONS_PER_COLLECTION = 4000;
enum OperationInProgress { NoOperation, Allocation, Collection };
struct CollectorHeap {
CollectorBlock** blocks;
size_t numBlocks;
size_t usedBlocks;
size_t firstBlockWithPossibleSpace;
size_t numLiveObjects;
size_t numLiveObjectsAtLastCollect;
size_t extraCost;
OperationInProgress operationInProgress;
};
static CollectorHeap primaryHeap = { 0, 0, 0, 0, 0, 0, 0, NoOperation };
static CollectorHeap numberHeap = { 0, 0, 0, 0, 0, 0, 0, NoOperation };
// FIXME: I don't think this needs to be a static data member of the Collector class.
// Just a private global like "heap" above would be fine.
size_t Collector::mainThreadOnlyObjectCount = 0;
static CollectorBlock* allocateBlock()
{
#if PLATFORM(DARWIN)
vm_address_t address = 0;
vm_map(current_task(), &address, BLOCK_SIZE, BLOCK_OFFSET_MASK, VM_FLAGS_ANYWHERE, MEMORY_OBJECT_NULL, 0, FALSE, VM_PROT_DEFAULT, VM_PROT_DEFAULT, VM_INHERIT_DEFAULT);
#elif PLATFORM(WIN_OS)
// windows virtual address granularity is naturally 64k
LPVOID address = VirtualAlloc(NULL, BLOCK_SIZE, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#elif HAVE(POSIX_MEMALIGN)
void* address;
posix_memalign(&address, BLOCK_SIZE, BLOCK_SIZE);
memset(address, 0, BLOCK_SIZE);
#else
static size_t pagesize = getpagesize();
size_t extra = 0;
if (BLOCK_SIZE > pagesize)
extra = BLOCK_SIZE - pagesize;
void* mmapResult = mmap(NULL, BLOCK_SIZE + extra, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0);
uintptr_t address = reinterpret_cast<uintptr_t>(mmapResult);
size_t adjust = 0;
if ((address & BLOCK_OFFSET_MASK) != 0)
adjust = BLOCK_SIZE - (address & BLOCK_OFFSET_MASK);
if (adjust > 0)
munmap(reinterpret_cast<void*>(address), adjust);
if (adjust < extra)
munmap(reinterpret_cast<void*>(address + adjust + BLOCK_SIZE), extra - adjust);
address += adjust;
memset(reinterpret_cast<void*>(address), 0, BLOCK_SIZE);
#endif
return reinterpret_cast<CollectorBlock*>(address);
}
static void freeBlock(CollectorBlock* block)
{
#if PLATFORM(DARWIN)
vm_deallocate(current_task(), reinterpret_cast<vm_address_t>(block), BLOCK_SIZE);
#elif PLATFORM(WIN_OS)
VirtualFree(block, BLOCK_SIZE, MEM_RELEASE);
#elif HAVE(POSIX_MEMALIGN)
free(block);
#else
munmap(block, BLOCK_SIZE);
#endif
}
void Collector::recordExtraCost(size_t cost)
{
// Our frequency of garbage collection tries to balance memory use against speed
// by collecting based on the number of newly created values. However, for values
// that hold on to a great deal of memory that's not in the form of other JS values,
// that is not good enough - in some cases a lot of those objects can pile up and
// use crazy amounts of memory without a GC happening. So we track these extra
// memory costs. Only unusually large objects are noted, and we only keep track
// of this extra cost until the next GC. In garbage collected languages, most values
// are either very short lived temporaries, or have extremely long lifetimes. So
// if a large value survives one garbage collection, there is not much point to
// collecting more frequently as long as it stays alive.
// NOTE: we target the primaryHeap unconditionally as JSNumber doesn't modify cost
primaryHeap.extraCost += cost;
}
template <Collector::HeapType heapType> struct HeapConstants;
template <> struct HeapConstants<Collector::PrimaryHeap> {
static const size_t cellSize = CELL_SIZE;
static const size_t cellsPerBlock = CELLS_PER_BLOCK;
static const size_t bitmapShift = 0;
typedef CollectorCell Cell;
typedef CollectorBlock Block;
};
template <> struct HeapConstants<Collector::NumberHeap> {
static const size_t cellSize = SMALL_CELL_SIZE;
static const size_t cellsPerBlock = SMALL_CELLS_PER_BLOCK;
static const size_t bitmapShift = 1;
typedef SmallCollectorCell Cell;
typedef SmallCellCollectorBlock Block;
};
template <Collector::HeapType heapType> void* Collector::heapAllocate(size_t s)
{
typedef typename HeapConstants<heapType>::Block Block;
typedef typename HeapConstants<heapType>::Cell Cell;
CollectorHeap& heap = heapType == PrimaryHeap ? primaryHeap : numberHeap;
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
ASSERT(s <= HeapConstants<heapType>::cellSize);
UNUSED_PARAM(s); // s is now only used for the above assert
ASSERT(heap.operationInProgress == NoOperation);
ASSERT(heapType == PrimaryHeap || heap.extraCost == 0);
// FIXME: If another global variable access here doesn't hurt performance
// too much, we could abort() in NDEBUG builds, which could help ensure we
// don't spend any time debugging cases where we allocate inside an object's
// deallocation code.
size_t numLiveObjects = heap.numLiveObjects;
size_t usedBlocks = heap.usedBlocks;
size_t i = heap.firstBlockWithPossibleSpace;
// if we have a huge amount of extra cost, we'll try to collect even if we still have
// free cells left.
if (heapType == PrimaryHeap && heap.extraCost > ALLOCATIONS_PER_COLLECTION) {
size_t numLiveObjectsAtLastCollect = heap.numLiveObjectsAtLastCollect;
size_t numNewObjects = numLiveObjects - numLiveObjectsAtLastCollect;
const size_t newCost = numNewObjects + heap.extraCost;
if (newCost >= ALLOCATIONS_PER_COLLECTION && newCost >= numLiveObjectsAtLastCollect)
goto collect;
}
ASSERT(heap.operationInProgress == NoOperation);
#ifndef NDEBUG
// FIXME: Consider doing this in NDEBUG builds too (see comment above).
heap.operationInProgress = Allocation;
#endif
scan:
Block* targetBlock;
size_t targetBlockUsedCells;
if (i != usedBlocks) {
targetBlock = (Block*)heap.blocks[i];
targetBlockUsedCells = targetBlock->usedCells;
ASSERT(targetBlockUsedCells <= HeapConstants<heapType>::cellsPerBlock);
while (targetBlockUsedCells == HeapConstants<heapType>::cellsPerBlock) {
if (++i == usedBlocks)
goto collect;
targetBlock = (Block*)heap.blocks[i];
targetBlockUsedCells = targetBlock->usedCells;
ASSERT(targetBlockUsedCells <= HeapConstants<heapType>::cellsPerBlock);
}
heap.firstBlockWithPossibleSpace = i;
} else {
collect:
size_t numLiveObjectsAtLastCollect = heap.numLiveObjectsAtLastCollect;
size_t numNewObjects = numLiveObjects - numLiveObjectsAtLastCollect;
const size_t newCost = numNewObjects + heap.extraCost;
if (newCost >= ALLOCATIONS_PER_COLLECTION && newCost >= numLiveObjectsAtLastCollect) {
#ifndef NDEBUG
heap.operationInProgress = NoOperation;
#endif
bool collected = collect();
#ifndef NDEBUG
heap.operationInProgress = Allocation;
#endif
if (collected) {
numLiveObjects = heap.numLiveObjects;
usedBlocks = heap.usedBlocks;
i = heap.firstBlockWithPossibleSpace;
goto scan;
}
}
// didn't find a block, and GC didn't reclaim anything, need to allocate a new block
size_t numBlocks = heap.numBlocks;
if (usedBlocks == numBlocks) {
numBlocks = max(MIN_ARRAY_SIZE, numBlocks * GROWTH_FACTOR);
heap.numBlocks = numBlocks;
heap.blocks = static_cast<CollectorBlock **>(fastRealloc(heap.blocks, numBlocks * sizeof(CollectorBlock *)));
}
targetBlock = (Block*)allocateBlock();
targetBlock->freeList = targetBlock->cells;
targetBlockUsedCells = 0;
heap.blocks[usedBlocks] = (CollectorBlock*)targetBlock;
heap.usedBlocks = usedBlocks + 1;
heap.firstBlockWithPossibleSpace = usedBlocks;
}
// find a free spot in the block and detach it from the free list
Cell *newCell = targetBlock->freeList;
// "next" field is a cell offset -- 0 means next cell, so a zeroed block is already initialized
targetBlock->freeList = (newCell + 1) + newCell->u.freeCell.next;
targetBlock->usedCells = static_cast<uint32_t>(targetBlockUsedCells + 1);
heap.numLiveObjects = numLiveObjects + 1;
#ifndef NDEBUG
// FIXME: Consider doing this in NDEBUG builds too (see comment above).
heap.operationInProgress = NoOperation;
#endif
return newCell;
}
void* Collector::allocate(size_t s)
{
return heapAllocate<PrimaryHeap>(s);
}
void* Collector::allocateNumber(size_t s)
{
return heapAllocate<NumberHeap>(s);
}
static inline void* currentThreadStackBase()
{
#if PLATFORM(DARWIN)
pthread_t thread = pthread_self();
return pthread_get_stackaddr_np(thread);
#elif PLATFORM(WIN_OS) && PLATFORM(X86) && COMPILER(MSVC)
// offset 0x18 from the FS segment register gives a pointer to
// the thread information block for the current thread
NT_TIB* pTib;
__asm {
MOV EAX, FS:[18h]
MOV pTib, EAX
}
return (void*)pTib->StackBase;
#elif PLATFORM(WIN_OS) && PLATFORM(X86_64) && COMPILER(MSVC)
PNT_TIB64 pTib = reinterpret_cast<PNT_TIB64>(NtCurrentTeb());
return (void*)pTib->StackBase;
#elif PLATFORM(WIN_OS) && PLATFORM(X86) && COMPILER(GCC)
// offset 0x18 from the FS segment register gives a pointer to
// the thread information block for the current thread
NT_TIB* pTib;
asm ( "movl %%fs:0x18, %0\n"
: "=r" (pTib)
);
return (void*)pTib->StackBase;
#elif PLATFORM(SOLARIS)
stack_t s;
thr_stksegment(&s);
return s.ss_sp;
#elif PLATFORM(UNIX)
static void* stackBase = 0;
static size_t stackSize = 0;
static pthread_t stackThread;
pthread_t thread = pthread_self();
if (stackBase == 0 || thread != stackThread) {
pthread_attr_t sattr;
pthread_attr_init(&sattr);
#if HAVE(PTHREAD_NP_H)
// e.g. on FreeBSD 5.4, neundorf@kde.org
pthread_attr_get_np(thread, &sattr);
#else
// FIXME: this function is non-portable; other POSIX systems may have different np alternatives
pthread_getattr_np(thread, &sattr);
#endif
int rc = pthread_attr_getstack(&sattr, &stackBase, &stackSize);
(void)rc; // FIXME: Deal with error code somehow? Seems fatal.
ASSERT(stackBase);
pthread_attr_destroy(&sattr);
stackThread = thread;
}
return static_cast<char*>(stackBase) + stackSize;
#else
#error Need a way to get the stack base on this platform
#endif
}
#if USE(MULTIPLE_THREADS)
static pthread_t mainThread;
#endif
void Collector::registerAsMainThread()
{
#if USE(MULTIPLE_THREADS)
mainThread = pthread_self();
#endif
}
static inline bool onMainThread()
{
#if USE(MULTIPLE_THREADS)
#if PLATFORM(DARWIN)
return pthread_main_np();
#else
return !!pthread_equal(pthread_self(), mainThread);
#endif
#else
return true;
#endif
}
#if USE(MULTIPLE_THREADS)
#if PLATFORM(DARWIN)
typedef mach_port_t PlatformThread;
#elif PLATFORM(WIN_OS)
struct PlatformThread {
PlatformThread(DWORD _id, HANDLE _handle) : id(_id), handle(_handle) {}
DWORD id;
HANDLE handle;
};
#endif
static inline PlatformThread getCurrentPlatformThread()
{
#if PLATFORM(DARWIN)
return pthread_mach_thread_np(pthread_self());
#elif PLATFORM(WIN_OS)
HANDLE threadHandle = pthread_getw32threadhandle_np(pthread_self());
return PlatformThread(GetCurrentThreadId(), threadHandle);
#endif
}
class Collector::Thread {
public:
Thread(pthread_t pthread, const PlatformThread& platThread, void* base)
: posixThread(pthread), platformThread(platThread), stackBase(base) {}
Thread* next;
pthread_t posixThread;
PlatformThread platformThread;
void* stackBase;
};
pthread_key_t registeredThreadKey;
pthread_once_t registeredThreadKeyOnce = PTHREAD_ONCE_INIT;
Collector::Thread* registeredThreads;
static void destroyRegisteredThread(void* data)
{
Collector::Thread* thread = (Collector::Thread*)data;
// Can't use JSLock convenience object here because we don't want to re-register
// an exiting thread.
JSLock::lock();
if (registeredThreads == thread) {
registeredThreads = registeredThreads->next;
} else {
Collector::Thread *last = registeredThreads;
Collector::Thread *t;
for (t = registeredThreads->next; t != NULL; t = t->next) {
if (t == thread) {
last->next = t->next;
break;
}
last = t;
}
ASSERT(t); // If t is NULL, we never found ourselves in the list.
}
JSLock::unlock();
delete thread;
}
static void initializeRegisteredThreadKey()
{
pthread_key_create(&registeredThreadKey, destroyRegisteredThread);
}
void Collector::registerThread()
{
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
pthread_once(&registeredThreadKeyOnce, initializeRegisteredThreadKey);
if (!pthread_getspecific(registeredThreadKey)) {
#if PLATFORM(DARWIN)
if (onMainThread())
CollectorHeapIntrospector::init(&primaryHeap, &numberHeap);
#endif
Collector::Thread *thread = new Collector::Thread(pthread_self(), getCurrentPlatformThread(), currentThreadStackBase());
thread->next = registeredThreads;
registeredThreads = thread;
pthread_setspecific(registeredThreadKey, thread);
}
}
#endif
#define IS_POINTER_ALIGNED(p) (((intptr_t)(p) & (sizeof(char *) - 1)) == 0)
// cell size needs to be a power of two for this to be valid
#define IS_HALF_CELL_ALIGNED(p) (((intptr_t)(p) & (CELL_MASK >> 1)) == 0)
void Collector::markStackObjectsConservatively(void *start, void *end)
{
if (start > end) {
void* tmp = start;
start = end;
end = tmp;
}
ASSERT(((char*)end - (char*)start) < 0x1000000);
ASSERT(IS_POINTER_ALIGNED(start));
ASSERT(IS_POINTER_ALIGNED(end));
char** p = (char**)start;
char** e = (char**)end;
size_t usedPrimaryBlocks = primaryHeap.usedBlocks;
size_t usedNumberBlocks = numberHeap.usedBlocks;
CollectorBlock **primaryBlocks = primaryHeap.blocks;
CollectorBlock **numberBlocks = numberHeap.blocks;
const size_t lastCellOffset = sizeof(CollectorCell) * (CELLS_PER_BLOCK - 1);
while (p != e) {
char* x = *p++;
if (IS_HALF_CELL_ALIGNED(x) && x) {
uintptr_t xAsBits = reinterpret_cast<uintptr_t>(x);
xAsBits &= CELL_ALIGN_MASK;
uintptr_t offset = xAsBits & BLOCK_OFFSET_MASK;
CollectorBlock* blockAddr = reinterpret_cast<CollectorBlock*>(xAsBits - offset);
// Mark the the number heap, we can mark these Cells directly to avoid the virtual call cost
for (size_t block = 0; block < usedNumberBlocks; block++) {
if ((numberBlocks[block] == blockAddr) & (offset <= lastCellOffset)) {
Collector::markCell(reinterpret_cast<JSCell*>(xAsBits));
goto endMarkLoop;
}
}
// Mark the primary heap
for (size_t block = 0; block < usedPrimaryBlocks; block++) {
if ((primaryBlocks[block] == blockAddr) & (offset <= lastCellOffset)) {
if (((CollectorCell*)xAsBits)->u.freeCell.zeroIfFree != 0) {
JSCell* imp = reinterpret_cast<JSCell*>(xAsBits);
if (!imp->marked())
imp->mark();
}
break;
}
}
endMarkLoop:
;
}
}
}
void Collector::markCurrentThreadConservatively()
{
// setjmp forces volatile registers onto the stack
jmp_buf registers;
#if COMPILER(MSVC)
#pragma warning(push)
#pragma warning(disable: 4611)
#endif
setjmp(registers);
#if COMPILER(MSVC)
#pragma warning(pop)
#endif
void* dummy;
void* stackPointer = &dummy;
void* stackBase = currentThreadStackBase();
markStackObjectsConservatively(stackPointer, stackBase);
}
#if USE(MULTIPLE_THREADS)
static inline void suspendThread(const PlatformThread& platformThread)
{
#if PLATFORM(DARWIN)
thread_suspend(platformThread);
#elif PLATFORM(WIN_OS)
SuspendThread(platformThread.handle);
#else
#error Need a way to suspend threads on this platform
#endif
}
static inline void resumeThread(const PlatformThread& platformThread)
{
#if PLATFORM(DARWIN)
thread_resume(platformThread);
#elif PLATFORM(WIN_OS)
ResumeThread(platformThread.handle);
#else
#error Need a way to resume threads on this platform
#endif
}
typedef unsigned long usword_t; // word size, assumed to be either 32 or 64 bit
#if PLATFORM(DARWIN)
#if PLATFORM(X86)
typedef i386_thread_state_t PlatformThreadRegisters;
#elif PLATFORM(X86_64)
typedef x86_thread_state64_t PlatformThreadRegisters;
#elif PLATFORM(PPC)
typedef ppc_thread_state_t PlatformThreadRegisters;
#elif PLATFORM(PPC64)
typedef ppc_thread_state64_t PlatformThreadRegisters;
#else
#error Unknown Architecture
#endif
#elif PLATFORM(WIN_OS)&& PLATFORM(X86)
typedef CONTEXT PlatformThreadRegisters;
#else
#error Need a thread register struct for this platform
#endif
size_t getPlatformThreadRegisters(const PlatformThread& platformThread, PlatformThreadRegisters& regs)
{
#if PLATFORM(DARWIN)
#if PLATFORM(X86)
unsigned user_count = sizeof(regs)/sizeof(int);
thread_state_flavor_t flavor = i386_THREAD_STATE;
#elif PLATFORM(X86_64)
unsigned user_count = x86_THREAD_STATE64_COUNT;
thread_state_flavor_t flavor = x86_THREAD_STATE64;
#elif PLATFORM(PPC)
unsigned user_count = PPC_THREAD_STATE_COUNT;
thread_state_flavor_t flavor = PPC_THREAD_STATE;
#elif PLATFORM(PPC64)
unsigned user_count = PPC_THREAD_STATE64_COUNT;
thread_state_flavor_t flavor = PPC_THREAD_STATE64;
#else
#error Unknown Architecture
#endif
kern_return_t result = thread_get_state(platformThread, flavor, (thread_state_t)&regs, &user_count);
if (result != KERN_SUCCESS) {
WTFReportFatalError(__FILE__, __LINE__, WTF_PRETTY_FUNCTION,
"JavaScript garbage collection failed because thread_get_state returned an error (%d). This is probably the result of running inside Rosetta, which is not supported.", result);
CRASH();
}
return user_count * sizeof(usword_t);
// end PLATFORM(DARWIN)
#elif PLATFORM(WIN_OS) && PLATFORM(X86)
regs.ContextFlags = CONTEXT_INTEGER | CONTEXT_CONTROL | CONTEXT_SEGMENTS;
GetThreadContext(platformThread.handle, &regs);
return sizeof(CONTEXT);
#else
#error Need a way to get thread registers on this platform
#endif
}
static inline void* otherThreadStackPointer(const PlatformThreadRegisters& regs)
{
#if PLATFORM(DARWIN)
#if __DARWIN_UNIX03
#if PLATFORM(X86)
return (void*)regs.__esp;
#elif PLATFORM(X86_64)
return (void*)regs.__rsp;
#elif PLATFORM(PPC) || PLATFORM(PPC64)
return (void*)regs.__r1;
#else
#error Unknown Architecture
#endif
#else // !__DARWIN_UNIX03
#if PLATFORM(X86)
return (void*)regs.esp;
#elif PLATFORM(X86_64)
return (void*)regs.rsp;
#elif (PLATFORM(PPC) || PLATFORM(PPC64))
return (void*)regs.r1;
#else
#error Unknown Architecture
#endif
#endif // __DARWIN_UNIX03
// end PLATFORM(DARWIN)
#elif PLATFORM(X86) && PLATFORM(WIN_OS)
return (void*)(uintptr_t)regs.Esp;
#else
#error Need a way to get the stack pointer for another thread on this platform
#endif
}
void Collector::markOtherThreadConservatively(Thread* thread)
{
suspendThread(thread->platformThread);
PlatformThreadRegisters regs;
size_t regSize = getPlatformThreadRegisters(thread->platformThread, regs);
// mark the thread's registers
markStackObjectsConservatively((void*)&regs, (void*)((char*)&regs + regSize));
void* stackPointer = otherThreadStackPointer(regs);
markStackObjectsConservatively(stackPointer, thread->stackBase);
resumeThread(thread->platformThread);
}
#endif
void Collector::markStackObjectsConservatively()
{
markCurrentThreadConservatively();
#if USE(MULTIPLE_THREADS)
for (Thread *thread = registeredThreads; thread != NULL; thread = thread->next) {
if (!pthread_equal(thread->posixThread, pthread_self())) {
markOtherThreadConservatively(thread);
}
}
#endif
}
typedef HashCountedSet<JSCell*> ProtectCountSet;
static ProtectCountSet& protectedValues()
{
static ProtectCountSet staticProtectCountSet;
return staticProtectCountSet;
}
void Collector::protect(JSValue *k)
{
ASSERT(k);
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
if (JSImmediate::isImmediate(k))
return;
protectedValues().add(k->asCell());
}
void Collector::unprotect(JSValue *k)
{
ASSERT(k);
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
if (JSImmediate::isImmediate(k))
return;
protectedValues().remove(k->asCell());
}
void Collector::collectOnMainThreadOnly(JSValue* value)
{
ASSERT(value);
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
if (JSImmediate::isImmediate(value))
return;
JSCell* cell = value->asCell();
cellBlock(cell)->collectOnMainThreadOnly.set(cellOffset(cell));
++mainThreadOnlyObjectCount;
}
void Collector::markProtectedObjects()
{
ProtectCountSet& protectedValues = KJS::protectedValues();
ProtectCountSet::iterator end = protectedValues.end();
for (ProtectCountSet::iterator it = protectedValues.begin(); it != end; ++it) {
JSCell *val = it->first;
if (!val->marked())
val->mark();
}
}
void Collector::markMainThreadOnlyObjects()
{
#if USE(MULTIPLE_THREADS)
ASSERT(!onMainThread());
#endif
// Optimization for clients that never register "main thread only" objects.
if (!mainThreadOnlyObjectCount)
return;
// FIXME: We can optimize this marking algorithm by keeping an exact set of
// "main thread only" objects when the "main thread only" object count is
// small. We don't want to keep an exact set all the time, because WebCore
// tends to create lots of "main thread only" objects, and all that set
// thrashing can be expensive.
size_t count = 0;
// We don't look at the numberHeap as primitive values can never be marked as main thread only
for (size_t block = 0; block < primaryHeap.usedBlocks; block++) {
ASSERT(count < mainThreadOnlyObjectCount);
CollectorBlock* curBlock = primaryHeap.blocks[block];
size_t minimumCellsToProcess = curBlock->usedCells;
for (size_t i = 0; (i < minimumCellsToProcess) & (i < CELLS_PER_BLOCK); i++) {
CollectorCell* cell = curBlock->cells + i;
if (cell->u.freeCell.zeroIfFree == 0)
++minimumCellsToProcess;
else {
if (curBlock->collectOnMainThreadOnly.get(i)) {
if (!curBlock->marked.get(i)) {
JSCell* imp = reinterpret_cast<JSCell*>(cell);
imp->mark();
}
if (++count == mainThreadOnlyObjectCount)
return;
}
}
}
}
}
template <Collector::HeapType heapType> size_t Collector::sweep(bool currentThreadIsMainThread)
{
typedef typename HeapConstants<heapType>::Block Block;
typedef typename HeapConstants<heapType>::Cell Cell;
UNUSED_PARAM(currentThreadIsMainThread); // currentThreadIsMainThread is only used in ASSERTs
// SWEEP: delete everything with a zero refcount (garbage) and unmark everything else
CollectorHeap& heap = heapType == Collector::PrimaryHeap ? primaryHeap : numberHeap;
size_t emptyBlocks = 0;
size_t numLiveObjects = heap.numLiveObjects;
for (size_t block = 0; block < heap.usedBlocks; block++) {
Block* curBlock = (Block*)heap.blocks[block];
size_t usedCells = curBlock->usedCells;
Cell* freeList = curBlock->freeList;
if (usedCells == HeapConstants<heapType>::cellsPerBlock) {
// special case with a block where all cells are used -- testing indicates this happens often
for (size_t i = 0; i < HeapConstants<heapType>::cellsPerBlock; i++) {
if (!curBlock->marked.get(i >> HeapConstants<heapType>::bitmapShift)) {
Cell* cell = curBlock->cells + i;
if (heapType != Collector::NumberHeap) {
JSCell* imp = reinterpret_cast<JSCell*>(cell);
// special case for allocated but uninitialized object
// (We don't need this check earlier because nothing prior this point
// assumes the object has a valid vptr.)
if (cell->u.freeCell.zeroIfFree == 0)
continue;
ASSERT(currentThreadIsMainThread || !curBlock->collectOnMainThreadOnly.get(i));
if (curBlock->collectOnMainThreadOnly.get(i)) {
curBlock->collectOnMainThreadOnly.clear(i);
--Collector::mainThreadOnlyObjectCount;
}
imp->~JSCell();
}
--usedCells;
--numLiveObjects;
// put cell on the free list
cell->u.freeCell.zeroIfFree = 0;
cell->u.freeCell.next = freeList - (cell + 1);
freeList = cell;
}
}
} else {
size_t minimumCellsToProcess = usedCells;
for (size_t i = 0; (i < minimumCellsToProcess) & (i < HeapConstants<heapType>::cellsPerBlock); i++) {
Cell *cell = curBlock->cells + i;
if (cell->u.freeCell.zeroIfFree == 0) {
++minimumCellsToProcess;
} else {
if (!curBlock->marked.get(i >> HeapConstants<heapType>::bitmapShift)) {
if (heapType != Collector::NumberHeap) {
JSCell *imp = reinterpret_cast<JSCell*>(cell);
ASSERT(currentThreadIsMainThread || !curBlock->collectOnMainThreadOnly.get(i));
if (curBlock->collectOnMainThreadOnly.get(i)) {
curBlock->collectOnMainThreadOnly.clear(i);
--Collector::mainThreadOnlyObjectCount;
}
imp->~JSCell();
}
--usedCells;
--numLiveObjects;
// put cell on the free list
cell->u.freeCell.zeroIfFree = 0;
cell->u.freeCell.next = freeList - (cell + 1);
freeList = cell;
}
}
}
}
curBlock->usedCells = static_cast<uint32_t>(usedCells);
curBlock->freeList = freeList;
curBlock->marked.clearAll();
if (usedCells == 0) {
emptyBlocks++;
if (emptyBlocks > SPARE_EMPTY_BLOCKS) {
#if !DEBUG_COLLECTOR
freeBlock((CollectorBlock*)curBlock);
#endif
// swap with the last block so we compact as we go
heap.blocks[block] = heap.blocks[heap.usedBlocks - 1];
heap.usedBlocks--;
block--; // Don't move forward a step in this case
if (heap.numBlocks > MIN_ARRAY_SIZE && heap.usedBlocks < heap.numBlocks / LOW_WATER_FACTOR) {
heap.numBlocks = heap.numBlocks / GROWTH_FACTOR;
heap.blocks = (CollectorBlock**)fastRealloc(heap.blocks, heap.numBlocks * sizeof(CollectorBlock *));
}
}
}
}
if (heap.numLiveObjects != numLiveObjects)
heap.firstBlockWithPossibleSpace = 0;
heap.numLiveObjects = numLiveObjects;
heap.numLiveObjectsAtLastCollect = numLiveObjects;
heap.extraCost = 0;
return numLiveObjects;
}
bool Collector::collect()
{
ASSERT(JSLock::lockCount() > 0);
ASSERT(JSLock::currentThreadIsHoldingLock());
ASSERT((primaryHeap.operationInProgress == NoOperation) | (numberHeap.operationInProgress == NoOperation));
if ((primaryHeap.operationInProgress != NoOperation) | (numberHeap.operationInProgress != NoOperation))
abort();
primaryHeap.operationInProgress = Collection;
numberHeap.operationInProgress = Collection;
bool currentThreadIsMainThread = onMainThread();
// MARK: first mark all referenced objects recursively starting out from the set of root objects
#ifndef NDEBUG
// Forbid malloc during the mark phase. Marking a thread suspends it, so
// a malloc inside mark() would risk a deadlock with a thread that had been
// suspended while holding the malloc lock.
fastMallocForbid();
#endif
markStackObjectsConservatively();
markProtectedObjects();
ExecState::markActiveExecStates();
List::markProtectedLists();
#if USE(MULTIPLE_THREADS)
if (!currentThreadIsMainThread)
markMainThreadOnlyObjects();
#endif
#ifndef NDEBUG
fastMallocAllow();
#endif
size_t originalLiveObjects = primaryHeap.numLiveObjects + numberHeap.numLiveObjects;
size_t numLiveObjects = sweep<PrimaryHeap>(currentThreadIsMainThread);
numLiveObjects += sweep<NumberHeap>(currentThreadIsMainThread);
primaryHeap.operationInProgress = NoOperation;
numberHeap.operationInProgress = NoOperation;
return numLiveObjects < originalLiveObjects;
}
size_t Collector::size()
{
return primaryHeap.numLiveObjects + numberHeap.numLiveObjects;
}
size_t Collector::globalObjectCount()
{
size_t count = 0;
if (JSGlobalObject::head()) {
JSGlobalObject* o = JSGlobalObject::head();
do {
++count;
o = o->next();
} while (o != JSGlobalObject::head());
}
return count;
}
size_t Collector::protectedGlobalObjectCount()
{
size_t count = 0;
if (JSGlobalObject::head()) {
JSGlobalObject* o = JSGlobalObject::head();
do {
if (protectedValues().contains(o))
++count;
o = o->next();
} while (o != JSGlobalObject::head());
}
return count;
}
size_t Collector::protectedObjectCount()
{
return protectedValues().size();
}
static const char *typeName(JSCell *val)
{
const char *name = "???";
switch (val->type()) {
case UnspecifiedType:
break;
case UndefinedType:
name = "undefined";
break;
case NullType:
name = "null";
break;
case BooleanType:
name = "boolean";
break;
case StringType:
name = "string";
break;
case NumberType:
name = "number";
break;
case ObjectType: {
const ClassInfo *info = static_cast<JSObject *>(val)->classInfo();
name = info ? info->className : "Object";
break;
}
case GetterSetterType:
name = "gettersetter";
break;
}
return name;
}
HashCountedSet<const char*>* Collector::protectedObjectTypeCounts()
{
HashCountedSet<const char*>* counts = new HashCountedSet<const char*>;
ProtectCountSet& protectedValues = KJS::protectedValues();
ProtectCountSet::iterator end = protectedValues.end();
for (ProtectCountSet::iterator it = protectedValues.begin(); it != end; ++it)
counts->add(typeName(it->first));
return counts;
}
bool Collector::isBusy()
{
return (primaryHeap.operationInProgress != NoOperation) | (numberHeap.operationInProgress != NoOperation);
}
void Collector::reportOutOfMemoryToAllExecStates()
{
ExecStateStack::const_iterator end = ExecState::activeExecStates().end();
for (ExecStateStack::const_iterator it = ExecState::activeExecStates().begin(); it != end; ++it) {
(*it)->setException(Error::create(*it, GeneralError, "Out of memory"));
}
}
} // namespace KJS