blob: 2c6bb4a402bed3de2783f54f242fc2809bfa1310 [file] [log] [blame]
/*
* Copyright (C) 2004, 2005, 2006, 2007 Nikolas Zimmermann <zimmermann@kde.org>
* Copyright (C) 2004, 2005 Rob Buis <buis@kde.org>
* Copyright (C) 2005 Eric Seidel <eric@webkit.org>
* Copyright (C) 2009 Dirk Schulze <krit@webkit.org>
* Copyright (C) Research In Motion Limited 2010. All rights reserved.
* Copyright (C) 2021 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "FECompositeSoftwareApplier.h"
#include "FEComposite.h"
#include "GraphicsContext.h"
#include "ImageBuffer.h"
#include "PixelBuffer.h"
#include <wtf/MathExtras.h>
namespace WebCore {
uint8_t FECompositeSoftwareApplier::clampByte(int c)
{
uint8_t buff[] = { static_cast<uint8_t>(c), 255, 0 };
unsigned uc = static_cast<unsigned>(c);
return buff[!!(uc & ~0xff) + !!(uc & ~(~0u >> 1))];
}
template <int b1, int b4>
inline void FECompositeSoftwareApplier::computeArithmeticPixels(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
{
float scaledK1;
float scaledK4;
if (b1)
scaledK1 = k1 / 255.0f;
if (b4)
scaledK4 = k4 * 255.0f;
while (--pixelArrayLength >= 0) {
unsigned char i1 = *source;
unsigned char i2 = *destination;
float result = k2 * i1 + k3 * i2;
if (b1)
result += scaledK1 * i1 * i2;
if (b4)
result += scaledK4;
*destination = clampByte(result);
++source;
++destination;
}
}
// computeArithmeticPixelsUnclamped is a faster version of computeArithmeticPixels for the common case where clamping
// is not necessary. This enables aggresive compiler optimizations such as auto-vectorization.
template <int b1, int b4>
inline void FECompositeSoftwareApplier::computeArithmeticPixelsUnclamped(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
{
float scaledK1;
float scaledK4;
if (b1)
scaledK1 = k1 / 255.0f;
if (b4)
scaledK4 = k4 * 255.0f;
while (--pixelArrayLength >= 0) {
unsigned char i1 = *source;
unsigned char i2 = *destination;
float result = k2 * i1 + k3 * i2;
if (b1)
result += scaledK1 * i1 * i2;
if (b4)
result += scaledK4;
*destination = result;
++source;
++destination;
}
}
#if !HAVE(ARM_NEON_INTRINSICS)
inline void FECompositeSoftwareApplier::applyPlatformArithmetic(unsigned char* source, unsigned char* destination, int pixelArrayLength, float k1, float k2, float k3, float k4)
{
float upperLimit = std::max(0.0f, k1) + std::max(0.0f, k2) + std::max(0.0f, k3) + k4;
float lowerLimit = std::min(0.0f, k1) + std::min(0.0f, k2) + std::min(0.0f, k3) + k4;
if ((k4 >= 0.0f && k4 <= 1.0f) && (upperLimit >= 0.0f && upperLimit <= 1.0f) && (lowerLimit >= 0.0f && lowerLimit <= 1.0f)) {
if (k4) {
if (k1)
computeArithmeticPixelsUnclamped<1, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
else
computeArithmeticPixelsUnclamped<0, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
} else {
if (k1)
computeArithmeticPixelsUnclamped<1, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
else
computeArithmeticPixelsUnclamped<0, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
}
return;
}
if (k4) {
if (k1)
computeArithmeticPixels<1, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
else
computeArithmeticPixels<0, 1>(source, destination, pixelArrayLength, k1, k2, k3, k4);
} else {
if (k1)
computeArithmeticPixels<1, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
else
computeArithmeticPixels<0, 0>(source, destination, pixelArrayLength, k1, k2, k3, k4);
}
}
#endif
bool FECompositeSoftwareApplier::applyArithmetic(FilterImage& input, FilterImage& input2, FilterImage& result)
{
auto destinationPixelBuffer = result.pixelBuffer(AlphaPremultiplication::Premultiplied);
if (!destinationPixelBuffer)
return false;
IntRect effectADrawingRect = m_effect.requestedRegionOfInputPixelBuffer(input.absoluteImageRect());
auto sourcePixelBuffer = input.getPixelBuffer(AlphaPremultiplication::Premultiplied, effectADrawingRect, m_effect.operatingColorSpace());
if (!sourcePixelBuffer)
return false;
IntRect effectBDrawingRect = m_effect.requestedRegionOfInputPixelBuffer(input2.absoluteImageRect());
input2.copyPixelBuffer(*destinationPixelBuffer, effectBDrawingRect);
auto& sourcePixelArray = sourcePixelBuffer->data();
auto& destinationPixelArray = destinationPixelBuffer->data();
int length = sourcePixelArray.length();
ASSERT(length == static_cast<int>(destinationPixelArray.length()));
applyPlatformArithmetic(sourcePixelArray.data(), destinationPixelArray.data(), length, m_effect.k1(), m_effect.k2(), m_effect.k3(), m_effect.k4());
return true;
}
bool FECompositeSoftwareApplier::applyNonArithmetic(FilterImage& input, FilterImage& input2, FilterImage& result)
{
auto resultImage = result.imageBuffer();
if (!resultImage)
return false;
auto inputImage = input.imageBuffer();
auto inputImage2 = input2.imageBuffer();
if (!inputImage || !inputImage2)
return false;
auto& filterContext = resultImage->context();
switch (m_effect.operation()) {
case FECOMPOSITE_OPERATOR_UNKNOWN:
return false;
case FECOMPOSITE_OPERATOR_OVER:
filterContext.drawImageBuffer(*inputImage2, m_effect.drawingRegionOfInputImage(input2.absoluteImageRect()));
filterContext.drawImageBuffer(*inputImage, m_effect.drawingRegionOfInputImage(input.absoluteImageRect()));
break;
case FECOMPOSITE_OPERATOR_IN: {
// Applies only to the intersected region.
IntRect destinationRect = input.absoluteImageRect();
destinationRect.intersect(input2.absoluteImageRect());
destinationRect.intersect(result.absoluteImageRect());
if (destinationRect.isEmpty())
break;
IntRect adjustedDestinationRect = destinationRect - result.absoluteImageRect().location();
IntRect sourceRect = destinationRect - input.absoluteImageRect().location();
IntRect source2Rect = destinationRect - input2.absoluteImageRect().location();
filterContext.drawImageBuffer(*inputImage2, FloatRect(adjustedDestinationRect), FloatRect(source2Rect));
filterContext.drawImageBuffer(*inputImage, FloatRect(adjustedDestinationRect), FloatRect(sourceRect), { CompositeOperator::SourceIn });
break;
}
case FECOMPOSITE_OPERATOR_OUT:
filterContext.drawImageBuffer(*inputImage, m_effect.drawingRegionOfInputImage(input.absoluteImageRect()));
filterContext.drawImageBuffer(*inputImage2, m_effect.drawingRegionOfInputImage(input2.absoluteImageRect()), { { }, inputImage2->logicalSize() }, CompositeOperator::DestinationOut);
break;
case FECOMPOSITE_OPERATOR_ATOP:
filterContext.drawImageBuffer(*inputImage2, m_effect.drawingRegionOfInputImage(input2.absoluteImageRect()));
filterContext.drawImageBuffer(*inputImage, m_effect.drawingRegionOfInputImage(input.absoluteImageRect()), { { }, inputImage->logicalSize() }, CompositeOperator::SourceAtop);
break;
case FECOMPOSITE_OPERATOR_XOR:
filterContext.drawImageBuffer(*inputImage2, m_effect.drawingRegionOfInputImage(input2.absoluteImageRect()));
filterContext.drawImageBuffer(*inputImage, m_effect.drawingRegionOfInputImage(input.absoluteImageRect()), { { }, inputImage->logicalSize() }, CompositeOperator::XOR);
break;
case FECOMPOSITE_OPERATOR_ARITHMETIC:
ASSERT_NOT_REACHED();
return false;
case FECOMPOSITE_OPERATOR_LIGHTER:
filterContext.drawImageBuffer(*inputImage2, m_effect.drawingRegionOfInputImage(input2.absoluteImageRect()));
filterContext.drawImageBuffer(*inputImage, m_effect.drawingRegionOfInputImage(input.absoluteImageRect()), { { }, inputImage->logicalSize() }, CompositeOperator::PlusLighter);
break;
}
return true;
}
bool FECompositeSoftwareApplier::apply(const Filter&, const FilterImageVector& inputs, FilterImage& result)
{
auto& input = inputs[0].get();
auto& input2 = inputs[1].get();
if (m_effect.operation() == FECOMPOSITE_OPERATOR_ARITHMETIC)
return applyArithmetic(input, input2, result);
return applyNonArithmetic(input, input2, result);
}
} // namespace WebCore