blob: 74d7c2d1be089fbdd5c5d486d89099628c904434 [file] [log] [blame]
// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2002 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003 Apple Computer, Inc.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "function.h"
#include "dtoa.h"
#include "internal.h"
#include "function_object.h"
#include "lexer.h"
#include "nodes.h"
#include "operations.h"
#include "debugger.h"
#include "context.h"
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <ctype.h>
#include <wtf/unicode/Unicode.h>
using namespace WTF;
using namespace Unicode;
namespace KJS {
// ----------------------------- FunctionImp ----------------------------------
const ClassInfo FunctionImp::info = {"Function", &InternalFunctionImp::info, 0, 0};
FunctionImp::FunctionImp(ExecState* exec, const Identifier& n, FunctionBodyNode* b)
: InternalFunctionImp(static_cast<FunctionPrototype*>
(exec->lexicalInterpreter()->builtinFunctionPrototype()), n)
, body(b)
{
}
void FunctionImp::mark()
{
InternalFunctionImp::mark();
_scope.mark();
}
FunctionImp::~FunctionImp()
{
}
JSValue* FunctionImp::callAsFunction(ExecState* exec, JSObject* thisObj, const List& args)
{
JSObject* globalObj = exec->dynamicInterpreter()->globalObject();
// enter a new execution context
Context ctx(globalObj, exec->dynamicInterpreter(), thisObj, body.get(),
codeType(), exec->context(), this, &args);
ExecState newExec(exec->dynamicInterpreter(), &ctx);
if (exec->hadException())
newExec.setException(exec->exception());
ctx.setExecState(&newExec);
// assign user supplied arguments to parameters
passInParameters(&newExec, args);
// add variable declarations (initialized to undefined)
processVarDecls(&newExec);
Debugger* dbg = exec->dynamicInterpreter()->debugger();
int sid = -1;
int lineno = -1;
if (dbg) {
if (inherits(&DeclaredFunctionImp::info)) {
sid = static_cast<DeclaredFunctionImp*>(this)->body->sourceId();
lineno = static_cast<DeclaredFunctionImp*>(this)->body->firstLine();
}
bool cont = dbg->callEvent(&newExec,sid,lineno,this,args);
if (!cont) {
dbg->imp()->abort();
return jsUndefined();
}
}
Completion comp = execute(&newExec);
// if an exception occured, propogate it back to the previous execution object
if (newExec.hadException())
comp = Completion(Throw, newExec.exception());
#ifdef KJS_VERBOSE
if (comp.complType() == Throw)
printInfo(exec,"throwing", comp.value());
else if (comp.complType() == ReturnValue)
printInfo(exec,"returning", comp.value());
else
fprintf(stderr, "returning: undefined\n");
#endif
// The debugger may have been deallocated by now if the WebFrame
// we were running in has been destroyed, so refetch it.
// See http://bugs.webkit.org/show_bug.cgi?id=9477
dbg = exec->dynamicInterpreter()->debugger();
if (dbg) {
if (inherits(&DeclaredFunctionImp::info))
lineno = static_cast<DeclaredFunctionImp*>(this)->body->lastLine();
if (comp.complType() == Throw)
newExec.setException(comp.value());
int cont = dbg->returnEvent(&newExec,sid,lineno,this);
if (!cont) {
dbg->imp()->abort();
return jsUndefined();
}
}
if (comp.complType() == Throw) {
exec->setException(comp.value());
return comp.value();
}
else if (comp.complType() == ReturnValue)
return comp.value();
else
return jsUndefined();
}
// ECMA 10.1.3q
inline void FunctionImp::passInParameters(ExecState* exec, const List& args)
{
Vector<Parameter>& parameters = body->parameters();
JSObject* variable = exec->context()->variableObject();
#ifdef KJS_VERBOSE
fprintf(stderr, "---------------------------------------------------\n"
"processing parameters for %s call\n",
functionName().isEmpty() ? "(internal)" : functionName().ascii());
#endif
size_t size = parameters.size();
for (size_t i = 0; i < size; ++i) {
#ifdef KJS_VERBOSE
fprintf(stderr, "setting parameter %s ", parameters.at(i).name.ascii());
printInfo(exec, "to", args[i]);
#endif
variable->put(exec, parameters[i].name, args[i]);
}
}
void FunctionImp::processVarDecls(ExecState*)
{
}
JSValue* FunctionImp::argumentsGetter(ExecState* exec, JSObject*, const Identifier& propertyName, const PropertySlot& slot)
{
FunctionImp* thisObj = static_cast<FunctionImp*>(slot.slotBase());
Context* context = exec->m_context;
while (context) {
if (context->function() == thisObj)
return static_cast<ActivationImp*>(context->activationObject())->get(exec, propertyName);
context = context->callingContext();
}
return jsNull();
}
JSValue* FunctionImp::callerGetter(ExecState* exec, JSObject*, const Identifier&, const PropertySlot& slot)
{
FunctionImp* thisObj = static_cast<FunctionImp*>(slot.slotBase());
Context* context = exec->m_context;
while (context) {
if (context->function() == thisObj)
break;
context = context->callingContext();
}
if (!context)
return jsNull();
Context* callingContext = context->callingContext();
if (!callingContext)
return jsNull();
FunctionImp* callingFunction = callingContext->function();
if (!callingFunction)
return jsNull();
return callingFunction;
}
JSValue* FunctionImp::lengthGetter(ExecState*, JSObject*, const Identifier&, const PropertySlot& slot)
{
FunctionImp* thisObj = static_cast<FunctionImp*>(slot.slotBase());
return jsNumber(thisObj->body->numParams());
}
bool FunctionImp::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
// Find the arguments from the closest context.
if (propertyName == exec->propertyNames().arguments) {
slot.setCustom(this, argumentsGetter);
return true;
}
// Compute length of parameters.
if (propertyName == exec->propertyNames().length) {
slot.setCustom(this, lengthGetter);
return true;
}
if (propertyName == exec->propertyNames().caller) {
slot.setCustom(this, callerGetter);
return true;
}
return InternalFunctionImp::getOwnPropertySlot(exec, propertyName, slot);
}
void FunctionImp::put(ExecState* exec, const Identifier& propertyName, JSValue* value, int attr)
{
if (propertyName == exec->propertyNames().arguments || propertyName == exec->propertyNames().length)
return;
InternalFunctionImp::put(exec, propertyName, value, attr);
}
bool FunctionImp::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
if (propertyName == exec->propertyNames().arguments || propertyName == exec->propertyNames().length)
return false;
return InternalFunctionImp::deleteProperty(exec, propertyName);
}
/* Returns the parameter name corresponding to the given index. eg:
* function f1(x, y, z): getParameterName(0) --> x
*
* If a name appears more than once, only the last index at which
* it appears associates with it. eg:
* function f2(x, x): getParameterName(0) --> null
*/
Identifier FunctionImp::getParameterName(int index)
{
Vector<Parameter>& parameters = body->parameters();
if (static_cast<size_t>(index) >= body->numParams())
return CommonIdentifiers::shared()->nullIdentifier;
Identifier name = parameters[index].name;
// Are there any subsequent parameters with the same name?
size_t size = parameters.size();
for (size_t i = index + 1; i < size; ++i)
if (parameters[i].name == name)
return CommonIdentifiers::shared()->nullIdentifier;
return name;
}
// ------------------------------ DeclaredFunctionImp --------------------------
// ### is "Function" correct here?
const ClassInfo DeclaredFunctionImp::info = {"Function", &FunctionImp::info, 0, 0};
DeclaredFunctionImp::DeclaredFunctionImp(ExecState* exec, const Identifier& n,
FunctionBodyNode* b, const ScopeChain& sc)
: FunctionImp(exec, n, b)
{
setScope(sc);
}
bool DeclaredFunctionImp::implementsConstruct() const
{
return true;
}
// ECMA 13.2.2 [[Construct]]
JSObject* DeclaredFunctionImp::construct(ExecState* exec, const List& args)
{
JSObject* proto;
JSValue* p = get(exec, exec->propertyNames().prototype);
if (p->isObject())
proto = static_cast<JSObject*>(p);
else
proto = exec->lexicalInterpreter()->builtinObjectPrototype();
JSObject* obj(new JSObject(proto));
JSValue* res = call(exec,obj,args);
if (res->isObject())
return static_cast<JSObject*>(res);
else
return obj;
}
Completion DeclaredFunctionImp::execute(ExecState* exec)
{
Completion result = body->execute(exec);
if (result.complType() == Throw || result.complType() == ReturnValue)
return result;
return Completion(Normal, jsUndefined()); // TODO: or ReturnValue ?
}
void DeclaredFunctionImp::processVarDecls(ExecState* exec)
{
body->processVarDecls(exec);
}
// ------------------------------ IndexToNameMap ---------------------------------
// We map indexes in the arguments array to their corresponding argument names.
// Example: function f(x, y, z): arguments[0] = x, so we map 0 to Identifier("x").
// Once we have an argument name, we can get and set the argument's value in the
// activation object.
// We use Identifier::null to indicate that a given argument's value
// isn't stored in the activation object.
IndexToNameMap::IndexToNameMap(FunctionImp* func, const List& args)
{
_map = new Identifier[args.size()];
this->size = args.size();
int i = 0;
ListIterator iterator = args.begin();
for (; iterator != args.end(); i++, iterator++)
_map[i] = func->getParameterName(i); // null if there is no corresponding parameter
}
IndexToNameMap::~IndexToNameMap() {
delete [] _map;
}
bool IndexToNameMap::isMapped(const Identifier& index) const
{
bool indexIsNumber;
int indexAsNumber = index.toUInt32(&indexIsNumber);
if (!indexIsNumber)
return false;
if (indexAsNumber >= size)
return false;
if (_map[indexAsNumber].isNull())
return false;
return true;
}
void IndexToNameMap::unMap(const Identifier& index)
{
bool indexIsNumber;
int indexAsNumber = index.toUInt32(&indexIsNumber);
assert(indexIsNumber && indexAsNumber < size);
_map[indexAsNumber] = CommonIdentifiers::shared()->nullIdentifier;
}
Identifier& IndexToNameMap::operator[](int index)
{
return _map[index];
}
Identifier& IndexToNameMap::operator[](const Identifier& index)
{
bool indexIsNumber;
int indexAsNumber = index.toUInt32(&indexIsNumber);
assert(indexIsNumber && indexAsNumber < size);
return (*this)[indexAsNumber];
}
// ------------------------------ Arguments ---------------------------------
const ClassInfo Arguments::info = {"Arguments", 0, 0, 0};
// ECMA 10.1.8
Arguments::Arguments(ExecState* exec, FunctionImp* func, const List& args, ActivationImp* act)
: JSObject(exec->lexicalInterpreter()->builtinObjectPrototype()),
_activationObject(act),
indexToNameMap(func, args)
{
putDirect(exec->propertyNames().callee, func, DontEnum);
putDirect(exec->propertyNames().length, args.size(), DontEnum);
int i = 0;
ListIterator iterator = args.begin();
for (; iterator != args.end(); i++, iterator++) {
if (!indexToNameMap.isMapped(Identifier::from(i))) {
JSObject::put(exec, Identifier::from(i), *iterator, DontEnum);
}
}
}
void Arguments::mark()
{
JSObject::mark();
if (_activationObject && !_activationObject->marked())
_activationObject->mark();
}
JSValue* Arguments::mappedIndexGetter(ExecState* exec, JSObject*, const Identifier& propertyName, const PropertySlot& slot)
{
Arguments* thisObj = static_cast<Arguments*>(slot.slotBase());
return thisObj->_activationObject->get(exec, thisObj->indexToNameMap[propertyName]);
}
bool Arguments::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
if (indexToNameMap.isMapped(propertyName)) {
slot.setCustom(this, mappedIndexGetter);
return true;
}
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
void Arguments::put(ExecState* exec, const Identifier& propertyName, JSValue* value, int attr)
{
if (indexToNameMap.isMapped(propertyName)) {
_activationObject->put(exec, indexToNameMap[propertyName], value, attr);
} else {
JSObject::put(exec, propertyName, value, attr);
}
}
bool Arguments::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
if (indexToNameMap.isMapped(propertyName)) {
indexToNameMap.unMap(propertyName);
return true;
} else {
return JSObject::deleteProperty(exec, propertyName);
}
}
// ------------------------------ ActivationImp --------------------------------
const ClassInfo ActivationImp::info = {"Activation", 0, 0, 0};
// ECMA 10.1.6
ActivationImp::ActivationImp(FunctionImp* function, const List& arguments)
: _function(function), _arguments(arguments), _argumentsObject(0)
{
// FIXME: Do we need to support enumerating the arguments property?
}
JSValue* ActivationImp::argumentsGetter(ExecState* exec, JSObject*, const Identifier&, const PropertySlot& slot)
{
ActivationImp* thisObj = static_cast<ActivationImp*>(slot.slotBase());
// default: return builtin arguments array
if (!thisObj->_argumentsObject)
thisObj->createArgumentsObject(exec);
return thisObj->_argumentsObject;
}
PropertySlot::GetValueFunc ActivationImp::getArgumentsGetter()
{
return ActivationImp::argumentsGetter;
}
bool ActivationImp::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
// do this first so property map arguments property wins over the below
// we don't call JSObject because we won't have getter/setter properties
// and we don't want to support __proto__
if (JSValue** location = getDirectLocation(propertyName)) {
slot.setValueSlot(this, location);
return true;
}
if (propertyName == exec->propertyNames().arguments) {
slot.setCustom(this, getArgumentsGetter());
return true;
}
return false;
}
bool ActivationImp::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
if (propertyName == exec->propertyNames().arguments)
return false;
return JSObject::deleteProperty(exec, propertyName);
}
void ActivationImp::put(ExecState*, const Identifier& propertyName, JSValue* value, int attr)
{
// There's no way that an activation object can have a prototype or getter/setter properties
assert(!_prop.hasGetterSetterProperties());
assert(prototype() == jsNull());
_prop.put(propertyName, value, attr, (attr == None || attr == DontDelete));
}
void ActivationImp::mark()
{
if (_function && !_function->marked())
_function->mark();
if (_argumentsObject && !_argumentsObject->marked())
_argumentsObject->mark();
JSObject::mark();
}
void ActivationImp::createArgumentsObject(ExecState* exec)
{
_argumentsObject = new Arguments(exec, _function, _arguments, const_cast<ActivationImp*>(this));
// The arguments list is only needed to create the arguments object, so discard it now
_arguments.reset();
}
// ------------------------------ GlobalFunc -----------------------------------
GlobalFuncImp::GlobalFuncImp(ExecState* exec, FunctionPrototype* funcProto, int i, int len, const Identifier& name)
: InternalFunctionImp(funcProto, name)
, id(i)
{
putDirect(exec->propertyNames().length, len, DontDelete|ReadOnly|DontEnum);
}
CodeType GlobalFuncImp::codeType() const
{
return id == Eval ? EvalCode : codeType();
}
static JSValue* encode(ExecState* exec, const List& args, const char* do_not_escape)
{
UString r = "", s, str = args[0]->toString(exec);
CString cstr = str.UTF8String();
const char* p = cstr.c_str();
for (size_t k = 0; k < cstr.size(); k++, p++) {
char c = *p;
if (c && strchr(do_not_escape, c)) {
r.append(c);
} else {
char tmp[4];
sprintf(tmp, "%%%02X", (unsigned char)c);
r += tmp;
}
}
return jsString(r);
}
static JSValue* decode(ExecState* exec, const List& args, const char* do_not_unescape, bool strict)
{
UString s = "", str = args[0]->toString(exec);
int k = 0, len = str.size();
const UChar* d = str.data();
UChar u;
while (k < len) {
const UChar* p = d + k;
UChar c = *p;
if (c == '%') {
int charLen = 0;
if (k <= len - 3 && isxdigit(p[1].uc) && isxdigit(p[2].uc)) {
const char b0 = Lexer::convertHex(p[1].uc, p[2].uc);
const int sequenceLen = UTF8SequenceLength(b0);
if (sequenceLen != 0 && k <= len - sequenceLen * 3) {
charLen = sequenceLen * 3;
char sequence[5];
sequence[0] = b0;
for (int i = 1; i < sequenceLen; ++i) {
const UChar* q = p + i * 3;
if (q[0] == '%' && isxdigit(q[1].uc) && isxdigit(q[2].uc))
sequence[i] = Lexer::convertHex(q[1].uc, q[2].uc);
else {
charLen = 0;
break;
}
}
if (charLen != 0) {
sequence[sequenceLen] = 0;
const int character = decodeUTF8Sequence(sequence);
if (character < 0 || character >= 0x110000) {
charLen = 0;
} else if (character >= 0x10000) {
// Convert to surrogate pair.
s.append(static_cast<unsigned short>(0xD800 | ((character - 0x10000) >> 10)));
u = static_cast<unsigned short>(0xDC00 | ((character - 0x10000) & 0x3FF));
} else {
u = static_cast<unsigned short>(character);
}
}
}
}
if (charLen == 0) {
if (strict)
return throwError(exec, URIError);
// The only case where we don't use "strict" mode is the "unescape" function.
// For that, it's good to support the wonky "%u" syntax for compatibility with WinIE.
if (k <= len - 6 && p[1] == 'u'
&& isxdigit(p[2].uc) && isxdigit(p[3].uc)
&& isxdigit(p[4].uc) && isxdigit(p[5].uc)) {
charLen = 6;
u = Lexer::convertUnicode(p[2].uc, p[3].uc, p[4].uc, p[5].uc);
}
}
if (charLen && (u.uc == 0 || u.uc >= 128 || !strchr(do_not_unescape, u.low()))) {
c = u;
k += charLen - 1;
}
}
k++;
s.append(c);
}
return jsString(s);
}
static bool isStrWhiteSpace(unsigned short c)
{
switch (c) {
case 0x0009:
case 0x000A:
case 0x000B:
case 0x000C:
case 0x000D:
case 0x0020:
case 0x00A0:
case 0x2028:
case 0x2029:
return true;
default:
return isSeparatorSpace(c);
}
}
static int parseDigit(unsigned short c, int radix)
{
int digit = -1;
if (c >= '0' && c <= '9') {
digit = c - '0';
} else if (c >= 'A' && c <= 'Z') {
digit = c - 'A' + 10;
} else if (c >= 'a' && c <= 'z') {
digit = c - 'a' + 10;
}
if (digit >= radix)
return -1;
return digit;
}
double parseIntOverflow(const char* s, int length, int radix)
{
double number = 0.0;
double radixMultiplier = 1.0;
for (const char* p = s + length - 1; p >= s; p--) {
if (radixMultiplier == Inf) {
if (*p != '0') {
number = Inf;
break;
}
} else {
int digit = parseDigit(*p, radix);
number += digit * radixMultiplier;
}
radixMultiplier *= radix;
}
return number;
}
static double parseInt(const UString& s, int radix)
{
int length = s.size();
int p = 0;
while (p < length && isStrWhiteSpace(s[p].uc)) {
++p;
}
double sign = 1;
if (p < length) {
if (s[p] == '+') {
++p;
} else if (s[p] == '-') {
sign = -1;
++p;
}
}
if ((radix == 0 || radix == 16) && length - p >= 2 && s[p] == '0' && (s[p + 1] == 'x' || s[p + 1] == 'X')) {
radix = 16;
p += 2;
} else if (radix == 0) {
if (p < length && s[p] == '0')
radix = 8;
else
radix = 10;
}
if (radix < 2 || radix > 36)
return NaN;
int firstDigitPosition = p;
bool sawDigit = false;
double number = 0;
while (p < length) {
int digit = parseDigit(s[p].uc, radix);
if (digit == -1)
break;
sawDigit = true;
number *= radix;
number += digit;
++p;
}
if (number >= mantissaOverflowLowerBound) {
if (radix == 10)
number = kjs_strtod(s.substr(firstDigitPosition, p - firstDigitPosition).ascii(), 0);
else if (radix == 2 || radix == 4 || radix == 8 || radix == 16 || radix == 32)
number = parseIntOverflow(s.substr(firstDigitPosition, p - firstDigitPosition).ascii(), p - firstDigitPosition, radix);
}
if (!sawDigit)
return NaN;
return sign * number;
}
static double parseFloat(const UString& s)
{
// Check for 0x prefix here, because toDouble allows it, but we must treat it as 0.
// Need to skip any whitespace and then one + or - sign.
int length = s.size();
int p = 0;
while (p < length && isStrWhiteSpace(s[p].uc)) {
++p;
}
if (p < length && (s[p] == '+' || s[p] == '-')) {
++p;
}
if (length - p >= 2 && s[p] == '0' && (s[p + 1] == 'x' || s[p + 1] == 'X')) {
return 0;
}
return s.toDouble( true /*tolerant*/, false /* NaN for empty string */ );
}
JSValue* GlobalFuncImp::callAsFunction(ExecState* exec, JSObject* /*thisObj*/, const List& args)
{
JSValue* res = jsUndefined();
static const char do_not_escape[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"*+-./@_";
static const char do_not_escape_when_encoding_URI_component[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!'()*-._~";
static const char do_not_escape_when_encoding_URI[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"!#$&'()*+,-./:;=?@_~";
static const char do_not_unescape_when_decoding_URI[] =
"#$&+,/:;=?@";
switch (id) {
case Eval: { // eval()
JSValue* x = args[0];
if (!x->isString())
return x;
else {
UString s = x->toString(exec);
int sid;
int errLine;
UString errMsg;
RefPtr<ProgramNode> progNode(Parser::parse(UString(), 0, s.data(),s.size(),&sid,&errLine,&errMsg));
Debugger* dbg = exec->dynamicInterpreter()->debugger();
if (dbg) {
bool cont = dbg->sourceParsed(exec, sid, UString(), s, 0, errLine, errMsg);
if (!cont)
return jsUndefined();
}
// no program node means a syntax occurred
if (!progNode)
return throwError(exec, SyntaxError, errMsg, errLine, sid, NULL);
// enter a new execution context
JSObject* thisVal = static_cast<JSObject*>(exec->context()->thisValue());
Context ctx(exec->dynamicInterpreter()->globalObject(),
exec->dynamicInterpreter(),
thisVal,
progNode.get(),
EvalCode,
exec->context());
ExecState newExec(exec->dynamicInterpreter(), &ctx);
if (exec->hadException())
newExec.setException(exec->exception());
ctx.setExecState(&newExec);
// execute the code
progNode->processVarDecls(&newExec);
Completion c = progNode->execute(&newExec);
// if an exception occured, propogate it back to the previous execution object
if (newExec.hadException())
exec->setException(newExec.exception());
res = jsUndefined();
if (c.complType() == Throw)
exec->setException(c.value());
else if (c.isValueCompletion())
res = c.value();
}
break;
}
case ParseInt:
res = jsNumber(parseInt(args[0]->toString(exec), args[1]->toInt32(exec)));
break;
case ParseFloat:
res = jsNumber(parseFloat(args[0]->toString(exec)));
break;
case IsNaN:
res = jsBoolean(isNaN(args[0]->toNumber(exec)));
break;
case IsFinite: {
double n = args[0]->toNumber(exec);
res = jsBoolean(!isNaN(n) && !isInf(n));
break;
}
case DecodeURI:
res = decode(exec, args, do_not_unescape_when_decoding_URI, true);
break;
case DecodeURIComponent:
res = decode(exec, args, "", true);
break;
case EncodeURI:
res = encode(exec, args, do_not_escape_when_encoding_URI);
break;
case EncodeURIComponent:
res = encode(exec, args, do_not_escape_when_encoding_URI_component);
break;
case Escape:
{
UString r = "", s, str = args[0]->toString(exec);
const UChar* c = str.data();
for (int k = 0; k < str.size(); k++, c++) {
int u = c->uc;
if (u > 255) {
char tmp[7];
sprintf(tmp, "%%u%04X", u);
s = UString(tmp);
} else if (u != 0 && strchr(do_not_escape, (char)u)) {
s = UString(c, 1);
} else {
char tmp[4];
sprintf(tmp, "%%%02X", u);
s = UString(tmp);
}
r += s;
}
res = jsString(r);
break;
}
case UnEscape:
{
UString s = "", str = args[0]->toString(exec);
int k = 0, len = str.size();
while (k < len) {
const UChar* c = str.data() + k;
UChar u;
if (*c == UChar('%') && k <= len - 6 && *(c+1) == UChar('u')) {
if (Lexer::isHexDigit((c+2)->uc) && Lexer::isHexDigit((c+3)->uc) &&
Lexer::isHexDigit((c+4)->uc) && Lexer::isHexDigit((c+5)->uc)) {
u = Lexer::convertUnicode((c+2)->uc, (c+3)->uc,
(c+4)->uc, (c+5)->uc);
c = &u;
k += 5;
}
} else if (*c == UChar('%') && k <= len - 3 &&
Lexer::isHexDigit((c+1)->uc) && Lexer::isHexDigit((c+2)->uc)) {
u = UChar(Lexer::convertHex((c+1)->uc, (c+2)->uc));
c = &u;
k += 2;
}
k++;
s += UString(c, 1);
}
res = jsString(s);
break;
}
#ifndef NDEBUG
case KJSPrint:
puts(args[0]->toString(exec).ascii());
break;
#endif
}
return res;
}
UString escapeStringForPrettyPrinting(const UString& s)
{
UString escapedString;
for (int i = 0; i < s.size(); i++) {
unsigned short c = s.data()[i].unicode();
switch (c) {
case '\"':
escapedString += "\\\"";
break;
case '\n':
escapedString += "\\n";
break;
case '\r':
escapedString += "\\r";
break;
case '\t':
escapedString += "\\t";
break;
case '\\':
escapedString += "\\\\";
break;
default:
if (c < 128 && isPrintableChar(c))
escapedString.append(c);
else {
char hexValue[7];
#if PLATFORM(WIN_OS)
_snprintf(hexValue, 7, "\\u%04x", c);
#else
snprintf(hexValue, 7, "\\u%04x", c);
#endif
escapedString += hexValue;
}
}
}
return escapedString;
}
} // namespace