ANGLE provides OpenGL ES 3.1 and EGL 1.5 libraries and tests. You can use these to build and run OpenGL ES applications on Windows, Linux, Mac and Android.
ANGLE uses git for version control. Helpful documentation can be found at http://git-scm.com/documentation.
On all platforms:
depot_tools
is in your path as it provides ninja for compilation.download_from_google_storage --config
to login to Google Storage.On Windows:
DEPOT_TOOLS_WIN_TOOLCHAIN=0
in your environment if you are not a Googler.On Linux:
install-build-deps.sh
later on.On MacOS:
git clone https://chromium.googlesource.com/angle/angle cd angle python scripts/bootstrap.py gclient sync git checkout master
On Linux only, you need to install all the necessary dependencies before going further by running this command:
./build/install-build-deps.sh
After this completes successfully, you are ready to generate the ninja files:
gn gen out/Debug
On Windows only, ensure you set DEPOT_TOOLS_WIN_TOOLCHAIN=0
in your environment (if you are not a Googler).
GN will generate ninja files. To change the default build options run gn args out/Debug
. Some commonly used options are:
target_cpu = "x86" (default is "x64") is_clang = false (to use system default compiler instead of clang) is_debug = true (enable debugging, true is the default) dcheck_always_on = true (enable release asserts and debug layers)
For a release build run gn args out/Release
and set is_debug = false
.
On Windows, you can build for the Universal Windows Platform (UWP) by setting target_os = "winuwp"
in the args.
For more information on GN run gn help
.
Ninja can be used to compile on all platforms with one of the following commands:
autoninja -C out/Debug autoninja -C out/Release
Ninja automatically calls GN to regenerate the build files on any configuration change.
Ensure depot_tools
is in your path as it provides ninja.
To generate the Visual Studio solution in out/Debug/angle-debug.sln
:
gn gen out/Debug --sln=angle-debug --ide=vs2019
In Visual Studio:
out/Debug/angle-debug.sln
.autoninja
from the command line to build.Once the build completes all ANGLE libraries, tests, and samples will be located in out/Debug
.
See the Android specific documentation.
This sections describes how to use ANGLE to build an OpenGL ES application.
ANGLE can use a variety of backing renderers based on platform. On Windows, it defaults to D3D11 where it's available, or D3D9 otherwise. On other desktop platforms, it defaults to GL. On mobile, it defaults to GLES.
ANGLE provides an EGL extension called EGL_ANGLE_platform_angle
which allows uers to select which renderer to use at EGL initialization time by calling eglGetPlatformDisplayEXT with special enums. Details of the extension can be found in it‘s specification in extensions/ANGLE_platform_angle.txt
and extensions/ANGLE_platform_angle_*.txt
and examples of it’s use can be seen in the ANGLE samples and tests, particularly util/EGLWindow.cpp
.
To change the default D3D backend:
src/libANGLE/renderer/d3d/DisplayD3D.cpp
ANGLE_DEFAULT_D3D11
near the head of the file, and set it to your preference.On Windows:
include
folder to provide access to the standard Khronos EGL and GLES2 header files.libEGL.lib
and libGLESv2.lib
found in the build output directory (see Building ANGLE).libEGL.lib
file and libGLESv2.lib
file to Additional Dependencies, separated by a semicolon.libEGL.dll
and libGLESv2.dll
from the build output directory (see Building ANGLE) into your application folder.On Linux and MacOS, either:
libGLESv2
and libEGL
dlopen
to load the OpenGL ES and EGL entry points at runtime.In addition to OpenGL ES 2.0 and EGL 1.4 libraries, ANGLE also provides a GLSL ES to GLSL translator. This is useful for implementing OpenGL ES emulators on top of desktop OpenGL.
The translator code is included with ANGLE but fully independent; it resides in src/compiler
. Follow the steps above for getting and building ANGLE to build the translator on the platform of your choice.
The basic usage is shown in essl_to_glsl
sample under samples/translator
. To translate a GLSL ES shader, following functions need to be called in the same order:
ShInitialize()
initializes the translator library and must be called only once from each process using the translator.ShContructCompiler()
creates a translator object for vertex or fragment shader.ShCompile()
translates the given shader.ShDestruct()
destroys the given translator.ShFinalize()
shuts down the translator library and must be called only once from each process using the translator.